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Stochastic methods for slip prediction in a sheared granular system
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We consider a sheared granular system experiencing intermittent dynamics of stick-slip type via discrete
element simulations. The considered setup consists of a two-dimensional system of soft frictional particles
sandwiched between solid walls, one of which is exposed to a shearing force. The slip events are detected
using stochastic state space models applied to various measures describing the system. The amplitudes of the
events spread over more than four decades and present two distinctive peaks, one for the microslips and the other
for the slips. We show that the measures describing the forces between the particles provide earlier detection
of an upcoming slip event than the measures based solely on the wall movement. By comparing the detection
times obtained from the considered measures, we observe that a typical slip event starts with a local change in
the force network. However, some local changes do not spread globally over the force network. For the changes
that become global, we find that their size strongly influences the further behavior of the system. If the size of
a global change is large enough, then it triggers a slip event; if it is not, then a much weaker microslip follows.
Quantification of the changes in the force network is made possible by formulating clear and precise measures
describing their static and dynamic properties.

DOI: 10.1103/PhysRevE.107.054901

I. INTRODUCTION

Stick-slip dynamics is ubiquitous in granular and soft mat-
ter systems as well as in many other ones, see Refs. [1,2] for
reviews. Understanding the intermittent stick-slip dynamics is
of utmost importance because of the relevance to large-scale
possibly cataclysmic events such as earthquakes. Therefore,
there is a large body of research focusing on quantifying
and explaining intermittency in a variety of systems, see
Refs. [1,3–5] for reviews. For obvious reasons, there is an
active interest in identifying precursors to the slip events that
lead to abrupt structural rearrangements of the systems, see
Refs. [6,7] for recent examples in the context of earthquakes.
Extensive research considering acoustic precursors of inter-
mittent dynamics in laboratory experiments can be found in
Refs. [8,9] and references therein.

The attempts to identify precursors of slip events, frac-
tures, and shear bands have a long history; for brevity here
we discuss only recent developments. Several precursors are
identified in various experimental systems [10–13]. These
works report the existence of structural rearrangements of
particles and point out that they become more prominent as a
slip event approaches. Consistent results are also obtained in
simulations [14–21]. However, despite a large amount of work
concerned with identifying the precursors of slip events, we
are not aware that they have been used for predictive purposes
so far.
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In our recent work [22], we considered a two-dimensional
(2D) system of soft disklike particles simultaneously exposed
to compression and shear, see Fig. 1(a). If the pressure is
sufficiently large and the shearing speed is sufficiently small,
then this system is found to exhibit intermittent dynamics of
the stick-slip type [16]. By analyzing the outcome of discrete
element simulations (DEMs), in Ref. [22] we demonstrate
a fundamental difference between the measures defined as
system-wide averages, and the measures that quantify the
evolution of the system on a micro (particle) or mesoscale
scale. The system-wide averages are found to be almost insen-
sitive to an approaching slip, while the latter measures show a
promising potential to serve as precursors of slip events, and
will be considered in the present paper.

One significant obstacle in using the measures quantifying
the evolution of the system on a micro- or mesoscale for pre-
dicting an approaching slip event is that they are rather noisy
and exhibit considerable variations between individual slip
events. The method for delineating the slip events introduced
in Ref. [22] is based on the wall velocity and requires the
knowledge of the whole data set. Therefore, to identify the
start of a slip event at time t0, the data for both t � t0 and
t > t0 are used. We will refer to this method as the off-line
method and note that such an approach, while logical and
commonly used, is not suitable for predictive purposes.

In the present paper, we develop a method that can predict
the slip events on the fly for an incoming stream of data. We
will refer to this method as the online method. The online
method implemented in this paper is based on stochastic state
space models (SSSMs) [23] that are often used to model an
observable signal by decomposing it into several dynamic
components, such as trend (steadily increasing or decreasing
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FIG. 1. (a) Snapshot of simulated particles at a fixed time, with
the magnitude of the normal force on each particle shown on the
logarithmic scale. The top and bottom walls are rigid rows of parti-
cles; the bottom wall is fixed and the top wall is exposed to normal
(−y direction) compression and to horizontal (+x direction) elastic
force. (b) The x position of the top wall for the first 10000 time
outputs. The red dots mark the start of slip events determined by
the off-line method described in II C 1.

part of the signal), seasonal (oscillations of the signal with dif-
ferent frequencies), or regressive components. Typically, these
components are not directly observable but they can be mod-
eled and used to predict the future values of the signal. SSSMs
have been successfully used in meteorology [24], in robotics
to guide autonomous vehicles [25] and track submarines [26],
as well as in economics [27,28]. A closely related application
to our problem can be found in Ref. [29] where the authors
consider stochastic methods for modeling high-dimensional
nonstationary spatiotemporal data collected at the sites with
geological hazards. Another related application is the usage
of machine learning to identify spatiotemporal clusters of
surface displacement that are indicative of an imminent rock
slide [30].

The applicability of SSSMs stems from the fact that the
behavior of the considered measures is fundamentally differ-
ent during the stick and slip regimes. The SSSMs allow us
to predict the next value of a considered measure with good
accuracy as long as the system is in the stick regime. The
model is designed in such a way that it is too rigid to adapt
to the evolution of the measure during the slip regime and
its predictions become inaccurate when the system enters this
regime. Thus, to detect the start of a slip event, we analyze the
differences between the values predicted by the SSSM, and
the observed values. In particular, we identify the start of a slip
event as the time at which the error in our predictions becomes
larger than a maximal acceptable value of the error, Te. As
we will see, the online method based on SSSMs is rather
general and can be in principle applied to any scalar mea-
sure that describes the evolution. Naturally, the upcoming slip
event can be detected in advance only if the behavior of the
considered measure changes before the slip event starts. For
this reason, it is important to identify appropriate measures
to consider. Here, we are guided by our previous work [22],
which shows the predictive potential of the measures based on
force networks. We will show in particular that the measures
that are sensitive to local changes in the force network provide
appropriate input to SSSMs.

One important part of the present paper is the investigation
of how the detection time of the slip events depends on the

considered measure and the value of Te. As the value of Te

decreases, the upcoming slip events are detected earlier but
the number of false positives increases. We will see that these
false positives correspond to the so-called microslips, which
were reported in previous work on granular systems, see, e.g.,
Refs. [16,31–34], or local changes of the force network and
possibly particle positions that do not lead to wall motion, see
also Ref. [21]. By using SSSMs, we find that there is a clear
separation between the slip events and microslips, similarly
observed in previous works [34,35].

We also show that both slip events and microslip events
are initiated by a local change of the force network, which
first becomes global by spreading over the network, and only
afterward does the shearing wall start moving. Some local
changes dissipate instead of spreading and therefore do not
lead to slip or microslip events. This connection between
local and global changes and resulting wall activity has been
discussed in the literature, see, e.g., Refs. [15,21,36,37]; how-
ever, the advancement in quantification of force networks and
data analysis implemented in the present work now allows that
connection to be explored for predictive purposes.

The rest of this paper is organized as follows. Section II A
describes the simulated system, and the measures used for
predictions are presented in Sec. II B. In Sec. II C we introduce
the framework for model-based slip detection. The general
framework for stochastic models and the Kalman filter are
reviewed in Sec II C 2, while the models for the considered
measures are specified in Sec. II C 3. The main results are
presented in Sec. III, followed by the conclusions in Sec. IV.

II. METHODS

A. Discrete element simulations

The simulations of dense granular material are carried out
within a setup that leads to the stick-slip dynamics [22]. The
simulation techniques are identical to the ones described in
detail in the previous work [38] and here we provide just
a summary. The material parameters used are motivated by
experiments with photoelastic particles described, e.g., in
Ref. [39]. Figure 1 illustrates the simulated system and its be-
havior. The granular particles are modeled as two-dimensional
soft frictional disks. We place 2500 disks (system particles)
between two horizontal rough walls placed parallel to the
x axis, see Fig. 1(a). The system particles are bidisperse, with
25% of large particles and 75% of small particles with a size
ratio of 1.25:1. The walls are constructed from small particles,
which are at a fixed distance from each other, see Ref. [22].
The bottom wall is kept fixed, while the top one is pulled by
a harmonic spring moving with the velocity vspring in the +x
direction.

The linear spring-dashpot model is used to describe the
interactions between the system particles and between the sys-
tem and wall particles. We use the diameter of small particles,
d , as the length scale, their mass, m, as the mass scale, and
the binary collision time, τc, as the time scale. Motivated by
experiments [39], we use d = 1.27 cm, m = 1.32 g, and τc =
1.25 × 10−3 s, as appropriate for particles of Young modulus
of Y ≈ 0.7 MPa. Then, the normal spring constant is kn =
mπ2/2τc

2 ≈ 4.17 N/m, and the tangential spring constant
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(needed for modeling of tangential forces using the Cundall-
Strack model [40]) is taken as kt = 6kn/7. The coefficient of
static friction, μ, is equal to 0.7 for particle-particle contacts
and µ= 2 for particle-wall contacts (using a larger value here
to reduce slipping of the system particles relative to the walls).
The force constant of the spring applied to the top wall, ks,
is significantly smaller than the one describing particle inter-
actions, ks = kn/400. The (constant) restitution coefficient is
0.5. In addition, a normal compression force is applied in the
−y direction to model an externally applied pressure (force or
length in two dimensions) of p = 0.02; gravitational effects
are not included. We note that with our choice of units, the
numerical value of the applied pressure is of the same order
of magnitude as the average overlap (compression) of the
particles.

Stick-slip dynamics occurs for sufficiently large applied
pressure and for sufficiently slow shearing, see, e.g. Ref. [16].
For p = 0.02 we find by experimenting that the value vspring =
1.5 × 10−3 leads to stick-slip dynamics. Then, we integrate
Newton’s equations of motion for both the translation and
rotational degrees of freedom using a fourth-order predictor-
corrector method with time step dt = 0.02. The states of the
system, used to compute the quantities presented in this paper,
are stored at times δt = 10dt apart. In this paper, all the
figures that show time-dependent results are in units of δt .

The simulations start by applying a pressure p to the top
wall and then letting the system relax until the ratio of kinetic
or potential energy becomes sufficiently small [22]. Then
we start moving the spring in the +x direction, and, after
the initial transient regime disappears, start collecting data.
Figure 1(b) shows the horizontal position of the top wall
for a short time window; the red dots illustrate the starts of
slip events obtained using the off-line method summarized in
Sec. II C 1. The complete simulation contains 5 × 105 time
output [first 104 outputs are shown in Fig. 1(b)] and hundreds
of slip events.

B. Measures

The analysis and detection of the slip events are based
on three different measures whose potential was identified in
Ref. [22]. The first one, shown in Fig. 2(a), is the horizontal
velocity, vx(t ), of the top wall. The next measure is based
on the properties of the differential force network; to define
this network, we first discuss the concepts of the contact and
force networks. The contact network, CN(t ), is a graph with
one vertex at the center of each particle (excluding those in the
top and bottom walls). There is an edge between two vertices
of CN(t ) if the particles corresponding to these vertices are
in contact at time t . The force network FN(t ) is obtained
by assigning weights to the edges in CN(t ), representing
the magnitudes of the normal force acting between the cor-
responding particles. A differential force network, DFN(t ),
represents the differences between the force networks com-
puted at two consecutive samples at t and t + δt . Its edges
are given by the union of the edges in the weighted graphs
FN(t ) and FN(t + δt ). The weight on an edge in DFN(t ) is
the absolute value of the difference of the weights assigned
to this edge in FN(t + δt ) and FN(t ) if the edge is present in
both. If the edge is not present in one of the force networks,

FIG. 2. Sample of the evolution for the first 10000 outputs:
(a) the magnitude of the velocity, vx , of the top wall, (b) the left-right
percolation force, fplr , and (c) the Wasserstein distance, W2B0. All
the quantities are defined in Sec. II B. The red dots mark the start of
slip events determined by the off-line method described in Sec. II C 1.
Here, vx shows two alternating regimes of behavior: long periods of
stick regime, in which the wall moves slowly or not at all, and shorter
periods of slip and microslip events, when the wall moves rapidly.
The time axis is in units of δt , as specified in Sec. II A.

we consider the corresponding weight in that force network
to be zero. Figure 3 depicts typical force and differential force
networks during a stick regime and at the onset of a slip event.

The measure that we use in what follows is the maximal
force, fplr (t ), for which DFN(t ) percolates between the left
and right boundary of the domain (in Ref. [22] top-bottom
percolation was considered as well, but we do not use that
measure here for brevity).

FIG. 3. Examples of the force network FN(t ) (a)–(b) and differ-
ential force network DFN(t ) (c)–(d) where (a), (c) depict a time well
before a slip event and (b), (d) depict a time at the onset of a slip
event. Note that relatively high values of differential force are present
at the onset of the slip event.
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The last measure quantifies the time evolution of the force
network. For each force network, FN(t ), we compute its per-
sistence diagrams PD0(t ) defined briefly here, and more fully
in Ref. [41]; persistence diagrams were extensively used in
our earlier works in the analysis of granular matter in var-
ious settings, see, e.g., Refs. [42–44]. PD0(t ) describes the
structure of the superlevel sets of the force network FN(t ).
In particular, PD0(t ) is a finite collection of points in (b, d )
such that b > d . Every point (b, d ) in PD0(t ) indicates that
a connected component appears in the set consisting of the
edges of FN(t ) with weights larger than b and it merges with
another connected component after adding all the edges with
the weights larger than d . To help interpretation, we note that
the points in PD0(t ) with b coordinate sufficiently large (larger
than the average force) describe the vague concept of force
chains. In the present work, for simplicity, we do not consider
loops that could be described similarly by a separate PD1(t ),
see Ref. [22] for more details.

The difference between two persistence diagrams can be
measured by their Wasserstein distance defined precisely in
Ref. [42]. This distance essentially sums up all the changes
between the persistence diagrams in a manner analogous to
the L2 norm. In what follows, we encode the changes between
the force networks FN(t ) and FN(t + δt ) by considering the
Wasserstein distance, W2B0(t ) between their PD0 persistence
diagrams.

Figure 2 illustrates the measures described above. At the
start of the slip events detected by the off-line method, de-
scribed in Sec. II C 1, the value vx(t ) is still relatively close to
its baseline typical for the stick regime. This is not the case for
the other two measures. In particular, W2B0(t ) increases con-
siderably before the detection time. We exploit this behavior
to develop an online method for detecting slip events that can
produce an early warning before vx(t ) increases significantly.

C. Methods for detecting slip events

Figure 4 shows the stick-slip dynamics in more detail, with
three illustrative examples of the behavior of the time series,
vx (since there is no possibility of confusion, we drop the
time dependence from now on). Even though the peaks of vx

are well pronounced during the slip events, it is nontrivial to
precisely define when individual events start. Difficulties in
defining the start of a slip event arise from the oscillations of
vx, visible in Fig. 4. In the considered system these oscillations
are related to propagating elastic waves caused by the vertical
(y) component of motion of the top wall, which is associated
with each slip event [22].

Due to these complications, slip detection must be done
carefully. One option is to employ an off-line method that
uses the values of vx after the slip event has begun to distin-
guish it from oscillations; this approach was used in Ref. [22]
and is outlined in Sec. II C 1. Related methods were used
in other works facing similar issues, see, e.g., Refs. [21,34].
An alternative is to use a more sophisticated online method
that accounts for the oscillations. Stochastic state space mod-
els (SSSMs), discussed later in this section, provide a good
framework for such an approach. To present the main idea,
we use an example of vx. Note that the amplitude of the
oscillations of vx can vary and tends to decrease as we

FIG. 4. Examples of three slip events showing the magnitude of
the wall velocity, vx . The red (green) dots mark the start (end) of the
slip event detected by the off-line method presented in Sec. II C 1.
Note that during the stick regime, vx oscillates with decreasing am-
plitude around a roughly constant value. The insets zoom into the
time just before the following slip event.

approach the onset of a slip event. Therefore, vx during a stick
can be modeled as a composition of several components. One
component represents the level around which the oscillations
occur, and several harmonic components with stochastically
changing amplitudes reasonably reproduce the oscillations. To
detect the start of a slip event based on vx, we exploit the fact
that the behavior of this quantity is fundamentally different
during the stick and slip regimes. So, the SSSM used to model
the evolution during the stick regime does not provide good
predictions if the system is not in this regime. This means that
during slip events, the difference between the value predicted
by the SSSM and the observed one becomes large. Thus, to
identify the start of slip events we just need to detect when
the difference between the predictions and observed values
becomes sufficiently large.

Section III demonstrates that SSSMs can be used to de-
vise an efficient online method for detecting the start of slip
events. In particular, we will see that the algorithm tends to
detect upcoming slip events earlier than the off-line approach.
This result opens the door for a real-time prediction of slip
events. In what follows, we first review the off-line approach
in Sec. II C 1, followed by a short background of stochastic
models and Kalman filter in Sec. II C 2.

1. Off-line approach for detecting slip events

In the rest of this paper we will call slip events the events
that are detected by this approach. To deal with the oscillations
present in vx, shown in Fig. 4, the off-line approach for detect-
ing slip events [22] relies on a choice of two thresholds. The
value of the first threshold, vl = 2 × 10−3, is larger than the
amplitude of the oscillations visible in the examples shown
in Fig. 4, so the method avoids spurious detection of slip
events. If vx exceeds vl , then a slip event is identified at time t .
However, at this time the wall has already begun to move with
a non-negligible speed. For this reason, the off-line method
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FIG. 5. The percolation measure, fplr , for the same time samples
shown in Fig. 4; the meaning of the red and green dots is as discussed
in the caption of Fig. 4.

uses a second smaller threshold, vs = 2.5 × 10−4, to find
more precisely the start of each slip event. For this purpose,
the algorithm moves back in time until the value of vx drops
below vs. The time when this occurs is the starting point of
the slip (the numerical values used for vl and vs are motivated
in Ref. [22]). The end of a slip event is identified as the time
at which vx as well as its average over the next 50 outputs
(roughly two periods of oscillations following a slip event) is
smaller than vl . This algorithm is slightly different than the
one detailed in Ref. [22], which uses the condition that the
average over the preceding 50 outputs marks the end of a slip
event. We make this change to avoid artificial termination of a
slip event, which occurs when vx drops briefly below vl at the
start of a slip event.

The main shortcoming of this approach (or any other ap-
proach based on using both past and future data for slip
detection), is that it cannot be used for real-time detection
of slip events. It detects the time at which the event starts
only after the wall velocity exceeds the specified threshold.
Moreover, the precise values of the thresholds influence the
number and length of the detected events.

2. State space models and Kalman filter

As discussed at the beginning of Sec. II C, during the stick
regime the signal specified by vx can be approximated by a
composition of several components, one of them representing
the level around which oscillations occur, and the rest describ-
ing oscillations. The behavior of the other measures is more
complex. Figures 5 and 6 show the fplr and W2B0 measures
during the same time windows as in Fig. 4. For example, to
model W2B0, we have to account for both the oscillations and
a decreasing trend of the signal.

We proceed by presenting the general idea behind stochas-
tic modeling of a time series yt , which can be decomposed
into several components whose characteristics are captured by
the value of the state vector θ, which encodes the properties

FIG. 6. The W2B0 measure for the same time samples in Fig. 4.
Note the events at t = 650 in (a), t = 3750 in (b), and t = 10350
in (c); these are examples of internal, local changes of the W2B0
measure that do not result in a slip event. The meaning of the red and
green dots is as discussed in the caption of Fig. 4.

such as trend and oscillations of a considered measure. As
commonly done in the literature [23], we use a discrete time
t ∈ N for the rest of this section, where t is in units of δt ,
specified in Sec. II A. For example, if yt represents the magni-
tude of the wall velocity, vx, then yt = vx(t ), the wall velocity
at the physical time t ∗ δt . To model the time series yt by a
sequence of random variables Yt we will use a special class
of SSSMs known as dynamical linear models (DLMs). This
choice is motivated by two independent factors. First, the nec-
essary computations can be performed efficiently. Second, the
models are sufficiently rich to properly capture the evolution
of the considered measures during the stick regime while they
are too rigid to assimilate the time evolution of these measures
during the slip regime.

The main assumption of the DLMs is that the evolution
of the n-dimensional state vector, θt , is governed by a real
Markov chain called the state process and the random variable
Yt is a noisy (imprecise) scalar observation of this chain. To be
more precise, the evolution of θt is described by the equation

θt = Gtθt−1 + wt (1)

while the values Yt can be reconstructed from θt via the
equation

Yt = Ftθt + vt , (2)

where (Gt )t�1 and (Ft )t�1 are known sequences of matrices
of order n × n and 1 × n, respectively. Two independent se-
quences of random variables describing the observation error,
(vt )t�1, and the model error, (w)t�1, are distributed according
to zero mean normal distributions vt ∼ N1(0,Vt ) and wt ∼
Nn(0,Wt ), where the variances Vt and covariance matrices
Wt are given. We will explain in Sec. II C 3 how to specify
Gt , Ft ,Wt , and Vt for the measures considered in this paper.
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Here we just note that the Gt models the evolution of the
individual components of the signal and Ft describes how
to combine these components to obtain the random variable
Yt , which models the time series yt . The error (noise) terms
are important because there might be external noise in the
physical system and the relations described by Gt are only
approximate.

Unlike in deterministic systems, the value of θt is not
known precisely. Instead, the probability that θt has a given
value is expressed by a probability distribution π (θt ), which
in the case of DLMs is required to be a multivariate normal
distribution. Given a DLM and the distribution π (θt−1), we
can predict the value of θt as

θ̂t = Gt θ̄t−1, (3)

where θ̄t−1 is the mean value of π (θt−1). The predicted value,
θ̂t , is known as the forecast and can be used to construct a
prediction

Ŷt = Ft θ̂t (4)

of the next value yt of the modeled time series. In partic-
ular, if we know π (θ0), then Eqs. (3) and (4) allow us to
predict the value of y1. However, we usually do not know
the initial distribution π (θ0). The fact that π (θ0) is not
known can be overcome by using the iterative procedure
known as the Kalman filter [23], which uses the Bayesian
probability to improve our knowledge about the distribution
of θt by incorporating the observed data y0, . . . yt . This is
done by computing the conditional distribution π (θt |Y1 =
y1, . . . ,Yt = yt ). In practice, if the DLM is an appropriate
model for the time series yt and the initial (prior) distribution
π (θ0) is given by a normal distribution with large variance,
then after a short burn-in period the conditional distribution
π (θt |Y1 = y1, . . . ,Yt = yt ) describes the state θt with reason-
able accuracy, and the model provides satisfactory predictions
of the future states of the time series yt .

The precise definitions of Gt and Ft depend on the particu-
lar measure considered and will be provided in Sec. II C 3. On
the other hand, to quantify the observation error and model er-
ror we use standard universal methods. Here we only provide
their brief summary; detailed exposition is available [23]. The
shape of the covariance matrix Wt for the model error is given
by the discount factor method, i.e.,

Wt = 1 − δ

δ
Pt , (5)

where Pt is the conditional covariance of π (Gtθt−1|Y1 =
y1, . . . ,Yt−1 = yt−1) and δ ∈ (0, 1] is the discount factor,
which will be specified for the individual measures in
Sec. II C 3. The value of δ corresponds to the overall accuracy
with which Gt describes the state update from t − 1 to t ,
referred to in Ref. [23] as model trust. Note that if δ = 1,
then Eq. (3) does not contain noise, and the evolution of θt

is deterministic.
The variance Vt of the observation error is modeled by a

time-invariant unknown random variable, σ 2, estimated from
the data at each time t . To be compatible with the iterative
scheme defined by the Kalman filter, the variable σ 2 has to be
inverse gamma distributed. For the initial (prior) distribution
π (σ 2) we choose the inverse gamma distribution IG(2, 10−3).

This is a vague prior in the Bayesian terminology; it expresses
a high degree of uncertainty as to the value of the unknown
σ 2. By choosing a vague prior, the distribution of σ 2 quickly
responds to the data.

3. Specification of dynamical linear models (DLMs)

In this section we provide DLMs that model the evolution
of the measures, defined in Sec. II B, during the stick regime.
To specify a DLM for a given measure we start by specifying
the components of the state vector θ that capture the trend
and oscillations of the signal. To describe the time evolution
of the individual components of θ, given by the state process,
Eq. (1), we need to set Gt and the covariance matrix Wt of the
model error wt . We recall that Wt is specified by choosing the
discount factor δ. Finally, to forecast the value of the modeled
measure, by using Eq. (2), we need to specify the observation
function, Ft , and the distribution of the observation error. As
explained in Sec. II C 2, the observation error is modeled by
a time-invariant random variable estimated from the data at
each time t . The required initial distribution is always chosen
to be the inverse gamma distribution π (σ 2) ∼ IG(2, 10−3).

Figures 4–6 manifest that all considered measures exhibit
oscillations, albeit with different frequencies. To model the
oscillations we use a few harmonic components. For a given
measure the frequency of the first harmonic component is set
to its dominant frequency ω, determined by Fourier analysis
of the first 10% of the signal. The frequencies of the other
harmonic components are natural multiples of ω. So, for each
model, we specify the number of harmonic components and
the discount factor δ.

Our extensive numerical investigation shows that all results
discussed in Sec. III are robust under rather large variations
of the number of harmonic components and δ. The dominant
frequency, ω, is more sensitive and needs to be estimated with
the absolute error smaller than 0.01. The final choice of the
parameters for each model was guided by diagnostics of the
normalized prediction error (NME) of the model defined as

et = yt − Ŷt√
Qt

, (6)

where Qt = Ft (Pt + Wt )F ′
t + Vt , F ′

t is the transpose of the ma-
trix Ft and Pt is the conditional covariance of π (Gtθt−1|Y1 =
y1, . . . ,Yt−1 = yt−1). In other words, Qt is a covariance of the
conditional distribution of π (Yt |Y1 = y1, . . . ,Yt−1 = yt−1). If
the model is a good fit for the data, then the NMEs are
uncorrelated and they are distributed according to the standard
normal distribution [23]. We use the Ljung-Box statistic to
test [45] for possible autocorrelation and the Shapiro-Wilk test
[46] to see if the normalized errors are distributed according
to the standard normal distribution. We chose the models that
yield the best diagnostics during the stick regimes shown in
Figs. 4–6.

We start by setting up the model for the wall velocity,
vx. Figure 4 shows that during the stick regime vx oscillates
around an almost constant value. Note that oscillations exhibit
multiple frequencies. Their dominant frequency ω = 0.25 was
determined from the first 10% of the data. These oscillations
can be modeled satisfactorily with only two harmonic compo-
nents with frequencies ωi = i ∗ ω, for i = 1, 2. The harmonic
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component with the frequency ωi is represented by a pair of
two variables θ2i−1, θ2i that evolve in such a way that the point
(θ2i−1

t , θ2i
t ) rotates around a circle with the constant frequency

ωi. Without the error (noise) terms, the radius of this circle
would be constant as well. However, the error terms allow for
a slow change of this radius.

The value around which the oscillations occur is repre-
sented by the last component θ5 of the state vector θ. The
value of θ5

t changes very slowly, and on the deterministic
level we consider θ5

t to be constant. We allow it to change
only via the error term. The following equations, defining Gt ,
formalize the described evolution of the components of θ

θ2i−1
t = θ2i

t−1 sin ωi + θ2i−1
t−1 cos ωi, (7a)

θ2i
t = θ2i

t−1 cos ωi − θ2i−1
t−1 sin ωi, (7b)

θ5
t = θ5

t−1, (7c)

for i = 1, 2. We note that both variables (θ2i−1
t , θ2i

t ), for
each value i = 1, 2, oscillate with the same frequency and
amplitude. Only their phase is different. To reconstruct the os-
cillations around the slowly changing value θ5

t , it is sufficient
to consider the variables θ2i−1

t for i = 1, 2. The observation
function, Ft , just adds the individual components of the signal
and is defined as

Ft (θt ) = θ1
t + θ3

t + θ5
t . (8)

To specify the model error, wt , we use the discount factor
δ = 0.6. To initialize the DLM we need to define the initial
(prior) distribution for the state θ0. We use a normal distri-
bution centered at mean θ̄0 where θ̄

j
0 = 0, for j = 1, . . . 4,

θ̄5
0 = vx(0), with the width specified by the scaled covariance

matrix C̄0 = I .
Now we turn our attention to the left-right percolation

force, fplr , shown in Fig. 5. The dominant frequency of os-
cillations for this measure is ω = 0.54. Again it is sufficient
to use two harmonic components with frequencies ωi = i ∗ ω,
i = 1, 2. As in the case of vx, the evolution of the vari-
ables θ1, . . . , θ4, representing the harmonic components, is
described by Eqs. (7a) and (7b).

The most important difference between the behavior of vx

and fplr is that the value around which fplr oscillates is not
changing slowly. This value decreases in an approximately
linear manner. To incorporate this decrease into the model,
we need two state components: θ5

t , which models the slowly
changing slope, and θ6

t , which captures the decreasing value
around which the signal oscillates. These two components
evolve according to the following equations:

θ5
t = θ5

t−1, (9a)

θ6
t = θ6

t−1 + θ6
t−1. (9b)

The observation function, Ft , again sums the variables cap-
turing the oscillations and the variable θ6

t representing the
value around which the oscillations occur, so Ft (θt ) = θ1

t +
θ3

t + θ6
t . To specify the observation error we use the discount

factor δ = 0.93. As in the case of vx, the initial distribution
for the state vector θ0 is a normal distribution centered at θ̄0

where θ̄
j

0 = 0, for j = 1, . . . 5, θ̄6
0 = fplr (0) and the scaled

covariance matrix C̄0 = I .

The last considered measure, W2B0, exhibits oscilla-
tions with the dominant frequency ω = 0.54, and using two
harmonic components is once again sufficient. The most im-
portant difference between the behavior of fplr and W2B0
is that the value around which W2B0 oscillates decays in a
roughly exponential manner, see Fig. 6. Thus, it can be mod-
eled by a function eμt where the value of µ� 0 is allowed to
change slowly through the error term. To incorporate this ex-
ponential decrease in the model, we use two state components:
θ5

t , which models the slowly changing value μ, and θ6
t , which

captures the behavior of eμt . The following equations ensure
the desired evolution of these components:

θ5
t = θ5

t−1, (10a)

θ6
t = θ6

t−1eθ5
t−1 . (10b)

The discount factor is δ = 0.67 and the initial distribution
for the state vector θ0 is a normal distribution centered at θ̄0

where θ̄
j

0 = 0, for j = 1, . . . 5, θ̄6
0 = W2B0(0) and the scaled

covariance matrix C̄0 = I .
Equation (10b) is nonlinear, so the model is not a DLM

and the Kalman filter cannot be used to compute the necessary
conditional distributions. To accommodate the nonlinearity of
the function Gt , we use the extended Kalman filter (EKF)
[24], which uses the Jacobian matrix of Gt (mt−1) to compute
the covariance of the predictive distribution of θt . There are
well-known divergence problems with EKF [24], since using
the Jacobian matrix can lead to unrealistically small values
of the covariance matrix of the state distribution. This can
impede the ability of the filter to assimilate the observed
data and eventually cause divergence of the model. In our
case, this happens when the value of θ6

t becomes too small
and is rounded to zero. To retain numerical integrity during
our computations, we reinitialize the filter upon encountering
filter divergence. We note that this occurred only once in the
entire data set.

III. RESULTS

Now we are ready to show how the dynamical linear
models (DLMs) defined in Sec. II C 3 can be used for the
online detection of the slip events identified by the off-line
method. We will see that the DLMs detect not only the slip
events but also additional events. The DLMs based on the
wall velocity, vx, and the measure of the global change in the
force network, fplr , detect roughly the same events. However,
the global changes of the force network are typically detected
before the increased activity of the wall. The DLM based
on W2B0, measuring local changes of the force network,
identifies almost all events detected by the other two DLMs,
and in addition, it detects extra events in which a local change
of the force network appears but does not spread across the
whole system. As expected, in events detected by both W2B0
and fplr , the local changes of the force network are detected
before the global changes.

A. Event detection by DLMs

By construction, the accuracy of the predicted values of
a measure modeled by the DLM significantly deteriorates
during the slip events detected by the off-line method. To
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FIG. 7. Two detection examples: (a)–(c) a slip event detected by
the off-line method [shown in Figs. 4(b), 5(b), and 6(b)], and (d)–(f)
a microslip event. The measure vx is shown in (a), (d), fplr in (b),
(e), and W2B0 in (c), (f). In (a)–(c), the red dots identify the start of
the slip event determined by the off-line method. The insets show the
respective NME for individual DLMs, with the vertical lines marking
detection times for individual DLMs using three different values of
Te = 0.1, 0.4, and 1.5 for the solid green line, dashed orange line,
and dotted red line, respectively.

identify the events, during which the time evolution of a
considered measure does not conform to the respective DLM,
we choose a maximal acceptable value of the NME, Te. The
events detectable by the DLM and a given error threshold, Te,
are obtained as follows. The start of an event is considered
to occur at time t0 if the NME, et , satisfies |et0−1| < Te and
|et0 | � Te. While one could define that the event ends when
the value of |et | drops below Te, it is possible that the value of
|et | becomes accidentally small during a slip event detected by
the off-line method. Therefore, to declare that the event ends
at t1, we require that all the values |et1 |, |et1−1|, . . . , |et1−m| are
smaller than Te. The value of m is chosen to be roughly one
period of the dominant oscillations present during the stick
regime (see, e.g., Fig. 4) corresponding to m = 25.

To illustrate the dependence of the starting time of a de-
tected event on the value of Te, we proceed by considering
an example of two events detectable by all DLMs. The first
event, shown in Figs. 7(a)–7(c), is a slip event detected by
the off-line method. In contrast, Figs. 7(d)–7(f) show a mi-
croslip, which is not detected by the off-line method. This
nomenclature is motivated by the literature [16,31–34], which
also distinguishes slips and microslips. In the present work,
microslips are defined as events that are not detected by the
off-line method but are detected by the DLM based on vx for
Te = 0.1. This particular value of Te is motivated below. In
what follows we will also see that there are events detectable
only by the DLM based on W2B0. Any event detected by
W2B0 for Te = 0.4 which cannot be detected by the DLM for
fplr is called a local change; this particular numerical value is
motivated below.

Figures 7(a)–7(c) compare detection times of a slip event
obtained by DLMs of vx, fplr , and W2B0, respectively, for
three different values of Te. Clearly, decreasing the value of

FIG. 8. Probability density of (a) maximum of wall velocity vx

and (b) dx , the wall displacement in the x direction, on the log10 scale
during the events detected from the wall velocity. The bimodal nature
of these distributions indicates presence of two classes commonly
refereed to as slip and microslip events.

Te leads to an earlier detection time. We note that for each
fixed value of Te, the DLM for W2B0 detects the event first,
followed by fplr , and then vx.

Figures 7(d)–7(f) show a microslip event and illustrate
some difficulties that may arise if a single threshold value, Te,
is chosen. Namely, the DLM for vx does not detect this event
for Te = 1.5 and Te = 0.4, since the NME rises only slightly
above 0.1. On the other hand, using Te = 0.1 for W2B0 does
not lead to a transition detection inside the depicted time
window. The start of the event is detected before the shown
time window starts and the event lasts through the whole time
window. Therefore, if Te is too large, then slip events may be
detected late or even missed, while choosing Te too small may
result in erroneously classifying parts of a stick regime as a
slip, microslip, or local change event. For this reason, in what
follows we will consider a range of Te values.

Figure 8 motivates the above classification of the events
into slips and microslips. It clearly shows that distributions of
maximum velocity and magnitude of wall displacements, de-
noted by dx, during the events detected by vx are bimodal. We
note that the slip and microslip events are roughly delineated
by the valley separating the peaks.

With this example in mind, we now examine the entire
data set. Figure 9(a) plots the number of events detected by
DLMs for the considered measures. We observe that each of
the measures shows a prominent peak, located at T c

e = 0.1 for
vx and fplr , and T c

e = 0.4 for W2B0. If we decrease Te below
T c

e (as specified for each of the measures), then distinct events
start to merge and their number decreases. Eventually, as Te

approaches zero, all the events merge into a single one. Thus,
from now on we will only consider the values of Te � T c

e .
Note that earlier in this section, we used the value of T c

e = 0.1
(T c

e = 0.4) at which the largest number of events can be de-
tected by vx (W2B0) to define microslip (local change) events.

As the value of Te increases, the number of detected events
decreases. This is caused by the disappearance of events dur-
ing which the NME does not exceed Te, see, e.g., Fig. 7(d).
Figure 9(a) shows that for vx and fplr there is a pronounced
plateau followed by a gentle rise. Further investigation shows
that some events are followed by almost immediate after-
shocks, see Fig. 4(b). Detection of these aftershocks causes
this rise because, for small values of Te, the main event and
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FIG. 9. (a) The total number of events detected by DLMs of vx ,
fplr , and W2B0 as a function of Te. The curves corresponding to vx

and fplr show a well-pronounced maximum at T c
e = 0.1, while the

curve corresponding to W2B0 shows a maximum at T c
e = 0.4. The

dashed line indicates the number of slip events detected by the off-
line method. (b) The number of events after removing aftershocks,
i.e., the number of events detected at T c

e that are still detectable at Te.

its aftershock are identified as one event; however, as Te in-
creases, both the main event and the aftershock are eventually
identified as separate events. To avoid the identification of
aftershocks as separate events and to accurately capture the
number of distinct events, we consider an adjusted number of
events, shown in Fig. 9(b). The aftershocks are removed by
using the events detected at T c

e as a baseline. Different events
detected at Te � T c

e are counted as one if they occur during a
single event detected at T c

e . The adjusted number of slip events
decreases for all DLMs and values Te � T c

e .

B. Insight provided by different measures

We continue by investigating the relation between the
events detected by DLMs for different measures at Te = T c

e .
We say that two events detected by different measures are
matched if the time intervals over which they take place
overlap. By matching the events detected by vx, we find that
93% of these events (slips and microslips) are also detected by
fplr . Moreover, 97% (98%) of the events detected by vx ( fplr)
are detected by W2B0. Hence, a disturbance of the wall, that
causes the NME for vx to exceed T c

e , is typically accompanied
by a local as well as global rearrangement of the force network
detected by W2B0 and fplr , respectively.

On the other hand, 28% (26%) of the events detected by
W2B0 at T c

e are not detected through vx ( fplr). Figure 10
shows an example of a local change event detected solely
by W2B0. Figures 10(a)–10(b) show that for vx and fplr , the
signal does not exhibit any strong deviation from the stick be-
havior modeled by the DLMs, and consequently their NMEs
are small. However, the W2B0 signal significantly deviates
from the predicted oscillatory behavior, see Fig. 10(c). The
fact that there is no visible change in the fplr quantifying
the global changes of the network implies that the detected
change of the force network is local. For this particular local
change, we find that there is a large spike in the broken force,
fbc, defined as the sum of all (normal) forces at the contacts
that are broken between time t and the following output time,
see Fig. 10(d). The spike in fbc is the result of a single large
broken contact (there are only two broken contacts and the
broken force on the other one is very small). The spike in

FIG. 10. Example of an event detected by the W2B0 at Te = 0.4
that is not detected by vx or fplr at Te = 0.1. (a)–(c): vx, fplr , and
W2B0 with the inset displaying the corresponding NME; (d) the
broken contact force, fbc. The red point marks the detection made
by the W2B0 at Te = 0.4. The fact that vx and fplr do not detect this
event suggests that it corresponds to a local change in the force net-
work. The corresponding spike in fbc is the result of a single broken
contact with a large force value. There are two broken contacts but
the broken force on the other one is very small.

W2B0 occurs at the same time, indicating that, at least for
this local change event, the change in W2B0 is strongly re-
lated to broken contacts. We note that similar local changes,
including nonaffine motion or rotations of the particles, have
been discussed in previous works [15,21].

Now we turn our attention to the relation between the slip
events detected by the off-line method and events detected by
the DLMs. At each Te, we match the events detected by the
DLMs to the slip events. To better understand the composition
of the matched events, we use two ratios: true positive rate
and false positive rate. For a given DLM, the true positive
rate, rt p(Te), is the ratio of the number of slip events that
are detected by the DLM, and the total number of slip events.
The false positive rate, r f p(Te), is the ratio of the events
detected by the DLM that do not match any slip event, to
the total number of events detected by the DLM. The large
false positive rates are caused by the fact that the DLMs also
detect microslip events and local change events, which are
not detected by the off-line method. At this point, we cannot
reliably predict which local change events will lead to a slip
event. Further research will be necessary to address this issue.

Figure 11 depicts the ratios, rt p(Te) and r f p(Te).
Figure 11(a) shows that for each DLM there is a range of
values Te for which rt p(Te) = 1 and thus each DLM is capable
of detecting all slip events. For every DLM there is a consid-
erable number of false positives at Te = T c

e , see Fig. 11(b).
Initially, r f p(Te) decreases for all the measures but then it
increases for both vx and fplr (dashed lines). As before, this
increase is caused by detecting the aftershocks as separate
events, see Fig. 9. Thus, we also consider an adjusted r f p(Te)
in which the aftershocks are not included. Figure 11(b) shows
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FIG. 11. (a) True positive rate, rt p(Te), and (b) false positive
rates, r f p(Te). The dashed line marks the false positive rate and the
solid line marks the adjusted false positive rate obtained by removing
the aftershocks.

that the adjusted r f p(Te) is always decreasing and drops much
faster than the nonadjusted r f p(Te).

To further justify our earlier classification of the events
detected by vx into slips and microslips we return to Fig. 9(b).
The slope of the curve representing the adjusted number of
events detected by vx changes the fastest around the value of
Te (we call it the change point) where it crosses the dashed
line representing the number of slip events detected by the
off-line method. This is indicative of the presence of two
classes of events [35,47]. Since at the change point the number
of adjusted events is close to the number of slip events, and
r f p for vx becomes zero (therefore the microslip events com-
pletely disappear), the two classes mentioned above directly
correspond to slip and microslip events. That is, the distinction
between the two types of events is not artificial, but reflective
of an inherent difference between them.

The same argument that we used for vx demonstrates that
the events detected by fplr also split into two classes roughly
corresponding to slip and microslip events. This suggests that
during slip and microslip events there is a close connection
between the wall activity and the global rearrangements of
the force network measured by fplr . The W2B0 measure does
not yield a separation of events into two obvious classes
because the number of adjusted events detected by the DLM
for W2B0, see Fig. 9(b), does not exhibit any clear change
point. Thus, the connection between the wall activity and local
changes of the force network, measured by W2B0, is much
less obvious, since local changes may or may not lead to a
slip or microslip event.

To further investigate the relation between wall movement
and force network rearrangements, we introduce a different
measure, T m

e > Te, which is defined as the largest value of
Te for which an event is still detectable. Figure 12 shows
the relation between the values of T m

e obtained by different
measures, with each point corresponding to an event detected
by both measures specified on the axes labels.

For both slip and microslip events, Fig. 12(a) demonstrates
a linear relation between the magnitudes by which the hori-
zontal wall velocity (vx) and the global change of the force
network ( fplr) deviate from the behavior expected in the stick
regime. Note that the slope of the data points in this figure is
different for the slip and microslip events. For the slip events,
the wall speed increases more rapidly with fplr . We note that

FIG. 12. Scatter plot of the T m
e values for events detected at T c

e

by both considered measures (a) vx and fplr , (b) W2B0 and vx , and
(c) W2B0 and fplr . The blue color indicates slip events while the
green color indicates microslip events.

if T m
e obtained by fplr is larger than ≈3, then the event is

almost certainly a slip event [see also Fig. 11(b)], while the
events with T m

e < 1 are microslips. Thus, there is a relatively
well-defined critical value for the size of the global change
of the force network, and surpassing this value leads to a
slip event. Figure 12(b) indicates that determining whether
a local change event will cause a slip event or not is more
complicated. While very large (small) values of T m

e always
correspond to a slip (microslip) event, there is a wide range of
the values T m

e obtained by W2B0 for which we observe both
slip and microslip events.

Next, we explore the relation between the value of T m
e and

the wall displacement during a detected event. Figure 13(a)
shows that the values of T m

e obtained by the vx measure
are linearly proportional to the wall displacement. We also
observe a relatively clear distinction between microslip and
slip events, since the data in Fig. 13(b) shows a clear change
of slope around the boundary between the slip and microslip
events. This change further indicates that for the slip events
the wall activity increases more rapidly with the growing
global change in the force network, than for the microslips.
Figure 13(c) relates the size of the local change of the force
network and the wall displacement. Similarly to Figs. 12(b)–
12(c), there is a large range of values T m

e obtained by W2B0
for which both slip and microslip events can occur. A lo-
cal change of the force network with T m

e in this range has
uncertain consequences. It might dissipate without causing a
global change in the force network or trigger a global change
accompanied by a microslip or slip event. However, suffi-

FIG. 13. Scatter plot of the wall displacement dx during an event
and its values T m

e , for events detected at T c
e by (a) vx , (b) fplr , and

(c) W2B0. The blue color indicates slip events while the green color
denotes microslip events. In c) the red color indicates local change
events, as in Fig. 10. During a local change event, the wall movement
[global change] is too small to be detected by vx [ fplr].
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FIG. 14. Comparison of off-line and online methods: (a) the me-
dian advance notice 〈ta〉 taken over slip events detected by the given
measure at Te; (b) the ratio of slip events detected in advance ra(Te).

ciently small local changes never trigger a slip event while
sufficiently large ones always do.

C. Predictive power of different measures

So far, we have compared the events detected by individual
measures. It is also of interest to examine how early the slip
events, identified by the off-line method, can be detected by
DLMs. Figures 7(a)–7(c) suggest that the time at which the
start of a slip event is detected by a DLM depends on both
the considered measure and Te. To examine this quantitatively,
we consider the times at which the off-line method detects the
start of the slip events as a baseline and compare them with
the times obtained by different measures and values of Te. We
emphasize that the purpose of this comparison is quantifying
the effectiveness of the online methods based on DLMs, and
not comparing the performance of online and off-line meth-
ods. The off-line approach uses future data for identifying slip
events and is not appropriate for predictive purposes.

For a given slip event, let t0 and t ′
0(Te) be the times at which

it is detected by the off-line method, and by the DLM for
the considered measure, respectively. We then define ta(Te) =
t0 − t ′

0(Te). If ta(Te) > 0, then the slip event is identified in
advance. To analyze how much in advance the slip events can
be detected, using different measures and values of Te, we
consider the median advance notice 〈ta〉 defined as follows.
For a given measure and Te, the value 〈ta〉(Te) is the median
over all slip events detected by the DLM. Figure 14(a) shows
this metric as a function of Te � T c

e . We immediately observe
that the W 2B0 measure tends to provide the earliest detection
times for a wide range of Te’s. In particular, for Te = T c

e , the
median advanced notice is over ten time units, while the best
value that can be achieved by fplr is only around five, and
vx barely detects slip events in advance at all. We note that
the amount of cross correlation is not particularly useful for
predicting purposes, since the cross correlation is dominated
by the long stick periods and is rather insensitive to the differ-
ences between the measures that appear around the onset of
slip events.

To obtain the portion of the slip events that are detected
in advance, we divide their number by the number of all slip
events. This fraction is denoted by ra(Te). Figure 14(b) shows
that ra, as expected, decreases with Te for each considered
measure. Once again, the shape of the W2B0 curve is different
from the other two. This curve decreases slower and is the

FIG. 15. Median magnitude of the wall velocity at the start of
slip events detected at Te by different measures. For each measure,
the solid lines mark the median of vx , and the shaded regions mark
one standard deviation. The dashed lines show the two thresholds
used by the off-line method: (black) vl used to identify slip events
and (red) vs used to identify their start.

only one that approaches unity as Te gets close to T c
e . Hence

the detection method based on this measure is the only one
that can predict almost all slip events in advance for Te � 0.9.

Finally, we investigate how fast the wall moves at the start
of the slip event detected by different measures. Figure 15
shows the median of vx at detection times as a function of
Te. The median at each fixed Te value is taken over all slip
events detectable by the given model and Te. As expected, all
the curves are increasing with Te. Consistently with the results
shown in Fig. 14, we find significantly lower values of 〈vx〉
when considering the W2B0 measure. That is, the detection
based on the W2B0 measure takes place before the wall has
begun to move appreciably.

IV. CONCLUSIONS

In this work we present a method for detecting the onset
of slip events that can be used on the fly for an incoming
stream of data. The method is based on the fact that the
behavior of the system during slip events is very different
from the one during the stick regime. In particular, we con-
sider three different measures describing the system: the wall
velocity vx, maximum percolation force of the differential
force network, fplr , and the Wasserstein distance between the
persistence diagrams quantifying the force networks, W2B0.
For each of these measures, we build a dynamical linear
model (DLM) capable of accurately predicting its behavior
during the stick regime. However, the predictions provided by
DLMs become inaccurate when the measures start to exhibit
more complex behavior as the system approaches a slip event.
Hence, to detect the upcoming slip event we analyze the dif-
ferences between the predicted and observed values of these
measures.

Our analysis based on vx shows a clear distinction between
slip and microslip events. We find that global changes in the
network measured by fplr are essentially always associated
with a slip or a microslip event that follows them. In particular,
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the measure fplr provides a slightly earlier prediction of the
upcoming slip events than vx. By using the W2B0 measure
we identify local changes of the force network, which might
or might not spread over the force network and become global.
We observe that only the local changes that become global
are followed by a slip or microslip event. While microslips
were reported in the previous works considering similar sys-
tems, see, e.g., Refs. [19,35], and local changes (called local
avalanches) were discussed recently as well [21], we are not
aware of such events being used for predictive purposes. From
the predictive perspective, we note that the W2B0 measure
shows the best performance, in terms of sensitivity. On the
other hand, the high sensitivity of this measure also leads to
a significant percentage of false positives, in the form of local
changes that do not lead to slip events.

In summary, we observe the following timeline of the
changes leading to a slip event. Typical slip events start with
a local change in the force network. The size of this local
change can be quantified by the amount by which the ob-
served values of W2B0 measure deviate from the predicted
values. This deviation roughly corresponds to an increase
in the W2B0 measure. If the size of the local change is
sufficiently large, then it always becomes global and triggers a
slip event. On the other hand, a sufficiently small local change
does not trigger a slip event. There is, however, a large range
of local change sizes for which the outcome is uncertain; the

initial local disruption may either dissipate or trigger a global
change resulting in a microslip or even slip event. While the
chronology of a slip described above has been discussed in the
literature already, our method allows for precise quantification
of this timeline.

As noted above, a significant fraction of the local changes
of the force network fall into an intermediary range and may
or may not result in a slip or microslip event. It would be very
much of interest to explore whether there are distinguishing
characteristics of local changes that could be used to predict
if the given change will lead to a slip event. In this work,
we use W2B0 to identify local changes. This measure only
compares the topological properties of the force network en-
coded by the persistence diagrams. Hence precise geometry
of the force network is not considered. Further research will
be necessary to establish if the geometry of the force and/or
contact networks can be used to predict the outcome of local
changes. Our results suggest that the use of stochastic state
space models and in particular DLMs could be a productive
path in this direction.
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