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Abstract
We consider two (2D) and three (3D) dimensional granular systems exposed to compression, and ask what is the influence 
of the number of physical dimensions on the properties of the interaction networks that spontaneously form as these systems 
evolve. The study is carried out based on discrete element simulations of frictional disks in 2D and spheres in 3D. Within 
the constraints of the considered simulation protocols, the main finding is that both the number of physical dimensions and 
the type of particle-particle interaction significantly influence the properties of interaction networks. These networks play 
an important role in bridging the microscale (particle size) and macroscale (system size), thus both aspects (the interaction 
model and dimensionality) are carefully considered. Our work uses a combination of tools and techniques, including per-
colation study, statistical analysis, as well as algebraic topology-based techniques. In many instances, different techniques 
and measures provide complementary information that, when combined, allow for gaining better insight into the properties 
of interaction networks in compressed particulate systems.
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1 Introduction

Particulate systems are very common in nature and take 
different forms ranging from dry or wet granular matter to 
suspensions. Still, there are many unresolved fundamental 
questions. In particular, the connection between microscale 
behavior (on the scale of constitutive granular particles) and 
macroscale response of granular systems subject to external 
load, such as compression or shear, is still an open question.

A significant body of work, that has been mostly devel-
oped during the last decade, suggests that connecting the 
micro and macroscale involves interaction networks that 
spontaneously develop in particulate-based systems. These 
works involve topology-based studies [1–14], cluster analy-
sis [15–17], community detection schemes [18, 19], force 
network ensembles  [20–22], statistical analysis  [23–25] 
percolation-based approaches [26–29], and discussion of 
percolation and jamming transitions [29–34].

Most past analysis of interaction networks obtained com-
putationally is carried out in two spatial dimensions (2D) 
due to reduced computational complexity and simplified 
interpretation of the results. A significant amount of experi-
mental work focusing on interaction networks has been car-
ried out in 2D as well, mostly using photoelastic particles, 
see, e.g. [35, 36]. However, most applications focus on three 
spatial dimensions (3D). In 3D experiments, it is difficult to 
extract information about particle contacts and, in particular, 
interaction strength. While there have been recent experi-
mental works in 3D using, e.g., hydrogel [37] rubber [38] 
particles, or oil droplets [39], the progress has been rather 
limited. Currently, experimental techniques that could be 
used to track the force networks for stiff and frictional 3D 
particles, are just being developed [40], and this field of 
investigation has to rely mostly on simulation results. 3D 
simulations are complicated to analyze compared to 2D; as 
an illustration of this additional complexity, Fig. 1 shows 
two examples from the simulations we will consider in the 
present paper. We note that recent approaches that focus on 
inter-particle forces include measurements of force prob-
ability density function [41], as well as various network-
based approaches (see [42] for a review). However, it is not 
obvious how to correlate and compare 3D results to the ones 
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obtained in much more commonly considered 2D geometry. 
This is the main goal of the present work.

The number of physical dimensions has a complex influ-
ence on the properties of interaction networks in particu-
late systems. First, the interaction networks are built on 
top of contact networks between the particles, and contact 
networks are clearly influenced by the number of physical 
dimensions since the geometry of particle contacts differs 
in 2D and 3D. Second, the interaction between the particles 
is influenced by the particle shape—commonly, disks are 
considered in 2D and spheres in 3D (of course, more com-
plex 2D and 3D shapes could be considered, but we do not 
discuss these in the present work). Assuming the validity 
of the standard approach based on the Hertz model, one 
finds that the (normal) interaction force, F, between particles 
should scale as F ∝ x� , where the compression distance, x, is 
defined in soft particle simulations as the difference between 
the sum of particle radii and the distance of their centers, 
and � = 1.0, 1.5 for 2D and 3D, respectively. Thus, there 
are two obvious aspects of the influence of the number of 
physical dimensions on particle interactions. It is desirable 
to separate these two aspects so that one can distinguish 
between the influence of the number of dimensions on con-
tact geometry and on the force interaction law. In addition, 

experiments carried out in 2D in some cases find that par-
ticle interaction law deviates from Hertzian theory and that 
� ≈ 1.4 − 1.5 [13]. Therefore, motivated both by our desire 
to separate the aspects influencing particle interactions and 
by the listed experiments, we consider 2D systems with both 
� = 1 and � = 1.5 , in addition to considering 3D systems 
with � = 1.5.

In this paper, we focus on granular systems; however, we 
expect that the results will be of interest to other particulate-
based systems, such as suspensions, emulsions, or foams, 
and even to the systems characterized by a more complex 
interaction between interacting particles, such as gels. We 
focus on the compression protocol so that we can discuss the 
evolution of interaction networks as the considered systems 
evolve through jamming transition. The evolution from small 
to large volume fractions is driven by slowly converging 
walls, as discussed in more detail in Sect. 3.

To introduce the results that will be discussed in the rest 
of this paper, Fig. 2 shows the simplest topological meas-
ure, zeroth Betti number, B0 , that counts the number of con-
nected components (clusters), as a function of imposed force 
threshold, Fth and packing fraction, � . We will discuss Betti 
numbers more precisely later in the paper (Sect. 5); for the 
present purposes, it is sufficient to specify that a cluster con-
sists of all particles such that at least one of their contacts 
is characterized by the total force magnitude which is larger 
than Fth . The results shown in Fig. 2 (see also [6] for related 
results focusing on a 2D system where linear force model is 
used) illustrate the complexity of the dependence of B0 on 
Fth and � . The most interesting part involves large values of 
� : here, for small values of Fth , B0 is close to unity since all 
particles are connected into a single cluster; for large values 
of Fth , B0 → 0 since the number of contacts experiencing 
forces larger than Fth vanishes as Fth increases. In between 
of these two extremes, typically for the force thresholds 
slightly larger than the average contact force, the number of 
clusters reaches the maximum. The differences between the 
considered systems considered in Fig. 2 will be discussed 
extensively in the paper. To put the results in perspective, 
we note that choosing a threshold, Fth , that corresponds to 
the average force between the particles would separate the 
considered networks into ‘strong’ (the contacts involving 
forces larger than the average), and ‘weak’ (the remaining 
contacts) [43]. The approach considered in the present work 
is more general since we vary the considered force thresh-
olds continuously and are therefore in the position to obtain 
a more complete picture describing the networks. In this 
paper, we will discuss B0 introduced above, as well as B1 , 
that measures the number of loops in 2D, or tunnels in 3D 
(sometimes also called ‘cycles’). In 3D we will also discuss 
B2 , measuring the number of enclosed voids, but to a much 
lesser extent. In the second part of the paper, we present the 
results obtained by implementing more complex measures 

Fig. 1  Examples of interaction networks for the a 2D and b 3D gran-
ular systems. ⟨F⟩ is the average force. Animations of the compression 
process are available as supplementary material (videos 1 and 2)
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based on persistent homology. We note that the software for 
computing Betti numbers, as well as persistence measures 
discussed later in the paper, is widely available in the public 
domain [44–46].

Before closing the Introduction, we should also point out 
the aspects of the considered problem that are addressed 
only marginally in the present work. First, the main part of 
the results reported in the manuscript are obtained using 

specified domain size for the 2D and 3D systems consid-
ered. We carried out a limited set of additional simulations 
and corresponding data analysis to verify that the results 
regarding interaction networks remain valid for other sys-
tem sizes but have not carried out the extensive analysis, 
leaving such endeavor for future work. We point out to the 
reader that there is a number of works where the influence 
of system size has been discussed; for the discussion in the 
context of interaction networks, we refer the reader to [26, 
27] and references therein; carrying out a similar type of 
analysis with a focus on the detailed properties of interaction 
networks remains to be done. Second, most of the results 
that we report in the manuscript are empirical since we are 
not aware of a well-defined theory or at least a model that 
could be used for comparison in the context of connectivity 
and structure of the interaction networks. This being said 
we attempt where possible to provide at least qualitative 
arguments rationalizing the physical reasons leading to the 
observed properties of the interaction networks.

The rest of this paper is organized as follows. The force 
model describing the interaction between particles is dis-
cussed in Sect. 2, and the protocol of the simulations in 
Sect. 3. Section 4 gives results based on consideration of 
percolation, jamming, and force distributions. A comple-
mentary set of results obtained using topology-based meth-
ods is discussed in Sect. 5. Section 6 gives an overview and 
conclusions.

2  Force model

We perform discrete element simulations using a set of cir-
cular disks confined to a square domain (2D) or spheres in a 
cubic domain (3D). The number of particles in 2D is ≈ 2000 
and ≈ 4000 in 3D. The walls are flat and are given the mate-
rial properties of plexiglass (the choice of the wall mate-
rial is motivated by recent experiments [37]). The domain 
length is initially set to 50 × 50 (in 2D) and 20 × 20 × 20 (in 
3D) average particle diameters. To avoid crystallization, the 
system particles are chosen as bidisperse in all systems, and 
the ratio of the diameters of the small and large particles is 
1:1.4. The ratio of the number of small to large particles is 
2:1.

Particles are soft and interact via normal and tangential 
forces, including static friction and viscous damping. The 
force model used in the simulations is either linear or non-
linear. The linear force model is used only in 2D and arises 
from the derivation of the Hertz law. The non-linear force is 
considered for both 2D and 3D. The analysis of the results 
for the non-linear force model in 2D is motivated by our 
recent study [13] that showed that using the non-linear force 
model in 2D is essential for achieving a quantitative match 
between simulations and experiments.

Fig. 2  The number of clusters in the interaction network, B0 , normal-
ized by the total number of particles, N, for different values of pack-
ing fraction, � , and force threshold, Fth for a 2D non-linear force 
model, b 2D linear force model and c 3D system. The animations of 
different views of the panels are available as Supplementary Material 
(videos 3, 4 and  5)
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The general form of the normal force between particles i 
and j is (for more details, see [47])

where the expression in the if statement is used to avoid 
negative forces. Exponents � = 1 and � = 0 for linear and 
� = 1.5 and � = 0.5 for non-linear force model with 
1 + � = � ; vn

i,j
 is set to the relative normal velocity and Y and 

� are Young’s modulus and Poisson ratio, respectively. The 
amount  of  compression is  x = di,j − ri,j ,  where 
di,j = (di + dj)∕2 , di and dj are the diameters of the particles 
i and j. Note that for simplification we assume that dave in the 
expression for the force constant, kn , is the overall average 
particle diameter of all particles. Also, ri,j = |ri − rj| , where 
ri, rj are the vectors pointing from the centers of particles i, j 
towards the point of contact. The value of Young’s modulus 
Y = 23.45 KPa and Poisson ratio � = 0.5 is set to those of 
soft hydrogel particles in [48]. Choosing the same values of 
material parameters for 2D and 3D simplifies the compari-
son between different systems that we consider; it should 
also be noted that the choice simply specifies the time scale 
in the problem; a different choice of (for example) stiffer 
particles would simply change the relevant time scale with-
out modifying the results in any significant manner.1

We implement the commonly used Cundall-Strack model 
for static friction [49], where a tangential spring is intro-
duced between the particles for each new contact that forms 
at time t = t0 . Due to the relative motion of the particles, the 
spring length, � , evolves as � = ∫ t

t0
v
t
i,j

(
t�
)
dt� , where 

v
t
i,j
= vi,j − v

n
i,j
 and vi,j is the relative velocity. For long-lasting 

contacts, � may not remain parallel to the current tangential 
direction defined by t = v

t
i,j
∕|vt

i,j
| (see, e.g., [50]); we there-

fore define the corrected �� = � − n(n ⋅ �) and introduce the 
test force

where kt = 6∕7kn (close to the value used in [51]) and �t is 
the coefficient of viscous damping in the tangential direc-
tion (with �t = �n ). The value of the friction coefficient is set 

(1)

F
n
i,j
= knx

𝛿
n − 𝛾nx

𝜈
m̄v

n
i,j

if ||knx
𝛿
n|| ≥ ||𝛾nx

𝜈
m̄v

n
i,j
||

= 0 otherwise

ri,j = |ri,j|, ri,j = ri − rj, n = ri,j∕ri,j

kn =
2Y

3
(
1 − 𝜎2

)d1−𝛽ave
,

(2)F
t∗ = −ktx

𝛽�� − 𝛾tx
𝜈m̄vt

i,j

to � = 0.5 . To ensure that the magnitude of the tangential 
force remains below the Coulomb threshold, we constrain 
the tangential force as follows

The interaction between a particle and flat wall is given by 
the same expression as in the case of interaction between two 
particles except for assuming that the amount of compres-
sion x = 0.5di − ri where di is particle diameter and ri = |ri| 
is the vector pointing from the particle center towards the 
point of contact with the flat wall.

All the results in the rest of the paper are presented using 
the following length, time, and mass scales. The character-
istic length scale is dave = 1.735 cm, and the average particle 
mass, m̄ = 3.0 g [48], is the mass scale. The binary particle 
collision time, �c , is the time scale set to [47]

where v0 = 10−2 cm/s is a characteristic magnitude of veloc-
ity in the system (compression speed); prefactor �(�) is of 
the form [52]

where �  denotes the Gamma function. In particular, for the 
linear force model we have �(0) = � and for the non-linear 
force model �(0.5) = 2.94 . The damping coefficient �n is 
obtained as reported in [47]. Note that the average particle 
mass and diameter are the same for 2D and 3D systems; the 
thickness of the disk particles in 2D is chosen to ensure that 
this is the case.

We integrate Newton’s equations of motion for the trans-
lational and rotational degrees of freedom using a 4th order 
predictor-corrector method with the time step �t = 0.02�c 
and �t = 0.005�c in 2D and 3D, respectively. A smaller value 
of time step in 3D is needed to keep the minimum distance 
between interacting particles sufficiently large for the whole 
duration of the simulations. The use of smaller time steps in 
3D does not influence the results that follow in any visible 
manner.

3  Protocol and methods

The initial condition is produced by placing the particles 
on a square (2D) or a cubic (3D) grid, and by assigning to 
each particle a random initial velocity; we verified that the 
results presented here are not sensitive to the specific distri-
bution from which the velocities are sampled. To ensure the 

(3)F
t = min

(
�|Fn|, |Ft∗|

)
F
t∗∕|Ft∗| .

(4)𝜏c = 𝜁(𝛽)(1 + 0.5𝛽)
1

2+𝛽

(

m̄
3
(
1 − 𝜎2

)

2Yd
(1−𝛽)
ave

) 1

2+𝛽

v

−𝛽

2+𝛽

0

(5)�(�) =

√
�� (1∕(2 + �))

(1 + �∕2)� ((4 + �)∕(4 + 2�))
,

1 Minor influence of different material properties of the particles 
could be due to particle-wall interaction, and, in the case of a non-
linear force model, due to weak dependence of the particle collision 
time on impact speed.
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statistical significance of the results, we perform simulations 
for 20 different initial conditions for each considered system.

The system is compressed by moving the walls inward 
with the velocity v0 . Relaxation is interjected after each com-
pression step of �� = 0.02 , where � is the packing fraction, 
defined as the ratio of the total volume of the particles and 
the domain volume. After each compression step, the kinetic 
energy dissipates exponentially when the system is relaxed; 
we continue relaxation until the fluctuation of the kinetic 
energy drops to 0.1 of the mean, which is computed over 
1.5 × 105 time steps. We verified that a more strict relaxa-
tion condition does not change our conclusions, nor does 
it change the measured quantities significantly; however, if 
the threshold for the kinetic energy fluctuations is set to a 
value < 0.1 , the computational time increases significantly, 
and the differences in the results are on the level of random 
fluctuations in each measured quantity. We find that using 
a protocol for relaxation based on the total magnitude of 
the kinetic energy does not yield different results either. We 
have also implemented different relaxation protocols based 
on tracking the average contact number change and cool-
ing the particles (annealing). The protocol corresponding to 
the first method verifies that the contact number drops to a 
near-zero value for unjammed systems and that for jammed 
systems, the contact number does not change over a large 
number of time steps. We find that such a protocol does not 
influence the results presented in this paper, and it turns 
out to be more computationally expensive. The annealing 
protocol implements the approach for cooling the particles 
during relaxation as discussed recently [53]. For the system 
considered in this work, we find that jamming transition is 
influenced by cooling rate, even for the smallest cooling 
rates we could use with available computing resources, and 
is therefore not suitable for our study.

It is beyond the scope of the present work to discuss why 
implemented annealing protocol has such an influence in 
the considered simulations; one possibility is that the dif-
ferences between implemented protocols vanish in the limit 
of large system sizes; however, as pointed out already, such 
an analysis is left for future work.

The reason for this detailed discussion of the implemented 
protocol is the presence of a relatively small but non-vanish-
ing, number of clusters for packing fractions below jamming 
in particular for 2D simulations, see Fig. 2, and Figs. 4 and 6 
later in the paper. One obvious question is whether these 
clusters would disappear if a different relaxation protocol 
were used. Our finding is that these clusters remain present 
for any of the considered relaxation protocols.

This observation is consistent with the earlier works [54, 
55] that found that the cooled unjammed systems always 
contain clusters of connected particles, at least for the simu-
lation setup and relaxation protocols considered in the pre-
sent work. One could also ask whether such clusters would 

still be present as the system size increases or whether the 
fraction of the particles participating in such clusters would 
decay as the system size increases. Such questions should 
be considered in future work.

Interaction networks: We consider the forces between 
particles and define the interaction network in a granular 
system by its nodes (particle centers) and weighted edges 
(inter-particle forces). The interaction networks are analyzed 
for different values of � and for a range of (dimensionless) 
force thresholds, Fth ∈ [0.0, 3.0] , where only the forces that 
are larger than Fth are taken into account. We note that the 
forces are always rescaled by the average force in an inter-
action network, ⟨F⟩ , which itself is strongly �-dependent 
(see [56] for the dependence of the average force, quanti-
fied by the pressure, in the simulations following a similar 
protocol as the present one). For simplicity, in this work, 
we consider only the total force between the particles (the 
absolute value of the vector sum of the normal and tangential 
forces at each contact). We show the results up to the value 
of � such that the average force does not exceed a maximum, 
Fmax , defined as follows. We find the average force in an 
interaction network, ⟨F⟩ , for all � ’s (averaged over 20 reali-
zations for 2D linear and non-linear, and for 3D systems), 
and determine the value F�

max
= max{⟨F⟩} for each consid-

ered system. We define Fmax = min
{⟨

F�
max

⟩}
 so that for all 

considered systems, the results are given for the same range 
of average force thresholds. The maximum packing fractions 
are found as 0.906,  0.890 and 0.710 for the non-linear 2D 
system, linear 2D system, and the 3D system, respectively. 
We note that at the high end of considered packing fractions 
the distances between the interacting particles may be up to 
10% smaller than the sum of the radii.

Clusters: In the presentation that follows, we will rely 
heavily on the concept of a cluster, which we define here; 
later in Sect. 5 we will discuss in more detail other relevant 
topological measures. A cluster/connected component, 
whose number is counted by zeroth Betti number, B0, is 
defined as a collection of particles connected by the contacts 
whose total force magnitude is above the specified threshold, 
Fth . Another quantity of interest is cluster size, S, which 
specifies the number of particles in a cluster. We will also 
consider the average cluster size, ⟨S⟩ , which is the average 
of S over all clusters in the computational domain, and also 
over all realizations.

Data pre-processing: During compression, especially for 
small values of � , the particles collide and often form two-
particle clusters. The particles with only one or no contacts 
are referred to as rattlers. As in the previous experimental 
and numerical studies [13, 57, 58], we do not consider rat-
tlers in our computations; these clusters are not included in 
the Betti number results discussed later in the paper.

We note that we have carried out additional simulations 
using different system sizes: 25 × 25 and 75 × 75 (in 2D) 
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and 10 × 10 × 10 and 30 × 30 × 30 (in 3D) average particle 
diameters. The finding of relevance for the present paper is 
that the results reported in the rest of the manuscript remain 
qualitatively the same for the considered domain sizes. We 
have also carried out simulations using different friction 
coefficients (in addition to the value � = 0.5 considered in 
all the reported simulations, we used � = 0.0 and � = 0.03 ). 
The only visible difference between systems with different 
friction values was found in the specific value of �J , and in 
the precise values of the various measures describing the 
interaction networks.

4  Force distribution, percolation, 
and jamming transitions

In this section, we focus on the differences between 2D and 
3D systems that undergo jamming and percolation transi-
tions (described below) in terms of the distribution of forces 
and properties of the interaction networks.

During compression and relaxation, particles come into 
contact and clusters randomly form and break. Since we 
include relaxation between compression steps, the compres-
sion protocol is quasi-static, and we expect that the perco-
lation and jamming transitions occur at the same packing 
fraction [30]. Note that both here and in [30], a jamming 
transition is characterized by a rapid increase of average 
contact number. More specifically, jamming packing frac-
tion, �J , is defined here as the point at which Z(�) curve 
has an inflection point. We refer the reader to recent works 
that discuss in more detail the current understanding of jam-
ming in granular systems [59, 60]. Percolation transition is 
defined by � = �p at which a percolating cluster connecting 
at least two opposite walls of the domain forms. We indeed 
observe the formation of a stable percolating cluster (that 
does not disappear even after arbitrarily long relaxation) for 
any (and only when) 𝜌 > 𝜌J , confirming that �p = �J . Find-
ing that �p = �J also suggests that the relaxation protocol 
that we use is essentially quasi-static, so that the results are 
not influenced in any meaningful manner by the relaxation 
protocol, see [30] for further discussion regarding this issue. 
For future reference, we note that for the systems that we 
consider, the jamming occurs at �J = 0.842, 0.834 for the 
2D non-linear and linear systems, respectively, and �J = 0.57 
for the 3D system (note that exact numerical values may be 
influenced by the system size).

4.1  Force distribution

Figure 3 shows the force distribution, PDF(F) , for the three 
considered systems. We note that the width of the distribu-
tions for the largest values � ≈ �max differs for the linear and 
two non-linear systems, with smaller width of PDF(F) in the 

linear system, suggesting a smaller variation of the forces 
and a more homogeneous interaction network. The systems 
based on the non-linear force model have wider distribu-
tion, and in the 3D system, we observe the largest variation. 
While the functional form of PDF(F) has been widely dis-
cussed in the literature [10, 39, 48, 61–65], we are not aware 
of the precise comparison of these functional forms between 
the systems characterized by different number of physical 
dimensions, or by different interaction force model.

In the next section, we will use PDF(F) results together 
with the topological measures that will be introduced to dis-
cuss further distinguishing features of the interaction net-
works as the number of physical dimensions and the force 
model are varied.

4.2  Force cluster analysis: non‑percolating clusters

We continue our analysis of the forces between particles by 
examining the cluster size distribution in the interaction net-
works. We omit the percolating cluster if it is present in the 
interaction network. Since percolating cluster has a different 
characteristic scaling behavior [29] than the average cluster 
size of the non-percolating clusters [26, 27], we discuss its 
properties separately.

Figure 4 shows the average cluster size, ⟨S⟩ , rescaled by 
the total number of particles, N, for different values of Fth . 
In the 2D systems, the largest values of ⟨S⟩∕N are observed 

Fig. 3  PDF of forces for different values of � for a 2D non-linear 
force model, b 2D linear force model and c 3D system. The arrows 
indicate the direction of increased � . For the shown systems, jamming 
occurs at �J = 0.842, 0.834, 0.570 for a, b, c, respectively
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for Fth = 1.25 and Fth = 1.5 for the linear and non-linear 
systems, respectively. This finding implies that regardless of 
the force model, the interaction network is dominated by the 
force clusters composed of forces near the average force in 
2D. Force model becomes important in 2D when Fth ≥ 2.0 
and 𝜌 > 𝜌J . Specifically, in the linear case, ⟨S⟩∕N  decays 
faster than in the non-linear one. In other words, the interac-
tion network is more uniform for the linear system, and we 
expect to observe a smaller variation of forces for � → �max . 
Indeed, our discussion of PDFs in the context of Fig. 3 con-
firms that the PDF(F) in the linear system follows a more 
narrow distribution than the PDF(F) in the non-linear one.

Turning now our attention to the influence of the number 
of physical dimensions, we compare the panels (a) and (c) 
of Fig. 4. The most obvious difference between the two is 
the Fth for which ⟨S⟩∕N attains the maximum for 𝜌 > 𝜌J . In 
the 3D system, the largest values of ⟨S⟩∕N are observed for 
Fth ≈ 2.0 . Therefore, the interaction networks in 3D contain 
more clusters with large forces - the forces are less concen-
trated around the mean force. The PDF(F) for the 3D system 
shown in Fig. 3 is indeed wider, confirming larger force vari-
ation in comparison to 2D.

4.3  Force cluster analysis: percolating cluster

Figure 5 shows the average force and the number of particles 
participating in a percolating cluster, Nper , normalized by the 
total number of particles, N. We remind the reader that the 

results are averaged over 20 realizations for each system; here, 
we only show the results if at least 50% of the realizations con-
tain a percolating cluster. Recall that percolation is observed 
only when the system jams, consistently with our previous 
findings [30]. We note that when we take into account all the 
contacts, i.e. when Fth ≈ 0.0 , the percolating cluster in the 2D 
systems contains almost all the particles. However, in the 3D 
case, in particular, for � ≈ �J , the percolating cluster contains 
only a very small number of particles, as it can be seen in 
Fig. 5.

The reason why fewer particles are needed for percolation 
in 3D is purely geometrical and is discussed next. We consider 
the interaction networks at Fth = 0.0 first and represent them 
as random networks with particles as vertices and contacts 
represented by edges. We also define the mean degree of a 
random network, ⟨k⟩ as the mean number of edges per ver-
tex (in the context of granular systems ⟨k⟩ is equivalent to the 
average contact number, Z). Let us now assume that a given 
random network has N vertices and a mean degree ⟨k⟩ and ask 
what is the maximum number of vertices we can randomly 
remove and still have a percolating cluster. From the theory 
of random networks [66, 67], a critical occupation probability 
is estimated by

(6)�c =
⟨k⟩

⟨k2⟩ − ⟨k⟩
.

Fig. 4  Average cluster size, ⟨S⟩ , normalized by the total number 
of particles, N, for a 2D non-linear force model, b 2D linear force 
model and c 3D system. For the shown systems, jamming occurs 
at �J = 0.842, 0.834, 0.570 for a,  b,  c, respectively. Note that for 
𝜌 ≪ 𝜌J , ⟨S⟩ may vanish in the case no clusters are found

Fig. 5  Proportion of the particles in a percolating cluster for a 2D 
non-linear force model, b 2D linear force model and c 3D system for 
different values of Fth . The arrows indicate the direction of increased 
Fth
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(�c is the smallest ratio of the vertices present in a random 
network leading to a percolating cluster). Note that �c pro-
vides a lower bound for Nper∕N . We can now use Eq. (6) to 
estimate �c in 2D and 3D. In our simulations close to jam-
ming, we find that, as expected, ⟨k⟩ ≈ 3 and ⟨k⟩ ≈ 6 in 2D 
and 3D, respectively. Note that the exact value of ⟨k⟩ depends 
on the friction between particles [68–71] and is estimated 
by ⟨k⟩ ≈ d + 1 + (2Nm∕d) where Nm is the mean number of 
contacts that have tangential forces equal to the Coulomb 
threshold [42, 68, 70, 72]. If we assume that ⟨k2⟩ ≈ ⟨k⟩2 
(this assumption would be exactly satisfied if each particle 
had the same number of contacts), we find �c ≃ 0.5 in 2D 
and �c ≃ 0.2 in 3D at �J . This estimate provides an intuitive 
(even if only approximate) explanation of why we observe 
smaller (relative to the total number of particles) percolating 
clusters in 3D compared to 2D systems when � ≈ �J . Note 
that this argument is purely geometrical and does not depend 
on simulation protocol, particle properties (other than fric-
tion that plays a role in the ⟨k⟩ estimate), or the system size.

Our results show that the differences in Nper∕N  extend 
to the non-zero force thresholds and 𝜌 > 𝜌J . Specifically, 
we find that whenever percolating cluster exists for the 2D 
systems, it is composed of a significant number of particles. 
In 3D, on the other hand, we can find a percolating cluster 
composed of a very small percentage of particles, particu-
larly when Fth > 2.0 or when � ≈ �J . Let us also reiterate that 

the presented results are robust with respect to the details of 
the relaxation period, at least within the range that we could 
consider using available computational resources.

5  Topology of interaction networks

We now continue with the study of topological properties 
of interaction networks. We focus on the number of com-
ponents/clusters in the interaction network, the number of 
loops and voids (to be defined below), and on the measures 
emerging from persistent homology [7]. The general moti-
vation is that Betti numbers and persistence analysis can be 
used to compare the geometries of the force distributions [8] 
and find their characteristic behavior during the jamming 
transition [9]. We will see in what follows that this type of 
analysis indeed allows for quantifying significant differences 
between the topology of interaction networks in 2D and 3D 
systems, as well as in 2D systems characterized by differ-
ent interaction force models. To start with, we discuss the 
simplest topological measure, Betti numbers.

5.1  Betti numbers

Zeroth Betti numbers, B0 , denotes the number of compo-
nents (clusters), and B1 denotes the number of loops in a 
force network (a loop in an interaction network is a collec-
tion of connected edges forming a closed cycle). The next 
Betti number, B2 , relevant to 3D geometry, counts the num-
ber of cavities. Note that B0 provides different (but related) 
information than the average cluster size, ⟨S⟩ , discussed in 
Sect. 4.2; B0 provides the information about the number of 
clusters, independently of their size.

When analyzing Betti numbers, B1 in particular, one has 
to make a choice of whether to consider the loops made 
out of three particles in contact, sometimes referred to as 
3-cycles in the studies of interaction networks in granular 
systems [16]. It is known that such loops play a role in the 
stability of interaction networks in granular systems [5, 16]. 
However, since 3-cycles are prevalent and not unique to a 
specific set of physical parameters or the number of physical 
dimensions, we ignore them in the present analysis and focus 
on the loops involving at least four particles, similarly as it 
was done in our earlier studies [6–9].

Let us begin by examining the number of clusters, B0 , 
forming in the interaction network during compression. 
For a complete representation of the interaction network 
evolution, a range of force thresholds is considered for 
each packing fraction. Figure 6, which shows a set of 
cross-sections of the introductory Fig. 2, plots B0 rescaled 
by the total number of particles, N. When considering 
Betti numbers, the inclusion of the percolation cluster is 

Fig. 6  Average number of clusters/components, B0 , rescaled by the 
total number of particles, N, for a 2D non-linear force model, b 2D 
linear force model and c 3D system. The panel d is a closeup of the 
3D granular system showing a clear peak in B0∕N for small Fth . In 
a–c the arrows pointing up show an (increasing) trend of the curves 
from the smallest Fth and then the arrows pointing down show a 
(decreasing) trend when Fth → max{Fth}
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not relevant, since it modifies B0 only by unity; for sim-
plicity, we include it in the Betti number count.

Figure 6a, c shows that for small values of Fth < 0.5 , 
the systems based on the non-linear force model develop 
a pronounced peak near the respective jamming packing 
fractions, �J (see in particular Fig. 6d, which is a zoom-in 
of Fig. 6c).

The observations made based on Fig. 4 suggest that 
there are important structural differences between the lin-
ear and non-linear systems. For the non-linear force model, 
we find that for Fth < 0.5 and � ≈ �J the clusters are more 
numerous compared to the ones found for 𝜌 > 𝜌J (leading 
to the peaks visible in Fig. 6a, c, d). In contrast, for the 
linear force model the peak in B0∕N is rather insignificant.

Figure 7 shows, perhaps surprisingly, that B1∕N  results 
follow the same trend for all systems considered. The 
B1∕N  evolution is generic during compression: for small 
� below jamming, we do not observe any loops forming, 
and only beyond jamming, B1∕N  starts to rise and then 
plateaus for � close to �max . The only visible difference 
between 2D and 3D systems is the larger magnitude of 
B1∕N  for the 3D case.

The evolution of the next Betti number, B2∕N  , is not 
analyzed here in detail since B2 is not defined in 2D. We 
only briefly mention that in 3D, B2 vanishes for 𝜌 < 𝜌J and 
grows in a monotonous fashion as � increases beyond �J.

5.2  Shape of the clusters

The Betti numbers provide only the count of the clusters 
and loops in the interaction network and do not provide any 
information about the cluster shape; based on Betti num-
bers, we do not know whether the clusters are isotropic, 
chain-like, or of some other form. To explore the cluster 
shape, we introduce a shape parameter, Sp , defined as the 
number of edges in the clusters divided by the number of 
participating particles, averaged over all realizations. The 
motivation behind such a measure is the following. If the 
particles that participate in a cluster all have one or two 
contacts, the cluster forms either an open or closed path, 
defined as a sequence of vertices (here particles). Note 
that a closed path is a loop and contributes to B1 count. Let 
us assume that the number of particles in such a path is 
NL . Then, the number of inter-particle contacts forming 
an open path is NL − 1 and the resulting shape parameter 
for such a path is S̄p = (NL − 1)∕NL ∈ [0.5, 1.0) . For any 
loop, we have S̄p = 1.0 . For more complex shape structures 
(not simple paths), we expect that S̄p ∈ (1.0, 4.0] in 2D and 
S̄p ∈ (1.0, 7.0] in 3D. (To avoid any confusion, we refer by 
Sp to the measure averaged over all clusters and realizations 
and by S̄p to the measure describing the shape of an indi-
vidual cluster, or to the measure describing the clusters of an 
individual realization). The upper values of S̄p are estimated 
from the maximum average contact number for the 2D and 
3D systems. For the purpose of simplifying the discussion 
below, we refer to the clusters with more than (on average) 
two contacts per particle as complex clusters; the clusters 
that are not complex are simple.

Figure 8 shows Sp for all systems and for all values of 
Fth and for varying packing fraction, � ; Fig. 9 shows cross-
sections of Sp for selected values of Fth . Note that we put 
Sp = 0 whenever S̄p = 0 for at least half of the realizations. 
Otherwise, the values are averaged only over the realizations 
such that S̄p ≠ 0.

In discussing the results shown on Figs. 8 and 9, we focus 
first on the 2D systems, and small packing fractions, 𝜌 < 𝜌J . 
We observe that for both systems Sp ≈ 1 . Further insight is 
obtained by relating this result to the ones for B1∕N shown 
in Fig. 7. Figure 7 shows that there are no loops present 
for 𝜌 < 𝜌J , and therefore the interaction network must be 
composed of open paths for such values of � . Although the 
results for the considered 2D systems and 𝜌 < 𝜌J are similar, 
we still observe that Sp is consistently larger for the linear 
system compared to the non-linear one, in particular for 
smaller values of Fth (compare Fig. 9a and b).

Still considering the 2D systems, but for 𝜌 > 𝜌J , we 
observe that for large Fth , Sp approaches 1.0 for both sys-
tems, and we can again use the observations from Fig. 7 to 
conclude that the interaction network is composed of open 
paths, since B1∕N is small. The differences between linear 

Fig. 7  The evolution of the number of loops, B1 , normalized by the 
total number of particles, N, during compression for a 2D non-linear 
force model, b 2D linear force model and c 3D system. The arrows 
indicate the direction of increased Fth
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and non-linear systems appear when smaller values of Fth 
are considered: here we find that the values of Sp are sig-
nificantly larger for the linear compared to the non-linear 

system. The main finding here is that for a significant range 
of force thresholds around the average force, the clusters are 
significantly more complex for the systems based on linear 
compared to nonlinear force model.

Let us now consider the 3D system, shown in Figs. 8c 
and 9c. First of all, note that the data are noisier in 3D, par-
ticularly for small Fth . The reason for the noisiness is two-
fold: first, there are only few clusters when F < 1.0 at large 
� , so the statistics is not very good; second, there are also 
more possible cluster shapes in 3D compared to 2D; a quick 
intuitive explanation comes from considering a lattice in 2D 
and 3D and counting the number of possible cluster shapes 
with a fixed number of particles. Despite the restrictions 
imposed by noise, one can still conclude that the clusters are 
more complex in 3D compared to the 2D (non-linear) sys-
tem, although the difference between the two is not as sig-
nificant as expected based on geometry considerations (note 
that the upper limit of Sp is 7 and 4 for 3D and 2D geometry, 
respectively). For Fth > 2.0 , we find Sp ≈ 1.0 . We use again 
the results shown in Fig. 7 to conclude that the interaction 
network in this regime consists mainly of open paths.

To summarize, we find that for small or average force 
thresholds (less than twice the average force) regardless of 
the number of physical dimensions, the non-linear systems 
contain clusters with less complex structure compared to 
the linear system, suggesting that the force model plays a 
crucial role in determining the cluster shape. For large force 
thresholds (considering forces larger than twice the average 
force), the force networks are typically composed of open 
paths for all systems considered, independently of the force 
model and of the number of physical dimensions.

5.3  Persistence diagrams

In Sect. 5.1, we analyzed B0 ’s for a set of force thresholds, 
Fth . Zeroth Betti number however, provides only informa-
tion about the number of clusters and not about how they are 
connected. This information can be obtained by analyzing 
persistence diagrams, which allow us to capture informa-
tion about the force clusters for all force thresholds at once, 
including their persistence as a considered force threshold, 
is changed. We explain the use of the persistence diagrams 
in interaction network analysis further by considering an 
example below; the reader is referred to [8] for the in-depth 
discussion of persistent homology in the context of interac-
tion networks for particulate systems and to [7, 9, 56] for 
less technical descriptions that also include multiple exam-
ples helping to interpret the results of persistent analysis. 
We note that multiple software packages and libraries can 
be used to compute persistence diagrams [44–46]. We used 
JavaPlex [44] to obtain the results discussed in this section.

When the force threshold, Fth , changes, the clusters that 
are formed in the force network composed of forces above 

Fig. 8  Shape parameter, Sp , as a function of � for all values of Fth 
for a 2D non-linear force model, b 2D linear force model and c 3D 
system. See also Fig. 9 that illustrates in more detail the differences 
between the considered systems

Fig. 9  Shape parameter, Sp , as a function of � for the chosen values 
of Fth for a 2D non-linear force model, b 2D linear force model and c 
3D system. The arrows indicate the direction of increased Fth
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Fth either appear or disappear: note that a cluster disappears 
when it merges with another one. We indicate a birth, �b 
( Fth at which a cluster appears), on the x-axis and death, 
�d ( Fth when a cluster disappears), on the y-axis. The set of 
points constructed in this way forms a persistence diagram 
(PD); we construct a PD for each � . Note that for a given � , 
a persistence diagram contains the information about parti-
cle connectivity for all force thresholds at once. Betti num-
bers, for example, could be easily computed directly from 
the persistence diagrams. However, the opposite is not true 
since the amount of information contained in persistence 
diagrams is significantly larger. For the present purposes, we 
also define the lifespan of a cluster as the difference �b − �d . 
The relevance of lifespan in describing the interaction net-
works is discussed further below.

Figure 10 shows an example of a PD (2D non-linear sys-
tem is used here). One approach to analyzing persistence dia-
grams is to split them into bins: rough, strong, medium, and 
weak, similarly as in [7]. A point on a persistence diagram 
belongs to the rough category if �b − �d ≤ 0.1 . Such points 
indicate clusters that have a short lifespan (after birth, clus-
ters in the rough region disappear after only a slight change 
in Fth ) and can be thought of as noise. The points that have 
a lifespan larger than 0.1 are divided into the following bins: 
weak when 0.1 ≤ 𝜃b < 1.0 , medium when 1.0 ≤ 𝜃b < 2.5 , 
and large when and 2.5 ≤ �b . This binning of the forces is, 
in spirit, similar to the separation of interaction networks 
into ‘strong’ and ‘weak’ categories, commonly used in the 
granular literature. We use the binning approach to develop a 
better understanding of the differences between the granular 
systems considered so far. Specifically, we will discuss the 
origins of the B0∕N ridge in Fig. 2.

Figure 11 shows the average point count in all persistence 
bins for the 2D and 3D systems; N0 denotes the average 

number of persistence points found in the specified category 
(recall that the results are averaged over 20 realizations), and 
N is the total number of particles.

To start the discussion of Fig. 11, we first comment 
on the results relevant to the bins for which the differ-
ences between considered systems are minor: rough and 
medium. Regarding the rough regime, Fig.  11a–b, we 

Fig. 10  An example of a B0 persistence diagram for 2D non-linear 
force model. This example shows a separation of the persistence dia-
gram into the following categories: rough, strong, medium, and weak 
as discussed in the text

Fig. 11  Average number of points, N0 , in different parts of persis-
tence diagrams, normalized by the total number of particles, N. 1. 
rough: a 2D and b 3D; 2. weak: c 2D and d 3D; 3: medium: e 2D and 
f 3D, and 4 strong: g 2D and h 3D
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observe that the roughness of the force network is very 
similar near jamming for all the systems. For the medium 
bin, see Fig. 11e–f, we observe a sudden increase of the 
curves beyond jamming. For both rough and medium bins, 
we note a smaller number of points for the considered non-
linear systems; we comment on this result in the case of 
medium bins further below.

The most significant differences between the systems 
based on different force models can be observed for strong, 
Fig. 11g–h and weak, Fig. 11c–d bins. Considering first 
the strong bin, we note that the 2D system based on the 
linear force model develops a peak of N0∕N  during jam-
ming, while for the non-linear systems, such a peak is 
lacking, since these systems show large values of N0∕N 
beyond jamming as well. Such a peak during jamming can 
be explained by strong collisions of the particles that form 
relevant clusters. For the system based on the linear force 
model, for 𝜌 > 𝜌J , the majority of the clusters remain in the 
medium bin; see Fig. 11e (note that a similar behavior was 
observed for the 2D systems in continuously compressed 
systems [7]). However, for the non-linear force model, the 
clusters formed by strong collisions remain in the strong 
bin as � increases. The softness of the non-linear interac-
tion potential plays an important role and strongly influ-
ences the properties of the interaction networks as a sys-
tem is compressed beyond jamming. One consequence of 
this difference between linear and non-linear systems is the 
larger force spread for the non-linear systems for 𝜌 > 𝜌J . 
Consistently, as already observed in Fig. 3, for 𝜌 > 𝜌J , the 
PDFs of the non-linear systems are wider compared to the 
linear case.

In contrast, Fig. 11c–d shows a pronounced peak in the 
weak force bin around jamming for the systems based on 
the non-linear interaction model but not for the linear one. 
Recalling formation of the ridge in B0 (viz. Figure 6) for 
similar packing fractions, we conjecture that the ridge is 
formed by weak interactions that dominate the interaction 
network for � ≈ �J.

Another measure based on the persistence diagrams is 
total persistence [7] of a PD, defined as

where the sum ranges over all (�b, �d) pairs correspond-
ing to the points in the B0 and B1 persistence diagrams. For 
simplicity of notation, we refer to the total persistence for 
the clusters by TP0 , and for the loops by TP1 . The physical 
interpretation of these quantities could be best described by 
a landscape analogy: if we think of an interaction network as 
a landscape, then large TP0 implies a landscape containing 
a large number of prominent peaks and valleys, and large 
TP1 suggests well developed connectivity between the peaks 

TP(PD) =
∑

(θb,θd)∈PD

(
�b − �d

)

(leading to loops). Note that the concept of force threshold 
is not relevant anymore here since total persistence includes 
the information about all force thresholds at once.

Next, we discuss briefly TP0 and TP1 for the consid-
ered systems. A detailed discussion regarding TP2 is omit-
ted since this measure is defined only in 3D. It suffices 
to mention that TP2 ≈ 0 for 𝜌 < 𝜌J and increases monoto-
nously for 𝜌 > 𝜌J.

Figure 12 shows TP0 and TP1 for the considered 2D 
and 3D systems. The most obvious finding that is relevant 
to both TP0 and TP1 is a significantly more prominent 
increase of these measures close to �J for the 3D system, 
compared to the 2D ones. This result suggests that addi-
tional physical dimension leads to an increasingly complex 
force landscape with many prominent peaks and valleys. 
To understand this landscape more precisely, one needs to 
consider the relevant persistence diagrams in more detail. 
Such in-depth analysis is left for future work.

To reiterate the findings discussed in this section, we 
find that both the number of physical dimensions and the 
force model play a role in determining the topology of 
interaction networks. The number of physical dimensions 
influences the behavior of the percolating cluster in the 
interaction network and the B0 results show that the force 
model is important when we consider small forces in our 
computations of interaction network properties. We also 
find that the properties of the interaction networks dur-
ing jamming transition can be quantified by persistence 
diagrams and derived quantities, such as total persistence.

Fig. 12  Total persistence in the 2D systems for a 2D non-linear force 
model, b 2D linear force model and c 3D system; N is the total num-
ber of particles
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6  Conclusions

In this work, we analyze the properties of interaction net-
works with a focus on the influence of the number of phys-
ical dimensions and of the force model (linear vs. non-
linear) describing particle interactions. The comparison 
of the force distribution reveals differences between the 
considered systems for a large range of packing fractions, 
� . Specifically, the force distributions are found to be sig-
nificantly different between 2D and 3D systems in the case 
of small �’s, despite consistent preparation and relaxation 
protocols. Beyond jamming, we find that the distribution 
of forces is wider for the non-linear systems regardless of 
the number of physical dimensions. This being said, we 
emphasize that our results were obtained mainly for one 
system size; while the general features of the results were 
found to hold as the system size was varied, no systematic 
analysis of the influence of system size on our results has 
been carried out so far.

The analysis of the percolating cluster and its size as 
the force threshold, Fth , is varied for � ≥ �J shows that a 
percolating cluster is composed of a significant number 
of particles in 2D (often at least half of the total num-
ber of particles) at any time percolation occurs. On the 
other hand, in 3D, we find percolating clusters composed 
of a very small number of particles for the granular sys-
tem close to jamming or when Fth is large, typically for 
Fth > 2.0 . For small force thresholds, we explain this find-
ing based solely on the number of physical dimensions.

Our force distribution and percolation analysis results 
suggest important structural and topological differences 
between the 2D and 3D systems, as well as between the 
systems that are based on different force models. This 
motivates the analysis of the average cluster size, ⟨S⟩∕N  , 
shape, Sp , and the first two Betti numbers, B0 and B1.

The average cluster size, ⟨S⟩∕N  , in an interaction net-
work (not including the percolating cluster), shows a peak 
formation for small Fth ≈ 0 close to jamming transition. 
Such a peak occurs only for the granular systems based on 
non-linear interactions. The differences between 2D and 
3D systems arise beyond jamming; for 3D there are larger 
clusters characterized by a larger interaction force (when 
normalized by the average force) compared to 2D.

One of the prominent results of this study is the forma-
tion of a pronounced ridge in the number of clusters at 
� ≈ �J for the non-linear force models. This ridge’s for-
mation and properties, which become visible when con-
sidering a weak interaction network, have been carefully 
analyzed using topological measures. We conjecture that 
the softness of the non-linear interaction model plays a 
significant role in determining the properties of the inter-
action networks as the systems go through jamming. The 

consequence is that close to jamming, one could expect 
significantly different behavior of the systems involving 
particles interacting by different interaction laws.

In conclusion, based on a well-defined set of measures, 
we provide a precise and objective comparison of the inter-
action networks in finite-size compressed granular systems 
in this work. The main finding is that both the nature of the 
interactions between the constitutive particles, and the num-
ber of physical dimensions, play a significant role in deter-
mining the interaction networks’ properties. In contrast, the 
interaction networks are found to be only weakly influenced 
by friction between the particles. To what degree these find-
ings extend to more complex systems exposed to shear or 
other types of external influences remains to be seen.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10035- 023- 01379-y.
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