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Steady flow dynamics during granular impact
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We study experimentally and computationally the dynamics of granular flow during impacts where intruders
strike a collection of disks from above. In the regime where granular force dynamics are much more rapid than
the intruder motion, we find that the particle flow near the intruder is proportional to the instantaneous intruder
speed; it is essentially constant when normalized by that speed. The granular flow is nearly divergence free
and remains in balance with the intruder, despite the latter’s rapid deceleration. Simulations indicate that this
observation is insensitive to grain properties, which can be explained by the separation of time scales between
intergrain force dynamics and intruder dynamics. Assuming there is a comparable separation of time scales, we
expect that our results are applicable to a broad class of dynamic or transient granular flows. Our results suggest
that descriptions of static-in-time granular flows might be extended or modified to describe these dynamic flows.
Additionally, we find that accurate grain-grain interactions are not necessary to correctly capture the granular
flow in this regime.
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What is the nature of force transmission and particle
flow during dynamic intrusion into granular material? This
question is fundamental to a general understanding of dense
granular flow, and a complete description would have many
applications, such as biological or robotic locomotions over
sand [1,2] or impact into the surface of extraterrestrial bodies
[3]. Moreover, the flow of grains during intrusion is part of
a broad class of dense granular flows that are both rapid
(i.e., large inertial number [4]) and highly transient in time.
The highly transient driving seemingly prohibits the use of
existing descriptions of dense granular flows [4–6], which
are formulated for well developed cases (i.e., static in time
after transients have settled or quasistatic). Additionally, the
high speeds and accelerations involved in this process raise
important questions on how these flows should be considered
computationally, either with a discrete element method [7–9]
or from a continuum perspective [10].

In this Rapid Communication, we present experimental
and computational results on the flow of a two-dimensional
granular material around circular intruders that are incident
on a free granular bed at speeds of v0 � 6 m/s. The main
result from both experiments and simulations is that the flow
of the granular material remains in a dynamic steady state
with the intruder for essentially the entire trajectory, despite
the highly transient nature of this process. By dynamic steady
state, we mean that the granular flow field near the intruder
scales linearly with the instantaneous intruder speed, even as
the intruder decelerates rapidly. Since the force propagation
speeds of vf ∼ 300 m/s � v0 [11] are much faster than the
intruder motion, forces can propagate and relax fast enough
that the motion of grains near the intruder is essentially
incompressible and remains in this dynamic steady state.
We expect our results to be applicable to a wide array of
rapid highly transient dense granular flows assuming vf � v0

(where v0 sets a generic driving rate). Existing descriptions
of well developed granular flows [4–6] may be extended or
modified [10] to capture these transient flows. Additionally,
whereas force propagation depends crucially on the intergrain

force law [11], the agreement between flow field measurements
in simulations and experiments is largely independent of
the grain properties used in the simulations, suggesting that
accurate grain-grain interactions are not necessary to model
highly dynamic flows, provided that vf � v0.

The experiments are carried out using the protocol
described in Refs. [11–14]. Here, bronze intruders that are
disks or have circular leading edges are normally incident
from above on photoelastic disks. We measure the granular
flow fields using particle image velocimetry (PIV) [15], which
analyzes successive pairs of frames from high-speed movies
(sampled at 2333 Hz) to estimate the local flow field. This
returns estimates of the local displacement on a grid as shown
in Fig. 1(a). The photoelastic disks are cut from PSM-1,
manufactured by Vishay Precision Group. Here, vf � v0

[11], and we note that the grain-scale force picture and the
subsequent intruder dynamics change drastically when vf ∼
v0 [9,11]. However, when vf � v0, the intruder deceleration
is dominated by large fluctuations in space and time in the
form of quasirandom collisions with networks of particles that
occur beneath the intruder [12,14]. Thus, our primary focus in
this Rapid Communication is on the region directly beneath
the intruder. The material responds quickly to the advancing
intruder, and the fast force dynamics average over longer
times to yield both rate-independent and Bagnold-like [16]
velocity-squared drag forces that are common in both impact
studies [12–14,17–21] (i.e., transient driving) and steady drag
experiments [22–28] (i.e., well-developed flows). We note
that our results help explain similarities between these two
processes.

To explore the influence of the interaction force between
the granular particles, we carried out simulations using both
linear and nonlinear (Hertzian) force models that included
friction as well as simulations with a linear force model
and no interparticle friction. Simulations, described briefly
below, are similar to those discussed in Ref. [9] but with a
nonlinear force interaction model as well as parameters that
are matched to the experiments. We consider a rectangular
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FIG. 1. (a) PIV flow field for a circular intruder with a radius of
R = 6.35 cm at a particular frame. (b) Vertical and horizontal com-
ponents of the spatially smoothed PIV flow field from experiment,
normalized by the instantaneous intruder velocity (v = 3.05 m/s).
The left panel shows the normalized vertical velocity uz/v with
downward as positive, and the right panel shows the horizontal
velocity ux/v with rightward as positive. The white color in the
intruder in the left panel denotes its downward motion. The red box
encloses the region used to obtain the steady-state velocity field,
which will move along with the intruder. (c) The instantaneous flow
fields uz/v and ux/v at a particular time from simulations with
Hertzian frictional interactions between grains.

domain in two dimensions with gravity. The domain size as
well as particle numbers and sizes are as in the experiments.
The particle-particle, particle-intruder, and particle-wall in-
teractions are modeled using the soft-sphere approach that
includes friction and particle rotations. We then solve the
following (nondimensional) equations of motion for each
particle (including the intruder):

mi

d2ri

dt2
= Fl

n
i,j + Fl

t
i,j + mig, Ii

dωi

dt
= −1

2
din × Fl

t
i,j .

(1)

For the linear force model, the normal force is given by Fl
n
i,j =

[knx − γnm̄vi,j ]n, where ri,j = |ri,j |, ri,j = ri − rj , and the
normal direction is defined by n = ri,j /ri,j . The compression
is defined by x = dave − ri,j , where dave = (di + dj )/2, di and
dj are the diameters of the particles i and j, and vn

i,j is the
relative normal velocity.

The nondimensional force constant kn is related to the
dimensional one k by k = knmg/d, where m is the average
particle mass, d is the average particle diameter, and g is
Earth’s gravity. All quantities are expressed using d as the
length scale, the binary collision time τc = π

√
d/2gkn as

the time scale, and m as the mass scale. Then, m̄ is the
reduced mass, and γn is the damping coefficient related to
the coefficient of restitution en by γn = −2 ln en/τc, see, e.g.,
Ref. [29]. We take en = 0.5 as a constant and ignore its possible
velocity dependence [30]. The Hertzian interaction model
is implemented as Fh = √

didj /(di + dj )
√

xFl . In principle,
the force constant could now be connected to the material
properties of the particles using the method described, e.g.,
in Ref. [29]. Instead, here we use the results of static tests
carried out to measure directly the functional relation between
the normal force and the compression, see Ref. [11]. The
normal force constant is then found using the measured value
of the force for 1% compression. The tangential force is
computed using a standard Cundall-Strack model [7]; see,
e.g., Ref. [9] for the details of implementation. The particle-
particle and particle-intruder coefficients of friction are set
to the experimentally estimated value of μ = 0.8 [31]; the
particles making up the walls are made very inelastic and
frictional with μ = 0.9 and en = 0.1. The system is prepared
by placing granular particles on a rectangular lattice with
random size distribution of the particles. The particles are
given random initial velocities and left to settle under gravity.
Then, the whole domain is vibrated gently to let the particles
settle once more. The intensity of vibrations does not appear
to be important; we use � = aω2/g (a is the amplitude,
and ω is the frequency of vibrations) in the range [1,5]
without any systematic change in the results. We then place a
circular intruder just above the bed with an initial downward
velocity v0.

Results from PIV (for experiments) or actual particle
positions and velocities (for simulations) can be spatially
coarse grained [32–34] as shown in Figs. 1(b) and 1(c)
to give a continuum flow field u(x,t), where x represents
spatial coordinates in the laboratory frame. The vertical
component uz(x,t) (with downward being positive z) and the
horizontal component ux(x,t) (with rightward being positive
x) components of the flow field at an intruder speed of
v = 3.05 m/s are shown in Fig. 1(b) for experiments. The
grid size used for the PIV algorithm is approximately the
same size as a single particle, so the particle-scale fluctuations
in the velocity fields still persist. To compare simulation results
to PIV, we use a coarse-grained momentum field normalized
by the average mass density. (We normalize by the average
mass density instead of a local mass density field since the
coarse-grained spatially varying mass density field goes to
zero at the free surface and near the intruder.) This yields a
flow field u(r,t)/v as shown in Fig. 1(c) from simulations for
an intruder radius of R = 6.35 cm.
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FIG. 2. (a) The average flow field A from experiments for a
circular intruder with a radius of R = 6.35 cm. The left side shows
the vertical velocity Az (down is positive), and the right side shows
the horizontal velocity Ax (right is positive). (b) The instantaneous
fluctuations A′

z and A′
x in the flow field at a particular frame from

experiments for a circular intruder with a radius of R = 6.35 cm. (c)
A spatial plot of A′

rms, the root-mean-squared value of A′. A time
series of the spatial mean of A′

rms within the outlined region (where
the fluctuations are most prominent) is plotted (thick dashed line)
in panel (d). This quantity is essentially constant in time. The red,
blue, and green solid lines in (d) show A′

z at three points beneath the
intruder. These signals fluctuate around zero with a correlation time
of roughly 3 ms.

In both experiments and simulations, we find that

u(x,t) = v(t)[A(x − x0) + A′(x − x0,t)], (2)

where v(t) is the intruder speed (with motion assumed to
be strictly downward), x0(t) is the intruder position in the
laboratory frame, A is the scaled steady-state velocity field,
and A′ captures the instantaneous fluctuations in the velocity
field. A and A′ are shown in Figs. 2(a) and 2(b), respectively,
for experiments. Similar fields for simulations with grain
properties matched to those from the experiments (not shown)
are indistinguishable by eye, and we quantitatively show that
the two approaches agree in our analysis below. In each
trajectory (experiments and simulations), we calculate A by
time averaging the flow-field data inside the red rectangular
region marked in Fig. 1(b). A appears very similar to the
instantaneous flow fields shown in Figs. 1(b) and 1(c) but
smoother spatially. A′ is determined at each time from the
difference between the instantaneous coarse-grained flow field

γ̇/v |∇ ·A| m
et
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FIG. 3. The local shear rate γ̇ /v and the divergence of A,
computed numerically from the flow field shown in Fig. 2(a), showing
that A is a divergence-free shear flow.

and the normalized space- and time-averaged flow field:
A′ = u/v(t) − A. An experimental measurement of A′ at one
instant is shown in Fig. 2(b), which is typical for all times in
both simulation and experiment.

We find the fluctuations A′ to be strongest beneath the
intruder, statistically stationary in time, and decoupled from
the intruder dynamics. Figure 2(c) shows a spatial plot of the
root-mean-square (rms) magnitude of the fluctuations A′

rms.
In the region beneath the intruder, the average fluctuations
are about |A′| ≈ 0.1. The magnitude |A′| is always less than
0.2 (where a value of 1 would correspond to a local velocity
fluctuation of the same size as the intruder speed); it is largest
near the leading edge of the intruder and falls off rapidly
with increasing distance from the intruder. Figure 2(d) shows
time-series plots of A′, which are statistically stationary in
time.

By analyzing local strain rates, we find that A represents a
shear flow with zero divergence. Using numerical derivatives,
we compute the strain-rate tensor for the average flow
field D = 0.5[∇A + (∇A)�] with eigenvalues d1 and d2.
Figure 3 shows the local shear rate γ̇ /v = (d1 − d2)/2 and
demonstrates that ∇ · A = tr D = 0 within noise, i.e., the flow
of grains near the intruder is essentially incompressible. Note
that γ̇ /v is well correlated to A′

rms(r), shown in Fig. 2(c). This
is similar to many previous studies [35,36] where shear causes
local velocity fluctuations. Physically, A′ represents nonaffine
particle rearrangements as particles are forced to move past
each other as opposed to a monotonic increase or decrease as
the intruder slows. A full analysis of grain-scale fluctuations,
which could be achieved with data for particle trajectories (as
opposed to PIV), will be a topic of future work.

Combined with force data from previous studies [12–14],
the strain rates shown in Fig. 3 can be used to estimate
the inertial number I = γ̇

√
m/P , which is often used to

determine a constitutive relation for granular shear flows
[4–6]. Here, m is mass of a single grain, and P is the local
pressure. The maximum shear rate in Fig. 3 is γ̇ ≈ 20v, and
the mass of a grain m is roughly 0.1 g. We estimate the
pressure P ∼ F/D by considering the force F on the intruder
and dividing by the intruder diameter D. F is dominated
by velocity-squared forces which arise from collisions with
force-chain-like structures [14], and for circular intruders in
the present experiments, we find F ≈ h0v

2, where h0 is a shape
and size dependent constant with units of kg/m; for the circular-
nosed intruders considered here, we find h0/D ≈ 5 kg/m2

[14]. This yields I ≈ 0.09 in the region directly beneath the
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intruder, which is in the rapid flow regime where nonlocal
effects may be less important [6,37].

To quantitatively compare A for various intruder sizes
and simulation settings, we fit A to a functional form by
decomposing it into radial and angular components,

A(x) = r̂[cos θ − fr (r)] + θ̂[fθ (r) − sin θ ]. (3)

Here, r = r r̂ + θ θ̂ , where r = 0 corresponds to the center of
the intruder and θ is measured counterclockwise from the
(downward) z axis. The components fr and fθ represent the
flow field components in the intruder frame, and shifting by
ẑ = cos θ r̂ − sin θ θ̂ transfers these components back to the
laboratory frame, where A is defined. fr and fθ are defined as

fr (r) = ar (r) cos[br (r)θ ], (4)

fθ (r) = aθ (r) sin[bθ (r)θ ]. (5)
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FIG. 4. (a) Data (solid blue lines) and corresponding fit line
(dashed black lines) of the form shown in Eq. (3) for one intruder
(radius of R = 3.18 cm) at r = 1.5R, 2R, and 3R, where r = R

corresponds to the intruder boundary. (b)–(e) A comparison of the
fit parameters—ar (r),br (r),aθ (r),bθ (r)—for circular intruders with
R = 3.18 cm (small red circles) R = 6.35 cm (medium blue circles),
R = 10.15 cm (large green circles), as well as the circular-nosed
intruder with R = 4.65 cm and a rectangular tail (black squares).
The inset of (b) shows semilogarithmic plots of 1 − ar (r) versus
r/R; the thick black reference lines show exponential decay with
decay lengths of 0.7R (upper) and 0.25R (lower). The inset of (c)
shows semilogarithmic plots of br (r) − 1 versus r/R; the thick black
reference line shows exponential decay with a decay length of 1.85R.

Seguin and co-workers [25,26] used a similar form to describe
quasistatic granular flow around downward-moving circular
obstacles but with br = bθ = 1 since in their quasistatic case,
the flow was symmetric ahead of and behind the intruder.
Here, we consider fits only to the half-space in front of the
intruder. Sample fits at particular values of r are shown in
Fig. 4. Far away, all four fit parameters should approach 1,
corresponding to no grain motion.

Figure 4 shows ar (r), br (r), aθ (r), and bθ (r) for different
circular-nosed intruders with radii of R = 3.18, 4.65, 6.35,
and 10.15 cm. The intruder with R = 4.65 cm is an ogive,
with a circular nose and rectangular tail; however, the particles
are never in contact with the tail so that its presence is
irrelevant, aside from increasing the area of the intruder and
therefore its mass. The fit parameters for each intruder appear
similar when rescaled by R with secondary dependencies on
the ratio ρint/ρg of the intruder to grain mass density and
on the ratio d/R of grain size to intruder radius, where
d ≈ 5 mm. ar and br decay roughly exponentially to their
far-field values as ar ∝ exp(−r/ξar

) and br ∝ exp(−r/ξbr
)

with 0.25R < ξar
< 0.7R and ξbr

≈ 1.85R. This localization
and exponential spatial decay is also common in dense granular
flows that are driven by a boundary (e.g., Refs. [25,26,36] and
many others).

Figure 5 shows a comparison between the fit of experi-
mental and computational data to Eqs. (3)–(5) for a single
size intruder; this is typical for all sizes. We find surprisingly
good agreement for all considered interparticle force models
(frictional Hertzian, frictional linear, and frictionless linear
interactions). Such good agreement shows that in the present
regime where v0 	 vf , the details of the force model are not
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FIG. 5. Comparison of the parameters ar (r), br (r), ar (r), and
aθ (r) between experimental data (blue circles) from Fig. 4 and sim-
ulations using frictional linear (magenta crosses), frictional Hertzian
(magenta triangles), and frictionless linear (light blue asterisks)
interactions, all under the same conditions with R = 6.35 cm. The
insets of (a) and (b) show semilogarithmic plots of 1 − ar (r) and
br (r) − 1, respectively, versus r/R. The thick black reference lines in
the insets show exponential decay with decay lengths of (a) of 1.3R

(upper) and 0.45R (lower) and in (b) of 1.85R.
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crucial for the response of granular material. However, we note
that frictional forces primarily affect the decay length of the
radial flow field as shown in the inset of Fig. 5(a), and thus
they play an important role in determining dynamics of the
intruder; in particular, without friction, the final penetration
depth is almost 50% larger (roughly 60 cm) than when friction
is present (roughly 42 cm). The functional form of the normal
forces between the particles (linear versus nonlinear) however
does not appear to be important.

These results provide several important physical insights
that should be applicable to a broad class of shearlike flows that
are both rapid and highly transient but where driving speed,
which is here set by v(t) � v0, is still very slow compared
to the granular force transmission speed vf . In the granular
flow fields, we observe none of the elasticlike response (i.e.,
loading and unloading) that is dominant when v0 ∼ vf [9,11].
Instead, we observe that the particle motion scales linearly
with driving speed, which also occurs for well-developed
shear flows in the limits of both small (quasistatic) and large
(rapid driving) inertial number I with a transition region in
between [6,38]. Our system is clearly more akin to the limit of

large I with I ∼ 10−1 at the leading edge of the intruder, but
descriptions of such flows explicitly exclude transients in the
driving speed. However, we observe a dynamic steady state
of the granular flow during highly transient driving, which
suggests that rapid highly transient granular flows may fall
into the same class as well-developed rapid flows, provided
vf � v0. Conversely, it is possible that models, such as μ(I )
could be extended to processes, such as granular impact where
the flow is transient. For example, a recent study [10] presents
a modified μ(I ) rheology to study dynamic granular flows,
and our results here suggest that this approach will likely
be successful in many cases. In addition, simulations show
that, although final penetration depth is strongly influenced by
frictional interactions, the granular flow in this regime appears
relatively insensitive to the form of the grain-grain force law
(e.g., linear versus Hertzian, consistent with Ref. [39]) or even
to the presence of friction [14,40].

This work has been supported by the U.S. DTRA un-
der Grant No. HDTRA1-10-0021, by NASA Grant No.
NNX15AD38G, and by NSF Grant No. DMR-1206351.
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for granular assemblies, Géotechnique 29, 47 (1979).

[8] M. Pica Ciamarra, A. H. Lara, A. T. Lee, D. I. Goldman,
I. Vishik, and H. L. Swinney, Dynamics of Drag and Force
Distributions for Projectile Impact in a Granular Medium, Phys.
Rev. Lett. 92, 194301 (2004).

[9] L. Kondic, X. Fang, W. Losert, C. S. O’Hern, and R. P. Behringer,
Microstructure evolution during impact on granular matter,
Phys. Rev. E 85, 011305 (2012).

[10] S. Dunatunga and K. Kamrin, Continuum modeling and
simulation of granular flows through their many phases,
J. Fluid Mech. 779, 483 (2015).

[11] A. H. Clark, A. J. Petersen, L. Kondic, and R. P. Behringer,
Nonlinear Force Propagation During Granular Impact, Phys.
Rev. Lett. 114, 144502 (2015).

[12] A. H. Clark, L. Kondic, and R. P. Behringer, Particle Scale
Dynamics in Granular Impact, Phys. Rev. Lett. 109, 238302
(2012).

[13] A. H. Clark and R. P. Behringer, Granular impact model as an
energy-depth relation, Europhys. Lett. 101, 64001 (2013).

[14] A. H. Clark, A. J. Petersen, and R. P. Behringer, Collisional
model for granular impact dynamics, Phys. Rev. E 89, 012201
(2014).

[15] I Grant, Particle image velocimetry: A review, Proc. Inst. Mech.
Eng., Part C 211, 55 (1997).

[16] R. A. Bagnold, Experiments on a gravity-free dispersion of large
solid spheres in a newtonian fluid under shear, Proc. R. Soc.
London, Ser. A 225, 49 (1954).

[17] W. A. Allen, E. B. Mayfield, and H. L. Morrison, Dynamics of
a projectile penetrating sand, J. Appl. Phys. 28, 370 (1957).

[18] M. J. Forrestal and V. K. Luk, Penetration into soil targets,
Int. J. Impact Eng. 12, 427 (1992).

[19] H. Katsuragi and D. J. Durian, Unified force law for granular
impact cratering, Nat. Phys. 3, 420 (2007).

[20] D. I. Goldman and P. Umbanhowar, Scaling and dynamics of
sphere and disk impact into granular media, Phys. Rev. E 77,
021308 (2008).

[21] P. Umbanhowar and D. I. Goldman, Granular impact and the
critical packing state, Phys. Rev. E 82, 010301 (2010).

[22] R. Albert, M. A. Pfeifer, A.-L. Barabási, and P. Schiffer, Slow
Drag in a Granular Medium, Phys. Rev. Lett. 82, 205 (1999).

[23] I. Albert, J. G. Sample, A. J. Morss, S. Rajagopalan, A.-L.
Barabási, and P. Schiffer, Granular drag on a discrete object:
Shape effects on jamming, Phys. Rev. E 64, 061303 (2001).

[24] J. Geng and R. P. Behringer, Slow drag in two-dimensional
granular media, Phys. Rev. E 71, 011302 (2005).

[25] A. Seguin, Y. Bertho, P. Gondret, and J. Crassous, Dense
Granular Flow Around a Penetrating Object: Experiment and
Hydrodynamic Model, Phys. Rev. Lett. 107, 048001 (2011).

[26] A. Seguin, Y. Bertho, F. Martinez, J. Crassous, and P. Gondret,
Experimental velocity fields and forces for a cylinder penetrating
into a granular medium, Phys. Rev. E 87, 012201 (2013).

[27] Y. Takehara, S. Fujimoto, and K. Okumura, High-velocity drag
friction in dense granular media, Europhys. Lett. 92, 44003
(2010).

050901-5

http://dx.doi.org/10.1126/science.1229163
http://dx.doi.org/10.1126/science.1229163
http://dx.doi.org/10.1126/science.1229163
http://dx.doi.org/10.1126/science.1229163
http://dx.doi.org/10.1038/nphys3568
http://dx.doi.org/10.1038/nphys3568
http://dx.doi.org/10.1038/nphys3568
http://dx.doi.org/10.1038/nphys3568
http://dx.doi.org/10.1016/j.pss.2014.07.013
http://dx.doi.org/10.1016/j.pss.2014.07.013
http://dx.doi.org/10.1016/j.pss.2014.07.013
http://dx.doi.org/10.1016/j.pss.2014.07.013
http://dx.doi.org/10.1103/PhysRevE.72.021309
http://dx.doi.org/10.1103/PhysRevE.72.021309
http://dx.doi.org/10.1103/PhysRevE.72.021309
http://dx.doi.org/10.1103/PhysRevE.72.021309
http://dx.doi.org/10.1038/nature04801
http://dx.doi.org/10.1038/nature04801
http://dx.doi.org/10.1038/nature04801
http://dx.doi.org/10.1038/nature04801
http://dx.doi.org/10.1103/PhysRevLett.108.178301
http://dx.doi.org/10.1103/PhysRevLett.108.178301
http://dx.doi.org/10.1103/PhysRevLett.108.178301
http://dx.doi.org/10.1103/PhysRevLett.108.178301
http://dx.doi.org/10.1680/geot.1979.29.1.47
http://dx.doi.org/10.1680/geot.1979.29.1.47
http://dx.doi.org/10.1680/geot.1979.29.1.47
http://dx.doi.org/10.1680/geot.1979.29.1.47
http://dx.doi.org/10.1103/PhysRevLett.92.194301
http://dx.doi.org/10.1103/PhysRevLett.92.194301
http://dx.doi.org/10.1103/PhysRevLett.92.194301
http://dx.doi.org/10.1103/PhysRevLett.92.194301
http://dx.doi.org/10.1103/PhysRevE.85.011305
http://dx.doi.org/10.1103/PhysRevE.85.011305
http://dx.doi.org/10.1103/PhysRevE.85.011305
http://dx.doi.org/10.1103/PhysRevE.85.011305
http://dx.doi.org/10.1017/jfm.2015.383
http://dx.doi.org/10.1017/jfm.2015.383
http://dx.doi.org/10.1017/jfm.2015.383
http://dx.doi.org/10.1017/jfm.2015.383
http://dx.doi.org/10.1103/PhysRevLett.114.144502
http://dx.doi.org/10.1103/PhysRevLett.114.144502
http://dx.doi.org/10.1103/PhysRevLett.114.144502
http://dx.doi.org/10.1103/PhysRevLett.114.144502
http://dx.doi.org/10.1103/PhysRevLett.109.238302
http://dx.doi.org/10.1103/PhysRevLett.109.238302
http://dx.doi.org/10.1103/PhysRevLett.109.238302
http://dx.doi.org/10.1103/PhysRevLett.109.238302
http://dx.doi.org/10.1209/0295-5075/101/64001
http://dx.doi.org/10.1209/0295-5075/101/64001
http://dx.doi.org/10.1209/0295-5075/101/64001
http://dx.doi.org/10.1209/0295-5075/101/64001
http://dx.doi.org/10.1103/PhysRevE.89.012201
http://dx.doi.org/10.1103/PhysRevE.89.012201
http://dx.doi.org/10.1103/PhysRevE.89.012201
http://dx.doi.org/10.1103/PhysRevE.89.012201
http://dx.doi.org/10.1243/0954406971521665
http://dx.doi.org/10.1243/0954406971521665
http://dx.doi.org/10.1243/0954406971521665
http://dx.doi.org/10.1243/0954406971521665
http://dx.doi.org/10.1098/rspa.1954.0186
http://dx.doi.org/10.1098/rspa.1954.0186
http://dx.doi.org/10.1098/rspa.1954.0186
http://dx.doi.org/10.1098/rspa.1954.0186
http://dx.doi.org/10.1063/1.1722750
http://dx.doi.org/10.1063/1.1722750
http://dx.doi.org/10.1063/1.1722750
http://dx.doi.org/10.1063/1.1722750
http://dx.doi.org/10.1016/0734-743X(92)90167-R
http://dx.doi.org/10.1016/0734-743X(92)90167-R
http://dx.doi.org/10.1016/0734-743X(92)90167-R
http://dx.doi.org/10.1016/0734-743X(92)90167-R
http://dx.doi.org/10.1038/nphys583
http://dx.doi.org/10.1038/nphys583
http://dx.doi.org/10.1038/nphys583
http://dx.doi.org/10.1038/nphys583
http://dx.doi.org/10.1103/PhysRevE.77.021308
http://dx.doi.org/10.1103/PhysRevE.77.021308
http://dx.doi.org/10.1103/PhysRevE.77.021308
http://dx.doi.org/10.1103/PhysRevE.77.021308
http://dx.doi.org/10.1103/PhysRevE.82.010301
http://dx.doi.org/10.1103/PhysRevE.82.010301
http://dx.doi.org/10.1103/PhysRevE.82.010301
http://dx.doi.org/10.1103/PhysRevE.82.010301
http://dx.doi.org/10.1103/PhysRevLett.82.205
http://dx.doi.org/10.1103/PhysRevLett.82.205
http://dx.doi.org/10.1103/PhysRevLett.82.205
http://dx.doi.org/10.1103/PhysRevLett.82.205
http://dx.doi.org/10.1103/PhysRevE.64.061303
http://dx.doi.org/10.1103/PhysRevE.64.061303
http://dx.doi.org/10.1103/PhysRevE.64.061303
http://dx.doi.org/10.1103/PhysRevE.64.061303
http://dx.doi.org/10.1103/PhysRevE.71.011302
http://dx.doi.org/10.1103/PhysRevE.71.011302
http://dx.doi.org/10.1103/PhysRevE.71.011302
http://dx.doi.org/10.1103/PhysRevE.71.011302
http://dx.doi.org/10.1103/PhysRevLett.107.048001
http://dx.doi.org/10.1103/PhysRevLett.107.048001
http://dx.doi.org/10.1103/PhysRevLett.107.048001
http://dx.doi.org/10.1103/PhysRevLett.107.048001
http://dx.doi.org/10.1103/PhysRevE.87.012201
http://dx.doi.org/10.1103/PhysRevE.87.012201
http://dx.doi.org/10.1103/PhysRevE.87.012201
http://dx.doi.org/10.1103/PhysRevE.87.012201
http://dx.doi.org/10.1209/0295-5075/92/44003
http://dx.doi.org/10.1209/0295-5075/92/44003
http://dx.doi.org/10.1209/0295-5075/92/44003
http://dx.doi.org/10.1209/0295-5075/92/44003


RAPID COMMUNICATIONS

ABRAM H. CLARK, LOU KONDIC, AND ROBERT P. BEHRINGER PHYSICAL REVIEW E 93, 050901(R) (2016)

[28] Y. Takehara and K. Okumura, High-Velocity Drag Friction in
Granular Media Near the Jamming Point, Phys. Rev. Lett. 112,
148001 (2014).

[29] L. Kondic, Dynamics of spherical particles on a surface:
Collision-induced sliding and other effects, Phys. Rev. E 60,
751 (1999).
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