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A thin layer of nematic liquid crystal (NLC) across which an electric field is applied is a setup of great industrial
importance in liquid crystal display devices. There is thus a large literature modeling this situation and related
scenarios. A commonly used assumption is that an electric field generated by electrodes at the two bounding
surfaces of the layer will produce a field that is uniform: that is, the presence of NLC does not affect the electric
field. In this paper, we use calculus of variations to derive the equations coupling the electric potential to the
orientation of the NLC’s director field, and use a simple one-dimensional model to investigate the limitations of
the uniform field assumption in the case of a steady applied field. The extension of the model to the unsteady
case is also briefly discussed.
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I. INTRODUCTION

With the current sustained demand for portable interactive
electronic devices (phones, netbooks, music players, etc.) with
liquid crystal displays (LCDs), there is considerable interest in
understanding their operation from a theoretical perspective.
Robust and accurate mathematical models for prototype LCDs
allow simulations of hypothetical devices to be made quickly
and at low cost, and this in turn can lead to new and potentially
improved designs being identified. An example of this is the
use of mathematical models to identify so-called bistable LCD
designs [1–6]: such designs offer the potential for substantially
lower power consumption as compared to traditional LCDs,
with implications for battery lifetimes and portability, and
possibly allowing LCD-based devices to compete with the
“e-ink” technology [7] used in many e-readers.

Most models used in such theoretical investigations, in-
cluding those referenced above, make several simplifications
in order to arrive at a suitably tractable model for simulations.
For example, normally an LCD device is, very reasonably,
modeled as a layer of nematic liquid crystal (NLC) sandwiched
between two parallel bounding plates, across which an electric
field can be applied. Certain “anchoring” conditions on the
molecules of the NLC are assumed at each bounding surface,
which can be modeled by an appropriate surface energy (a
macroscale modeling approximation to whatever microscopic
interactions are really occurring at the interfaces). It is almost
always assumed, since it facilitates the algebra immensely,
that the Frank elastic constants appearing in the elastic energy
[see Eq. (2) later] are equal (although they are not). Another
key and widely used simplification is the assumption that, if
the LCD is operated by an electric field applied across the
parallel electrodes at the bounding surfaces, then the field
generated within the NLC layer will be everywhere uniform
and perpendicular to the electrodes, just as if the field was
applied in vacuo. In reality, the molecules of the NLC contain
electric dipoles that interact with the applied field, causing it
to deviate from this uniform state. In this paper, we investigate
the extent of such deviations under a range of operating
conditions, and we address (partially) the issue of whether
the deviations can become large, indicating breakdown of this
commonly used assumption. This nonuniformity of the field

in a NLC layer between parallel electrodes has certainly been
studied before; see, for example, the book by Chigrinov [8]
and many references therein. The particular contributions of
this paper are as follows: first, to analyze theoretically the
nonuniform field case in certain tractable asymptotic limits,
to afford more insight into how and when deviations from
the uniform field case arise; and second, to quantify the field
nonuniformity in cases of industrial relevance, in order to
assess the reasonableness of a uniform field approximation.

The paper is laid out as follows: In Sec. II, we introduce the
key dependent variables, and outline the basic mathematical
model in terms of free energy (Sec. II A), making clear any
simplifying assumptions that are made. Section II B uses the
calculus of variations to derive the coupled PDEs that govern
the evolution of the director field of the NLC and the electric
potential within the device. Section III describes briefly the
approach taken to solve the coupled equations, and presents
our key results. Finally, in Sec. IV we draw our conclusions.

II. MATHEMATICAL MODEL

Figure 1 shows the basic setup of the considered prob-
lem, consisting of a layer of nematic liquid crystal (NLC),
sandwiched between parallel bounding surfaces at z∗ = 0 and
z∗ = h∗, which also function as electrodes. Star superscripts
will be used throughout to denote dimensional quantities, and
will be dropped when we nondimensionalize. Throughout this
study, we restrict attention to the steady situation in which
no quantities vary in time, although we briefly discuss the
extension to the time-dependent case.

The molecules of the NLC are rodlike, which imparts
anisotropy. The polar molecules have a tendency to align
locally, which is modeled by associating an elastic energy with
any deviations from uniform alignment (see Sec. II A). The
local average molecular orientation is described by a director
field n, a unit vector. We assume that properties of the bounding
surfaces (electrodes) do not vary in the (x∗,y∗) plane, and we
consider a purely one-dimensional (1D) model, within which
(with appropriate choice of axes) the director is confined to a
plane and may be expressed in terms of a single angle θ (z∗),

n = (sin θ,0, cos θ ). (1)
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FIG. 1. (Color online) Sketch showing the setup and summariz-
ing the key parameters in the dimensionless coordinates.

The director angle may vary across the layer in the z∗ direction
due to differences in the preferred substrate anchoring at the
two boundaries, as discussed in the following.

We suppose that an electric field E∗ = ∇∗φ∗ is generated
across the layer by applying a potential difference P ∗ across
the plates, each being at fixed potential. Assuming that
properties vary only in the z∗ direction, φ∗(z∗) depends only
on the coordinate z∗, and E∗ = (0,0,φ∗

z∗ ). The function φ∗(z∗)
is related to the usual electric potential V ∗ by φ∗ = −V ∗; in
the uniform field case φ∗ ≡ P ∗z∗/h∗.

A. Energetics

The free energy of the liquid crystal layer, in the presence
of an applied electric field and with specified anchoring
conditions at each bounding surface, has several contributions.
The bulk free energy density consists of elastic, dielectric,
and flexoelectric contributions W ∗

e , W ∗
d , W ∗

f , given (when the
director is confined to a plane, allowing only bending and
splaying) by

2W ∗
e = K∗

1 (∇∗ · n)2 + K∗
3 [(∇∗ × n) × n]2, (2)

2W ∗
d = −ε∗

0(ε‖ − ε⊥)(n · E∗)2 − ε∗
0ε⊥ E∗ · E∗, (3)

W ∗
f = −E∗ · [e∗

1(∇∗ · n)n + e∗
3(∇∗ × n) × n]. (4)

Here, K∗
1 and K∗

3 are elastic constants, ε∗
0 is the permittivity of

free space, ε‖ and ε⊥ are the relative dielectric permittivities
parallel and perpendicular to the long axis of the nematic
molecules, and e∗

1 and e∗
3 are flexoelectric constants [9–11].

With the director field n, as given by Eq. (1), and the very
common simplifying assumption K∗

1 = K∗
3 = K∗, the total

bulk free energy density W ∗ = W ∗
e + W ∗

d + W ∗
f simplifies.

Introducing the nondimensional forms W = W ∗h∗2/K∗, φ∗ =
P ∗φ, and z = z∗/h∗,

W = 1

2
θ2
z − Dφ2

z (� + cos2 θ ) + F
2

θzφz sin 2θ, (5)

where

D = P ∗2ε∗
0(ε‖ − ε⊥)

2K∗ , F = P ∗(e∗
1 + e∗

3)

K∗ ,

� = ε⊥
ε‖ − ε⊥

(6)

are dimensionless constants. With representative values
h∗ ∼ 2 μm, P ∗ ∼ 1 V, e∗

1 + e∗
3 ∼ 5 × 10−11 C m−1, K∗ ∼

1 × 10−11 N, ε‖ − ε⊥ ∼ 5 [2,12,13], both D and F are O(1).
Note that these values are not intended to be absolute; a
fair degree of variation is possible depending on the specific
device design and indeed, many different combinations of
dimensional parameter values will lead to the same model in
dimensionless form. Note that D and F are not independent;
the ratio

ϒ = F2

D = 2(e∗
1 + e∗

3)2

K∗ε∗
0(ε‖ − ε⊥)

(7)

is a material parameter, independent of the applied field and of
device geometry. We consider the most common case in which
the dielectric anisotropy is positive: ε‖ − ε⊥ > 0 (molecules
align parallel, rather than perpendicular, to an applied field),
so that D > 0 always. The parameter F characterizing the
dimensionless strength of the applied electric field will,
however, change sign if the electric-field direction is reversed.
Since the representative parameter values listed above give
ϒ ≈ 10, we assign this value to ϒ throughout most of our
simulations.

The surface anchoring is modeled by the most commonly
used Rapini-Papoular form [14]; if g∗

{0,h∗} = (K∗/h∗)g{0,1} are
the surface energies per unit length at the boundaries z∗ =
0, h∗, then

g{0,1} = A{0,1}
2

sin2(θ − α{0,1}), A{0,1} = h∗A∗
{0,h∗}

K∗ , (8)

where A∗
{0,h∗} are the anchoring strengths at z∗ = 0, h∗ and

α{0,1} are the preferred angles for the director at the respective
boundaries. As A → ∞, the anchoring becomes strong, and
the director angle is forced to take the value α. Figure 1
summarizes the setup and notation.

B. Calculus of variations

The total (dimensionless) free energy for the system, per
unit area in the (x,y) plane, is given by

J [θ,φ] =
∫ 1

0
W (θ,θz,φz) dz + g0(θ )|z=0 + g1(θ )|z=1 (9)

and equilibrium solutions are those function pairs θ (z), φ(z)
that minimize J , subject to the additional conditions φ = 0,1
on z = 0,1. The standard calculus of variations approach,
with θ (z) 
→ θ (z) + εη(z) and φ(z) 
→ φ(z) + λμ(z) (0 <

ε,λ � 1) leads to J 
→ J [θ + εη,φ + λμ] = J0 + J1 + J2 +
O(ε3,λ3), where Ji = O(εi,λi). For (θ,φ) to be a minimizing
pair for J we require J1 = 0, J2 > 0, for all admissible
variations η,μ (the condition on J2 ensures we have a
minimum, rather than a maximum, of the free energy). After
Taylor expansion and integration by parts,

J1 = ε

∫ 1

0
η
[
Wθ − (

Wθz

)
z

]
dz − λ

∫ 1

0
μ

(
Wφz

)
z
dz

+ εη
(
g0θ − Wθz

)∣∣
z=0 + η

(
g1θ + Wθz

)∣∣
z=1. (10)

The condition that O(ε) and O(λ) vanish independently for
all admissible variations η,μ (admissible μ must vanish at
z = 0,1 but admissible η need not) leads to the following
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Euler-Lagrange equations for θ , φ [15]:

θzz − F2

ϒ
φ2

z sin 2θ + F
2

φzz sin 2θ = 0, (11)

F
2

θzz sin 2θ + Fθ2
z cos 2θ − 2F2

ϒ
φzz(� + cos2 θ )

+ 2F2

ϒ
θzφz sin 2θ = 0, (12)

where we have eliminated D in favor of the material parameter
ϒ , reflecting the fact that F and D are not independent for
a given device. These equations are solved subject to the
following boundary conditions at z = 0, 1:

θz + F
2

φz sin 2θ − A0

2
sin 2(θ − α0) = 0 on z = 0, (13)

θz + F
2

φz sin 2θ + A1

2
sin 2(θ − α1) = 0 on z = 1, (14)

φ = 0 on z = 0, (15)

φ = 1 on z = 1. (16)

Conditions (13) and (14) arise from making the boundary terms
vanish in Eq. (10). In the strong anchoring case A0,A1 → ∞,
these conditions naturally reduce to Dirichlet conditions on
the director angle at each boundary. We note that Eq. (12) has
the simpler integrated form

d

dz

[F
2

θz sin 2θ − 2F2

ϒ
φz(� + cos2 θ )

]
= 0. (17)

However, the boundary conditions do not enable the constant
of integration to be determined explicitly, and for practical
purposes it is easier to solve the system of Eqs. (11)–
(16) numerically using a standard boundary-value solver.
Second, we emphasize that setting φ = z (the uniform field
assumption) is not in general consistent with Eqs. (11)–(16).
Nonetheless, the 1D uniform field model often used in practice
is given by setting φ = z in Eqs. (11), (13), and (14) and
neglecting Eqs. (12), (15), and (16).

Note that the second variation J2 may be easily calculated
for a range of suitable test functions if required to check
stability. In practice, many of our steady states are found
numerically using continuation methods from known “uniform
field” steady states [3,15].

C. Time-dependent energetics: Gradient flow model

If the system is not initially at equilibrium, then it will
evolve over time towards a steady state described by the
above equations. An accurate description of these dynamics
requires the full equations of nematodynamics [10,16], which
couple flow to director reorientation, and the unsteady form of
Maxwell’s equations. The full time-dependent model would
be extremely complicated, not to mention computationally
intensive. Even with the uniform field assumption, many
works [1–4,17] instead use a gradient flow model, which
assumes that the system evolves always in the direction that
minimizes its total free energy. In this simpler case [bulk and
surface energy densities given by Eqs. (5) and (8), with φ ≡ z],

this process leads to [2–4,17]

θt + δW

δθ
≡ θt + Wθ − (

Wθz

)
z
= 0, (18)

with dimensionless time t = t∗K∗/(μ̃∗h∗2), where μ̃∗ is the
dimensional rotational viscosity of the NLC molecules (typ-
ically around 0.1 N s m−2). Boundary conditions analogous
to those specified by Eqs. (13) and (14) can also be written
(see [2–4,17]), and an initial condition θ (z,0) closes the model.

With coupling to the electric field, matters are considerably
more complicated. The above model (18) arises from a
simple gradient flow for a one-component system. With two
components (θ,φ) there is far more freedom, and any model
of the form (

θt

φt

)
+ Q

(
δW
δθ

δW
δφ

)
= 0

for positive definite Q (whose elements may depend on θ ,

φ) will evolve to the required steady states. (See [18] for a
discussion of related issues for a two-component dissipative
gradient dynamics formulation in a different fluid-dynamical
context.) It is far from clear a priori what the physically
appropriate choice of Q should be here. This question, while

important, is beyond the scope of this paper, and henceforth
we will restrict attention to the steady case described by
Eqs. (11)–(16), which have a firm physical basis.

III. ANALYSIS AND RESULTS

The system of Eqs. (11)–(16) can be easily solved numer-
ically and we present some steady solutions in Sec. III D.
Before considering numerical results, however, we first discuss
a number of analytical observations in Secs. III A–III C.

A. Large field limit

First, and as might be expected, the uniform field ap-
proximation is good in the large field limit |F | � 1 [with
ϒ,A0,A1 ∼ o(F)]. In this case, treating F−1 as an asymptoti-
cally small parameter, and assuming regular series expansions
for θ and φ in terms of F−1, Eqs. (11)–(16) become, to leading
order,

φ2
0z sin 2θ0 = 0,

d

dz
[φ0z(� + cos2 θ0)] = 0,

φ0z sin 2θ0 = 0 on z = 0,1,

φ0 = 0,1 on z = 0,1.

It is easily verified that all solutions of this system have the
form

φ0 = z, θ0 = 0 (modπ/2). (19)

In fact, the stable solutions (local minima, as opposed to local
maxima, of the total free energy) are restricted to those with
θ0 = 0 (modπ ), but that does not affect our main conclusion,
that correct to order F−1, the field is indeed uniform within
the liquid crystal layer.
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B. Small field limit

The story is rather different in the small field limit. Since
this limit is of little practical use, we do not consider it in
great detail, but present just two particular distinguished limits
on the relative values of ϒ and F , that illustrate the field
nonuniformity that can arise: Case 1, ϒ ∼ F � 1 and Case 2,
ϒ−1 ∼ F � 1.

Case 1: ϒ ∼ F � 1

We write ϒ = Fϒ̃ , where ϒ̃ = O(1). Assuming regular
asymptotic expansions for θ , φ in powers ofF � 1, Eqs. (11)–
(16) become, to leading order,

θ0zz = 0, (20)

d

dz

[
1

2
θ0z sin 2θ0 − 2

ϒ̃
φ0z(� + cos2 θ0)

]
= 0, (21)

θ0z = ±A0,1

2
sin 2(θ0 − α0,1) = 0 on z = 0,1, (22)

φ0 = 0,1 on z = 0,1. (23)

The problem for θ0 decouples: θ0 is linear in z, with coefficients
determined by transcendental equations that follow from
Eq. (22). With θ0 known, we can solve for φ0:

φ0 =
∫ z

0

k1 + ϒ̃θ0ξ sin 2θ0

4(� + cos2 θ0)
dξ, k1 =

4 − ϒ̃
∫ 1

0
θ0ξ sin 2θ0

� + cos2 θ0
dξ∫ 1

0
dξ

� + cos2 θ0

.

(24)

For the purposes of illustration, consider the specific case of
strong anchoring, where A0,1 → ∞ [in fact, consistently with
our asymptotic approximation we require only that A0,1 are
O(F−1) or larger]; the details are qualitatively similar for the
weak anchoring case. With strong anchoring,

θ0 = α0 + z(α1 − α0) ,

and the solution (24) is explicit. In this case, we see that, if
α0 = α1, so that θ0 is constant within the layer, we recover the
uniform field φ0 = z. However, as the difference in anchoring
angles increases, φ0 departs from the linear state. Figure 2
shows the solution with α0 = π/8 and α1 = 3π/8: clearly, φ0

is far from linear in this case.
We note that the chosen scaling of φ∗ by the applied
voltage P ∗, while natural, has the effect of exaggerating the
nonuniformities at small field since the dimensionless potential
is always of order one. We return to this point in our numerical
simulations of Sec. III D.
The director field is, however, largely unaffected by the
nonlinearity in the electric potential, precisely because we
considered the small field limit, which the director does not
feel at leading order. Therefore, the conclusions in this case
are unlikely to have any practical consequences.

Case 2: ϒ−1 ∼ F � 1

Given our estimate ϒ ∼ 10 for a typical LCD device, a more
relevant small field limit is to assume ϒ to be asymptotically

FIG. 2. (Color online) Leading order solutions for small field
limit F � 1, discussed in Sec. III B [Eq. (24), with ϒ̃ = 1; and
Eq. (28)]; and for O(1) field case with ϒ � 1 (see Sec. III C) given by
Eqs. (29) and (30), forF = 1. All solutions use � = 0.25, α0 = π/8,
and α1 = 3π/8; anchoring is strong in all cases.

large: ϒ = F−1ϒ̂ , where ϒ̂ = O(1). This should give some
reasonable results for fixed, small values of F . Examination of
Eqs. (11)–(16) then reveals that the expansions for θ, φ must
proceed as follows, with a rescaling of φ:

θ = θ0 + Fθ1 + . . . , φ = F−1φ0 + φ1 + Fφ2 + . . . ,

giving a leading-order system

θ0zz + 1

2
φ0zz sin 2θ0 = 0,

d

dz
[θ0z sin 2θ0] = 0.

In the strong anchoring case A0,1 � F−1, the boundary
conditions on this leading order problem are

θ0 = α0,1 on z = 0,1, φ0 = 0 on z = 0,1.

The solution is straightforward:

θ0 = 1
2 cos−1[z(cos 2α1 − cos 2α0) + cos 2α0], (25)

φ0 = 1

4
log

[
1 − (z − 1) cos 2α0 + z cos 2α1

1 + (z − 1) cos 2α0 − z cos 2α1

]

+ 1

4
log(tan2 α0) + z

4
log

[
tan2 α1

tan2 α0

]
. (26)

We can take the asymptotics further, noting that the problems
for θ1, φ1 [given by O(F) in Eq. (11) and O(F2) in Eq. (12)]
reduce to

θ1zz + 1

2
(φ1zz sin 2θ0 + 2θ1φ0zz cos 2θ0) = 0,

d2

dz2
(θ1 sin 2θ0) = 0,

with boundary conditions

θ1 = 0 on z = 0,1, φ1 = 0,1 on z = 0,1.

The solution is easily found as

θ1 = 0, φ1 = z, (27)
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giving an improved approximation

θ = θ0 + O(F2), φ = 1

F φ0 + φ1 + O(F), (28)

with θ0, φ0, and φ1 given by Eqs. (25), (26), and (27).
Once again, for values of α0 and α1 that differ appreciably,

φ0 is highly nonlinear. Figure 2 shows the solution of Eq. (28)
for anchoring angles α1 = π/8, α2 = 3π/8. Nonetheless, as
in Case 1, even with this field nonuniformity, the asymptotic
solution for θ is still quite close to the uniform field solution,
both being close to linear. As the anchoring angles α0,
α1 approach the same value, θ becomes constant and φ0

approaches the uniform field solution φ0 = z.
In this strong anchoring limit, our asymptotic solution

breaks down in the limit that α0 and/or α1 approach 0 or
π/2. As this happens, boundary layers develop in the director
solution: gradients of φ become very large near z = 0,1, and
terms of size F× (gradients of φ) that were initially neglected
[in comparison with O(1)] in Eqs. (11) and (12) can no longer
be ignored.

C. Order-one field, with ϒ � 1

As in Sec. III B, Case 2 above, we consider the parameter
ϒ to be asymptotically large, but now allow F = O(1) as will
likely be the case during operation of a typical LCD device. In
order to make analytical progress, we again consider the strong
anchoring limit in which A0,1 are O(ϒ) or larger. Assuming
regular asymptotic expansions for θ and φ in inverse powers
of ϒ , the leading order equations and boundary conditions are
almost the same as in Case 2 above:

θ0zz + F
2

φ0zz sin 2θ0 = 0,
d

dz
[θ0z sin 2θ0] = 0,

θ0 = α0,1 on z = 0,1, φ0 = 0,1 on z = 0,1

(only a factor of F , and the boundary condition on φ0 at z = 1
differ). The solution is very similar:

θ0 = 1

2
cos−1[z(cos 2α1 − cos 2α0) + cos 2α0], (29)

φ0 = 1

4F log

[
1 − (z − 1) cos 2α0 + z cos 2α1

1 + (z − 1) cos 2α0 − z cos 2α1

]

+ 1

4
log(tan2 α0) + z

(
1 + 1

4F log

[
tan2 α1

tan2 α0

])
. (30)

The same comments apply as for the previous case: For values
of α0 and α1 that differ appreciably, φ0 is clearly nonlinear
(see Fig. 2), while the leading order solution θ0 is close
to linear (as is the uniform field solution). As α1 → α0,
θ0 becomes constant and φ0 approaches the uniform field
solution φ0 = z. This asymptotic solution breaks down in the
limit that α0 and/or α1 approach 0 or π/2: gradients of φ

become large in boundary layers near z = 0,1, and terms of
size ϒ−1× (gradients of φ) that were initially neglected in
Eqs. (11) and (12) can no longer be ignored. Figure 2 shows the
solution (29), (30) for anchoring angles α1 = π/8, α2 = 3π/8
(recall, anchoring is strong).
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FIG. 3. (Color online) Comparison of the director field and elec-
tric potential with uniform and nonuniform field models at large
field with weak anchoring: F = 10, ϒ = 2.5, A0 = 5.0, A1 = 2.4,
α0 = 0, α1 = π/2.

D. Numerical results

For other cases of interest where asymptotic progress is not
possible, we solve the boundary-value problem specified by
Eqs. (11)–(16) numerically. We first rewrite Eqs. (11) and (12)
as a vector system of four first-order ordinary differential
equations (ODEs) for θ , θz, φ, φz, and then apply the MATLAB

routine bvp4c. An initial guess [θ0(z),φ0(z)] is required to start
the routine. For isolated calculations shown in Figs. 3–6, we
take results from the analogous uniform field problem. For
Figs. 7–10, which show the results of many calculations as
the field strength F varies, we use uniform field results as the
initial guess for the first point calculated, and continuation in
F thereafter.

In this section, we use anchoring angles α0 = 0 and
α1 = π/2, except if specified differently. This choice leads
to particularly interesting results, first because the director
varies maximally throughout the layer when the anchoring
angles differ maximally, and second because there exist
multiple director solutions that satisfy Eqs. (11)–(16). These
include constant solutions θ = 0, θ = π/2 and a multiplicity
of nontrivial solutions θ (z). However, only two solutions are
reasonable candidates for free energy minimizers: the solution
θ = 0 and the particular nontrivial solution θ (z) that bends
least between z = 0 and 1. Other nontrivial director solutions
exist that rotate through angles larger than π/2 across the layer:
such solutions are only stable because in our model the director
is confined to the (x,z) plane; in a real three-dimensional (3D)
setting, these states would “unwind” to a lower energy state.
The θ = 0 solution is curious because it is a “uniform field”
solution of the full nonuniform field model: we refer to this
solution as the “vertical solution” since the director field is
purely vertical.

For surface anchoring strengths, we consider either strong
anchoring, imposed in practice by settingA0 = A1 = 1000, or
weak anchoring, with A0 = 5.0 and A1 = 2.4. The parameter
� is set to � = 0.25 throughout.

012503-5



L. J. CUMMINGS, E. MEMA, C. CAI, AND L. KONDIC PHYSICAL REVIEW E 90, 012503 (2014)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

z

, 

(a)

(b)

FIG. 4. (Color online) Comparison of the director field and elec-
tric potential with uniform and nonuniform field models at small
field with (a) ϒ ∼ F � 1 and weak anchoring: F = −0.1, ϒ =
0.1, A0 = 5.0, and A1 = 2.4; and (b) ϒ ∼ F−1 � 1 and strong
anchoring: F = 0.1, ϒ = 10, A0 = A1 = 1000. In both cases, α0 =
0,α1 = π/2.

We first consider solutions at large field. We know from the
asymptotic result (19) that the uniform field approximation is
good in this limit, so this serves as a useful crosscheck. We
compare the solutions θ and φ for uniform and nonuniform
electric fields. Specifically, in Fig. 3 we compare the uniform
and nonuniform field cases with parametersF = 10, ϒ = 2.5,
A0 = 5.0, and A1 = 2.4. Clearly, agreement is excellent, as
anticipated.

We next compare uniform and nonuniform field solutions
in the small field limit. We know from the asymptotics of
Sec. III B that we can expect significant deviation between
uniform and nonuniform field solutions at small fields.
Figure 4(a) shows the results with parameters F = −0.1,
ϒ = 0.1, A0 = 5.0, and A1 = 2.4. Note that although the
nonuniform electric potential φ differs significantly from
the linear case, the director field is largely unaffected by the
nonlinearity of φ: as noted in Sec. III B earlier, this is precisely

because we consider a small field, which the director does not
feel at leading order. Figure 4(b) shows results with parameters
F = 0.1, ϒ = 10, A0 = A1 = 1000: the deviation of φ from
the linear case is much more pronounced here.

Although the parameters used in Figs. 4(a) (weak an-
choring, α0 = 0,α1 = π/2) and 4(b) (strong anchoring, α0 =
0,α1 = π/2) do not permit a direct comparison with the
analytical results of Sec. III B, Cases 1 and 2 (Fig. 2:
strong anchoring, α0 = π/8, α1 = 3π/8), the same qualitative
features are observed in the numerics and the asymptotics. We
note in particular that the boundary layers that were predicted
in Sec. III B Case 2 for this choice of anchoring angles (α0 =
0, α1 = π/2) are evident in Fig. 4(b), particularly at z = 1.
Numerical simulations (not shown) were also carried out for
cases directly comparable to the asymptotics of Sec. III B,
revealing good agreement with those results. As noted in that
section, however, the scaling chosen for the electric potential
assures that the dimensionless potential φ is always O(1) even
at small field, exaggerating the difference between the uniform
and nonuniform field cases. When we calculate the deviations
in the electric potential (Figs. 7 and 9 later) we therefore plot
both the dimensionless and the dimensional deviations.

Since a typical LCD device operates in the regime
F = O(1) and ϒ ≈ 10, we take a closer look at the numerical
results obtained with such parameter values. Given the
asymptotic results of Sec. III C, for strong anchoring we
expect the potential φ to be nonlinear, and the director solution
θ to deviate from the uniform field solution. Figure 5 compares
θ and φ for the uniform and nonuniform electric-field cases
with strong anchoring at both boundaries. Parameter values
here are chosen for direct comparison with the relevant
asymptotic result shown in Fig. 2 (strong anchoring, with
angles α0 = π/8, α1 = 3π/8). As anticipated, we now observe
a measurable difference between the director solutions for
uniform and nonuniform field cases, larger than in the previous
two cases. Similar results are obtained when comparing the
director solution and electric potential for weak anchoring
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FIG. 5. (Color online) Comparison of the director field and elec-
tric potential with uniform and nonuniform field models at O(1)
field with strong anchoring:F = 1.0, ϒ = 10.0,A0 = A1 = 1000.0,
α0 = π/8, α1 = 3π/8.

012503-6



ELECTRIC-FIELD VARIATIONS WITHIN A NEMATIC- . . . PHYSICAL REVIEW E 90, 012503 (2014)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

z

, 

FIG. 6. (Color online) Comparison of the director field and elec-
tric potential with uniform and nonuniform field models at O(1)
field with weak anchoring: F = 1.0, ϒ = 10.0, A0 = 5.0, A1 = 2.4,
α0 = 0, α1 = 3π/8.

strengths. Figure 6 shows sample results for anchoring angles
α0 = 0, α1 = π/2: again φ exhibits significant nonlinearity,
and θ deviates measurably from the uniform field case.

Our results demonstrate that the uniform and nonuniform
field cases may differ appreciably, which leads naturally to the
following questions: (i) How large can the deviations between
uniform and nonuniform field solutions be? (ii) Under what
conditions can the uniform field assumption be considered
reasonable? To begin to answer these questions, we measure
the deviation between the potential φ (nonuniform electric-
field model) and φunif = z (uniform electric-field model) as
the electric-field strength parameter F varies. The deviation
is calculated as a numerical approximation to the L2 norm as
follows:

�φ =
√√√√ N∑

i=1

(
(φi − zi)2

N

)
,

where N is the number of points used in our numerical
calculations; {zi}Ni=1 is the set of computational grid points,
and φi is the approximation to the (nonuniform field) electric
potential at the ith gridpoint. We also plot the analogous
dimensional form of the deviation in the electric potential
�φ∗ as well as the (dimensionless) deviations �θ between the
uniform and nonuniform field solutions for the director angle θ ,
calculated similarly. Since both φ and θ for the uniform field
model (with the chosen anchoring conditions α0 = 0, α1 =
π/2) have order-one averages ( 1

2 and π/4, respectively), we
do not normalize the dimensionless deviations �φ, �θ further.

Figures 7 and 8 illustrate the behavior of �φ (�φ∗) and
�θ as F (P ∗) varies for strong anchoring, with ϒ = 10. This
strong anchoring case is relatively straightforward: we discuss
first the deviations in the electric potential. As anticipated from
the asymptotics of Sec. III B, deviations in the dimensionless
potential φ are appreciable at small to moderate fields and,
broadly speaking, decrease at larger field strengths [see

P*  [V]

* [V]

(a)

(b)

FIG. 7. (a) Deviation of the dimensionless electric potential φ

from the uniform field case as F varies: ϒ = 10.0, A0 = A1 =
1000.0 (strong anchoring). (b) Deviation of the dimensional electric
potential φ∗ from uniform as the applied voltage P ∗ varies. The ranges
of the two plots coincide. Further details are given in the text.

Fig. 7(a)]. For yet larger positive values of F (not shown),
�φ decreases slowly towards zero in line with the results of
Sec. III A. The large deviations in φ at small fields may be
understood in the light of the asymptotics of Sec. III B, Case
2, which demonstrates that �φ is expected to be large for a
large value of ϒ when F is small. The plot of �φ∗ versus P ∗
[Fig. 7(b)] demonstrates that the blowup of �φ at F = 0 is
an artifact of the scaling φ∗ = P ∗φ that was employed in the
nondimensionalization. This lower plot gives the absolute error
in the uniform field approximation as a function of applied
potential P ∗, while the upper (dimensionless) plot may be
interpreted as a measure of relative error (the error in the
uniform field approximation relative to the applied potential).

Interestingly (although of course it does not make sense to
plot the deviation in the solution for zero applied potential
P ∗ = 0), we see that the absolute error in the uniform
field approximation remains significant as P ∗ → 0 (nonzero
absolute error; large relative error). Figure 7(b) indicates that
in fact �φ∗ approaches the same nonzero value as P ∗ → 0
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FIG. 8. (Color online) Deviation of the director angle θ (solid
line) and total free energy J (dashed line) as F varies: ϒ = 10.0,
A0 = A1 = 1000.0 (strong anchoring).

from either side (the circle at P ∗ = 0 indicates that the plot
is undefined at that point). As |P ∗| increases, for negative
values of P ∗ the absolute error �φ∗ decreases quickly and the
relative error decreases faster still; for positive values of P ∗,
the absolute error �φ∗ is increasing, but ultimately the increase
is sublinear, indicating the eventual decay of the relative error
in the uniform field approximation.

Deviations in θ , as calculated for the uniform and nonuni-
form field models with strong anchoring, at first increase
with F but then reach a maximum size, following which
they decrease (see Fig. 8, solid curve). The deviations remain
reasonably small for all F values considered. We note that
the differences �φ, �φ∗, and �θ never vanish in the strong
anchoring case. Figure 8 also shows the dimensionless free
energy of the nonuniform field solution [as defined by Eq. (9)],
alongside the deviations in θ : the free energy exhibits fairly
straightforward behavior, appearing rather flat for a range of
F values, but then increasing monotonically as |F | becomes
large. This is a consequence of the strong anchoring: the chosen
director angles α0 = 0, α1 = π/2 are rigidly enforced at the
boundaries z = 0,1, while the applied field acts to align the
field along θ = 0. This means that large distortions in θ are
generated near z = 1 as F increases; these distortions are
responsible for the increase in free energy.

Figures 9 and 10 present the results for the weak anchoring
case. Focusing first on Fig. 9 we note that the behavior at
small F is not significantly different in a qualitative sense to
that observed in Fig. 7 for strong anchoring, with blowup in
�φ while the absolute deviation �φ∗ remains bounded. The
size of the absolute deviation �φ∗ at small F is smaller with
weak anchoring than with strong anchoring. This is because the
electric field has a stronger effect (relative to the anchoring)
near the boundaries in the weak anchoring case, so that the
director will be more closely aligned with the field over the
whole thickness of the layer, leading to smaller (although still
nonzero) deviations from the uniform field. For F � O(1)
the behavior is more complex. While for negative values of
F the deviations �φ, �φ∗ are always nonzero (at least for
the values of F , P ∗ considered), for positive F (P ∗) there

P*  [V]

* [V]

(a)

(b)

FIG. 9. (a) Deviation of the electric potential φ from the uniform
field case as F varies: ϒ = 10.0, A0 = 5.0, and A1 = 2.4 (weak
anchoring). (b) Deviation of the dimensional electric potential φ∗

from uniform as the applied voltage P ∗ varies. The ranges of the two
plots coincide. Further details are given in the text.

is a well-defined threshold value Fc ≈ 1.45 (P ∗
c ≈ 0.29 V)

at which �φ (�φ∗) drops abruptly to zero (see Fig. 9).
This is strongly suggestive of a bifurcation in the solution.
Returning to the full dimensionless model [Eqs. (11)–(16)],
we observe that for this particular choice of anchoring angles
α0 = 0, α1 = π/2, there is an exact “vertical” solution to the
nonuniform field model: φ = z (φ∗ = P ∗z∗/h∗), θ = 0, in
which both director and electric field are oriented exactly
along the z axis. This is actually a “uniform field” solution
to the “nonuniform field” model: To emphasize that we view
it as a solution to the full nonuniform field model, we shall
refer to it as the “vertical solution.” At small positive F , and
for all negative F considered, this vertical solution is not the
free energy minimizer, but for F > Fc (P ∗ > P ∗

c ) it becomes
so. We demonstrate this by plotting in Fig. 10 the deviations
in director angle �θ alongside the free energy [Eq. (9)] of
the solution to the nonuniform field model. The free energy
of the nonuniform field solution is initially smaller than that
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FIG. 10. (Color online) Deviation of the director θ (solid line)
and total free energy J (dashed line) asF varies: ϒ = 10.0,A0 = 5.0,
and A1 = 2.4 (weak anchoring).

of the vertical solution, but it increases monotonically with
F > 0. For F < Fc, the nonuniform field is the lowest energy
solution, but at F = Fc the nonuniform field solution’s free
energy becomes equal to the free energy of the vertical solution
φ = z, θ = 0, and for F > Fc exceeds it. At this value of F ,
therefore, there is a bifurcation to the vertical solution (which,
we emphasize, is an exact solution to the full nonuniform field
model). The vertical solution, which has constant free energy
independent of F , then persists for all F > Fc.

Interestingly, the simpler uniform field model also permits
two solutions in this weak anchoring case (one purely vertical,
one not), and the bifurcation from the nonvertical to the vertical
state appears to occur at almost exactly the same value Fc.
This observation (which we tested independently) is borne out
by the transition in free energy of the two solutions taking
place simultaneously with �φ and �θ dropping to zero (see
Figs. 9 and 10). Both �φ and �θ being zero means that
the solutions to uniform and nonuniform field models are
identical, both being in the vertical configuration. ForF < Fc,

neither model is in the vertical state: both are in distinct
nonvertical configurations. We conclude that both uniform and
nonuniform field models exhibit the transition to the vertical
state at the same valueF = Fc. The significance of this finding
will be considered in our future work.

IV. DISCUSSION AND CONCLUSIONS

We have used a steady state free energy minimization to
derive a coupled system of equations for the director field
and the electric potential within a confined layer of nematic
liquid crystal. Our model describes the simplest possible case
in which the layer is bounded by infinite parallel plates (the
electrodes), and its properties vary only in the z direction,
perpendicular to the plates. Our results reveal that, while the
commonly used uniform field approximation (linear electric
potential φ = z) is fairly good in many situations of interest,
there are parameter regimes in which φ can be visibly
nonlinear. These deviations from the linear approximation
were quantified in Figs. 7 and 9 for specific choices of
parameter sets. A case for particular caution, given its likely
physical relevance, is when the material parameter ϒ defined
in Eq. (7) is large, while the applied field [as characterized by
the dimensionless parameter F , see again Eq. (7)], is O(1). In
this case, we find that deviations of the electric field from the
uniform case can be significant, as evidenced by Figs. 2, 4, 5,
and 6. Figure 8 reveals that deviations in the director field
θ (as predicted by the two models) can also be reasonably
large in some regimes of interest, for example, when F ≈ 10.
However, for order-one values of F , Figs. 7 and 8 show
that large deviations in φ can exist alongside acceptably
small deviations �θ . Since the director orientation is often
the key information desired in applications, this observation
suggests that the uniform field approximation may in fact yield
acceptable results even in situations when the field may be
quite far from uniform.
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