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Energy dissipation in sheared dry and wet granulates is considered in the presence of an externally applied
confining pressure. Discrete element simulations reveal that for sufficiently small confining pressures, the energy
dissipation is dominated by the effects related to the presence of cohesive forces between the particles. The
residual resistance against shear can be quantitatively explained by a combination of two effects arising in a wet
granulate: (i) enhanced friction at particle contacts in the presence of attractive capillary forces and (ii) energy
dissipation due to the rupture and reformation of liquid bridges. Coulomb friction at grain contacts gives rise to
an energy dissipation which grows linearly with increasing confining pressure for both dry and wet granulates.
Because of a lower Coulomb friction coefficient in the case of wet grains, as the confining pressure increases the
energy dissipation for dry systems is faster than for wet ones.
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I. INTRODUCTION

The mechanics of wet granulates plays a prominent role in
various fields of process engineering, including the production
of pharmaceutics [1-4], wet granulation of powders [5-7],
sintering [8], and food production [9]. Owing to this out-
standing importance, a large number of experimental studies
and physical models have been devoted to the mechanics
of wet granular matter, e.g., Refs. [10-18]. The transport
of stresses in a dry granulate is governed by an interplay
between frictional and repulsive forces acting between the
constituting grains. Dry granulates easily flow under external
forces such as gravity and hardly resist to shear. However,
a confining stress applied to the grains at the surface of the
assembly can reversibly turn a dry granulate into a solidlike
material [19]. Hence externally applied confining stresses
alter the mechanics of a granular assembly. A change of the
mechanical properties also occurs when dry grains are mixed
with a small amount of a wetting liquid. Granular assembly
then turns into a plastically deformable material, which can
sustain finite tensile and shear stresses [20].

In this paper, we explore the rheology of dry and wet
granulates in the presence of an externally applied confining
stress. To quantify the resistance to shear as a function of the
confining stress, we determine the energy dissipated in an as-
sembly of particles over a stationary shear cycle. We perform
simulations using discrete element method (DEM) applied to
dense granular packs with shearing protocol inspired by recent
experiments of the three-dimensional (3D) packs of wet and
dry glass beads [11,21]. Figure 1 shows a typical snapshot
obtained using 3D tomography.
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From the simulations, we extract the information about
the source of energy dissipation due to direct particle-particle
interaction (friction, inelastic interactions) as well as due to
breaking and reformation of capillary bridges. The analysis of
various contributions to the total energy dissipation provides
an insight into the differences between dry and wet granular
sheared packs and the main sources of energy loss. The
main finding resulting from our simulations is that, for small
applied pressures, the energy dissipated during the process of
breakage and reformation of the capillary bridges is a main
source of energy dissipation, dominating both the dissipation
due to direct particle-particle interaction and the dissipation
arising in the presence of capillary cohesion. However, for
large applied pressure, friction dominates the particle-particle
interaction for both wet and dry granulates. Accordingly, the
work to shear a dry granulate becomes larger than that to shear
a wet one for sufficiently large confining pressure.

This paper is organized as follows. In Sec. I we describe
the setup of DEM and discuss various energy loss mechanisms
for wet and dry systems. In Sec. III we focus on energy dissi-
pation mechanisms, discussing in particular the contributions
due to nonaffine motion of the particles and internal cohesion.
We summarize the results in Sec. IV.

II. METHODS

A. Computational model

Discrete element simulations of two-dimensional packs of
circular particles that are subject to shear deformations were
carried out with a setup close to the experiments described in
Ref. [11]. The aim of this study is to reveal the fundamental
mechanisms that control the dissipation in sheared assemblies
of wet and dry particles. Details of the simulation techniques
for dry granular matter could be found in, e.g., Ref. [23]
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FIG. 1. Two-dimensional slice through a 3D x-ray tomography
of a sheared wet glass bead assembly [22], see also Refs. [11,21].
The gray level indicates the different phases (white: aqueous Znl,
solution; gray: glass beads; black air).

and Appendix A. For later convenience we express all the
quantities used in simulations in terms of the following scales:
average particle diameter, d, as the length scale; average
particle mass, m, as mass scale; and the binary particle col-
lision time, 7. = mw+/d/2gk,, as the time scale. The parameter
k, corresponds to the normal spring constant between two
colliding particles and g is the acceleration of gravity. The
parameters entering the force model can be connected to phys-
ical properties (Young modulus, Poisson ratio) as described,
e.g., in Ref. [24]. The interparticle friction coefficient for dry
and wet assemblies iS gy = 0.29 and fiyer = 0.25, respec-
tively, to capture different friction properties of the granular
material when a small amount of liquid is added between
particles [11]. Furthermore, we use k, = 4 x 103, and the
coefficient of restitution, as a measure of the inelasticity of
collisions, is e = 0.5.

The motivation for choosing the value of k,, that is smaller
than appropriate for the glass beads used in the experi-
ments [11] is the computational complexity: The simulations
need to be carried out for long times in physical units, increas-
ing computational cost; the use of softer particles allows for
the use of larger computational time steps. To confirm that
only quantitative features of the results are influenced by this
choice, we have carried out limited simulations with stiffer
particles, that led to similar results as the ones presented here.

In modeling capillary cohesion, we are motivated by the
experiments [22], see also Fig. 1, and employ the capillary
force model for 3D pendular bridges proposed by Willet
etal. [25]. We motivate the choice of the force model between
3D spheres by the effort to use the same type of cohesive
interaction between particles as the one expected in experi-
ments. Note that, according to Ref. [26], cohesive force in 2D
assumes a local maximum at a nonzero distance of the parti-
cles, in contrast to the 3D model. Furthermore, to simplify the
implementation, we use the approximate expression, Eq. (12)
in Refs. [21,25], given here in nondimensional form

_ mdo cos
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FIG. 2. Snapshot of a granular domain with the particles colored
according to the total normal force normalized by the average normal
force imposed on the particles. The arrows show the upward and
downward direction of the shear. For animation, see Ref. [27].

distance between the centers of the circular particles i, j.
The inverse value of the reduced diameter is 1/d = (1/d; +
1/d;)/2 and d;, d; are the particle diameters. To simplify the
computations we assume (only when computing d) that d; =
dj =1 for all i, j pairs, and therefore d = 1 (for generality
we keep d in the expressions that follow). The maximum
separation, S™, at which a capillary bridge breaks is given
by [25]:

e @
where V is the nondimensional capillary bridge volume.
During a collision we set S; ; = 0.0 [even when r; ; < (d; +
d;)/2] since the cohesive force has a constant value when
the particles are in contact (regardless of the amount of
compression resulting from collision) [21].

For the contact angle, 6, and the surface tension, o =
&5t2/m,weuse § = 12° and & = 72 mN/m motivated by the
parameters of the experiments in Ref. [11]. The mass is com-
puted from the density of a glass bead (p = 2.5 x 10> kg/m?)
of average diameter d.

All capillary bridges in expressions (1) and (2) are assumed
to have equal liquid volume V = 7.4 x 1073 d>. This value
corresponds to the average value in a 3D pack of monodis-
perse spherical beads with average diameter d with a liquid
content of W = 2.5% [21] with respect to the total volume.

A bridge forms after two particles touch and breaks when
the bridge length exceeds the maximum surface-to-surface
separation S™*. The energy dissipated during a full cycle of
formation and rupture is computed by integrating the bridge
force F, between S = 0 and S = S™ and can be expressed
in closed form as

dv d 1)
EM™ =4mo cosb | — |arctan| 58, | — + —
2¢ 2Ve = |Je

- arctan{%”, 3)

with numerical constants § = 1.05 and € = 8.8795. With the
present choice of parameters, we have the following numerical
values that we provide here for the future reference: EI'** ~
4.58 x 107 and $™* ~ 0.05.

V1/3 2‘/2/3
ot 1227).

B. Simulation protocol

The simulation protocol is set up in such a way that closely
follows the experimental one [11,21,22]. Figure 2 shows the
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example of a granular system during the shear. The simulation
domain is initially rectangular and of the size L., L, with
L, =47 and L, =17, both in units of d (the numerical
values are motivated by preliminary experiments [22]). The
walls are composed of monodisperse particles of size d and
mass m. The system particles are chosen randomly from a
uniform distribution with mean d and width 0.4d. Initially,
the particles are placed on a rectangular grid and initialized
with random velocities. Then the top and bottom walls are
moved inward by applying initial external pressure, Py, until
equilibrium is reached and the position of the top and bottom
wall stays fixed. At this point, we start shearing the system
by prescribing a parabolic wall shape evolving in time. The
maximum value of the shearing angle, «,,, defined as the
angle between the line connecting the endpoints of the left
and right walls and the center of the bottom wall (see Fig. 2),
is o, = 4°. The motion of the top or bottom wall is periodic
in time with period 7. At the beginning of a cycle, the
system is sheared from the flat state (@ = 0) in the positive
vertical direction. After reaching «,,, the shear continues in
the opposite (negative) direction, until o reaches the value
—a,, and the direction of the shear is reversed. The cycle is
complete when the system reaches o = 0. More precisely, the
motion of the top or bottom wall over time is given by

53]
y(t) = tan(ay)—-| 1 = — ) |v(@)+C, 4)
2 L,
where x is the position of the wall particle with respect to
the horizontal axis (assuming that x = 0 for the center of
the top or bottom wall) and v(¢) = y L,; the shear rate y =
10~*xw cos(2rnt/T)/(2Ly) = 107°. The constant C assumes
the appropriate value for the top and bottom wall particles.

We let the top wall slide up and down to readjust the
pressure until the system reaches a stationary shear cycle.
Then we fix the end points of both walls and continue shearing
until the pressure inside of the system (found from Cauchy
stress tensor), averaged over a shear cycle, reaches a constant
value. The animation is available as Supplemental Mate-
rial [27]. We note in passing that equilibration time (needed
for the averaged pressure to reach a constant value) is long, as
discussed further below. This fact increases the computational
cost substantially, since a typical simulation requires a large
number of time steps.

In the discussion that follows, we will use the average
value of the pressure on the top and bottom walls exerted
by the system particles, P, and P,, respectively, to define the
confining pressure, Py = (P + P2)/2.

C. Energies in sheared granular assembly

Here we discuss the energy balance during shear, consider-
ing in detail energy input, dissipation, and balance.

1. Energy input

During shear, the top and bottom walls have a prescribed
parabolic shape that changes over time, and left and right
boundaries are fixed. To compute the energy that is added to
the system by moving the walls, one has to integrate the force
over the boundary. There is no energy added to the system

through the (fixed) left and right walls and we only need
to find the energy entering through the collision of system
particles with the top and bottom walls. This energy is given
by

E, =Y F;-njds, (5)
J

where j sums over all collisions of the bottom and top wall
particles with any of the system particles. Here n; is the unit
vector normal to the boundary at the location of the wall
particle experiencing a collision, F; is the force on the wall
particle, and ds is the length element (here the wall particle
diameter).

For the direction normal to the boundary at the center of
the particle w;, we have n;-¢; =0 with ¢; being a unit
vector tangential to the boundary at w;. The slope of the curve
with the tangent vector £; is given by y|.—, = 2ax;, where
the value of a is obtained from y(¢) and x = x; in Eq. (4).
Thust; = (e, + 2ax;e,)/(1 + 4azsz,)1/2 and the unit normal
vector n; is given by

. (—2axje; +ey)

n;
/1 + 4a2xj2

Finally, from Egs. (5) and (6) we obtain the expression for the
total energy added to the system by the moving walls

(—2ax;e. +ey)
E,=)Y ———L=_" . Fds. (7)

; /14 4a2x12-

2. Calculations of the relevant energy contributions

(6)

Total energy stored in capillary bridge(s) between the par-
ticles 7, j can be found by integrating the force between them
over the separating distance S (smaller than the maximum
separating distance S™),

S
EV(S)= [ 1F.1dS. ®)
0

with the functional form of |F;;| given in Eq. (1) with the
closed form of the energy stored in a capillary bridge given in
Eq. (3). The total energy stored in all capillary bridges is

E.=) EN(S), 9)
ij
for all pairs of particles i, j that interact via capillary force.
Kinetic energy is computed as

_ T milvi
Ev=) =, (10)
i=1

where N is the total number of system particles and m;, |v;|
are the mass and velocity of the ith particle, respectively.
Elastic energy is computed as

2
knx; j

Ea=) —* (11)

ij

where 7, j runs over all pairs of overlapping particles, includ-
ing the system particle-wall particle interactions.
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3. Energy balance

Energy dissipated due to rupturing of capillary bridges
is equal to the capillary energy at the maximum separating
distance S™*. To find the total energy dissipated due to
breaking and reformation of the bridges, we sum over all
ruptured bridges,

Ep = Z Emax, (12)
ij

The indices i, j refer to all pairs of particles that experienced
bridge rupturing.

Total energy dissipated during a time step can be computed
from the energy balance equation described next. The energy
entering the system due to the moving walls has to be equal to
the sum of the changes in the elastic, kinetic, and capillary
energies, AE(t), AEy(t), and AE.(t); between two con-
secutive time steps, (f — Ar) and ¢; the energy dissipated by
breaking and reformation of capillary bridges Ey, () and the
energy dissipated due to friction and other nonlinear effects,
E;(t). The balance equation takes the form

Ey(t) = AEq(1) + AE (1) + AE(t) + Ei(1) + Epp(1).
(13)

From Eq. (13), we can compute the dissipated energy,
Egiss(t) = E; + Epp. For the dry systems we can use the same
equation to find Eg,—there is no cohesion in the system
and E., Ey, = 0 trivially. Note that we ignore the energy
dissipation due to viscous effects, as appropriate for the slow
shear rates considered [21,22].

III. RESULTS
A. Pressure evolution

Figure 3(a) shows the average pressure on the top and
bottom wall, P, for the wet systems with Py ~ 0.2. As
already mentioned in Sec. II, P evolves initially and finally
reaches a stable behavior after C,, &~ 20. Therefore the data
used to draw our conclusions presented in this section are
collected only after P, stabilizes. Note that the number of
cycles needed to achieve stable Pt behavior differs for each
value of Pj;; and we average the results over last 15 (stable)
cycles.

Careful inspection of Fig. 3(a) shows that pressure evo-
lution is not symmetric during a cycle, even when a stable
regime is reached: The peak in P that occurs when the
system is sheared up towards «,, is larger than the peak in Pt
when the system is sheared down towards —c,,. The origin
of this behavior can be traced back to the asymmetry in the
imposed shearing protocol (the system is sheared at first up
towards «,,); we have verified that shearing initially in the
opposite direction reverses the asymmetry. This asymmetry
is observed for all different P;,;; leading to the formation of a
hysteresis loop illustrated in Fig. 3(b), which shows P as a
function of the shearing angle, «, for the last two cycles.

B. Energy transfer

Equation (13) allows us to compute the energy dissipation
for both wet and dry particles. Figure 4 shows the total dissi-
pated energy, Eqiss = E; + Eyy, (recall that in the dry case Eyy,
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FIG. 3. (a) Evolution of the average confining pressure, P, over
the cycles (denoted by C,) and (b) Pt vs. « showing hysteresis for
the last two cycles for the wet system with the initial pressure Py ~
0.2.

is trivially zero), averaged over 15 stationary shear cycles, for
both wet and dry assemblies. We note that the simulations,
as implemented, are limited in the range of pressures that
can be considered. For P < 0.06 it is difficult to carry out
simulations since the particles may detach from the walls.
For pressures larger than Pe¢ Z 0.3, the overlap between the
particles becomes large, suggesting that a different interaction
model may be needed there.

Figure 4 shows that the energy dissipated by friction in-
creases with the confining pressure, P, in a manner which

0.003r

dry

———— cohesive . .

0 0.05 01 0.5 0.2 0.25 0.3

cf

FIG. 4. Dissipated energy during shear as a function of the
confining pressure for dry (black squares) and wet particles (red
circles). The results are averaged over 15 cycles. For the wet system,
Ediss = El + Ebbs see Eq (]3)
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FIG. 5. Energy dissipation from breaking and reformation of the
bridges and other nonlinear effects as a function of P.; averaged over
15 cycles for each P.

is consistent with linear behavior (although the scatter of data
is significant, particularly for the wet systems). The increase
of dissipated energy with P is steeper for dry granulate
compared to the wet one, as expected since the coefficient
of friction for dry particles is larger. Further simulations
that are beyond the scope of this work will be needed to
decrease the scatter of the data and confirm the ratio of the
slopes.

The trend of the results shown in Fig. 4 clearly suggests
that for the wet particles, the energy dissipated for P & 0,
has a nonzero value, while Egis & 0 for the dry case. For the
larger pressures we notice that the energy is dissipated at a
similar level for both types of considered systems.

C. Nonaffine motion

To investigate the nonzero energy loss at small confining
pressure in the wet systems we focus next on the energy dis-
sipation via breaking and reforming of the capillary bridges.
The amount of the energy dissipated by breaking bridges per
shear cycle can be computed directly from the number of
capillary bridges as a function of time.

Figure 5 shows the energy dissipated by breaking and
reforming of the capillary bridges, Eyy,, and by friction and
inelastic collisions, E;. We observe that there is a crossover
between the regime where the energy is dissipated mainly
by Ep, for small Ps and mostly from friction and inelastic
collisions, in Ej, for sufficiently large P.s. We note that the
energy dissipated in Eyp, is decreasing with the increasing
value of Pg. This finding can be rationalized as follows: For
larger P, particles have less space to move and therefore
there are fewer bridges that break. To support this explanation,
we consider affinity of particle motion.

During shear, the particles move not only in the manner
imposed by the moving walls but also relative to each other.
The relative motion of the particles, also referred to as the
nonaffine motion, is expected to play a role with regards to the
breaking and reformation of the capillary bridges and subse-
quently the energy dissipation tied to the capillary effects, Eyy,.
Therefore, with the particular goal of explaining the decrease
of Ep, with increasing P (see Fig. 5) we investigate the
nonaffine motion of the particles as a function of P, using
the approach described in Ref. [28], and outlined briefly here.

] 3.0x1077
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1.0x107 £
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FIG. 6. Ey, and D2, as a function of the shearing angle, o, for
(a) P =0.11 and (b) Ps = 0.28. The results are averaged over

15 cycles.

First, for every particle p, we find the affine deformation
matrix A,(t) at the time ¢ with the property

A,(t)r, (1) =r1,(t + 1), (14)

where r,(?) is the position of the particle p. The nonaffine
motion is defined as the minimum of the mean-squared dis-
placement

Drznin = min Z ”rn — Iy, — [Anrn - Aprp]”2 s (15)
n=I1

where m is the number of particles within the distance of
2.5dyy. from the particle p and r,(¢) is the position of the nth
particle within this distance.

Figure 6 shows the energy loss from the broken bridges,
Epp, as well as the measure of nonaffine motion, D2. , aver-
aged over 15 cycles, as a function of the shearing angle, «.
We average the results over nine equal-size segments between
—a,, and «,,; we choose this number of segments to be able
to show trends while still having reasonable statistics. The
results are shown for one small and for one large confining
pressure, Py = 0.11 and Py = 0.28, respectively. We see a
clear correlation between Ey, and D2, ; similar correlation is
seen for other values of P. For Py = 0.11, the magnitude
of Dfmn is much higher than for Py = 0.28; the particles
have more freedom to move in a nonaffine manner for small
confining pressures. Furthermore, the value of D2, is largest
for o &~ 0, when the shearing speed assumes its maximum.

Figure 7 summarizes the nonaffine results. Here we plot
nonaffine motion as a function of P, averaged over time

and over 15 cycles. We denote the nonaffine motion shown
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FIG. 7. Nonaffine motion, D’

s 1N the wet systems averaged
over 15 cycles for each Py.

in this figure by D/ since the data shown are computed over

larger time intervals in order to reduce the computational cost
and thus the magnitude of the nonaffine motion is larger that
the one shown in Fig. 6. Most importantly, Fig. 7 shows that
the overall decreasing trend of the total nonaffine with P is
obvious. As a side note, we comment that we have verified
that a modest increase in particle stiffness does not influence
the trend of the nonaffine motion with changing pressure.

The above findings show that the degree of nonaffine
motion is directly related to the breaking and reforming of the
bridges and reversely to the confining pressure, P.. There-
fore, a decrease of the nonaffine motion explains the decrease
of Ey, with increasing Py.

We note that we have also computed nonaffine motion for
the frictionless and elastic particles. The results (figure not
included for brevity) show a significantly larger degree of
nonaffinity for both considered systems, compared to the fric-
tional, inelastic one considered so far. This is expected due to
reduced energy loss in elastic and/or frictionless systems.

D. Internal cohesion

Another manner in which cohesion can influence energy
dissipation is internal cohesion: Capillary bridges pull par-
ticles together, leading to an enhanced friction at the con-
tacts [11,29] as well as damping due to inelasticity (see
Appendix A) that may influence the energy dissipation
through changing E; in Eq. (13). To compute this effect,
we proceed as follows: In equilibrium, the capillary force
between the particles leads to a compressive force and an
overall elastic energy Eq ~ 107°. Then, we carry out sim-
ulations with dry systems and find that this value of elastic
energy corresponds to P =~ 0.07. This value of P leads
to E; ~ 5 x 107, see Fig. 5, being less than a third of the
energy dissipated by breaking and reformation of capillary
bridges, Eyy. Therefore, the results of our simulations suggest
that the breakup of capillary bridges, and not the friction or
the inelasticity of collisions, is the main source of energy
dissipation in weakly compressed systems and causes nonzero
values of Egs as Py — 0.

We note that linear extrapolation of the data shown in
Fig. 5 to Py < 0.06 suggests even smaller values of Ej;

however, since simulations cannot be reliably carried out for
such smaller values, we conservatively choose the value of
5 x 107* as the upper bound for E; for P, &~ 0. The main
point, that only a small part of energy is lost due to friction
and inelasticity for small confining pressures, is clear from
the overall trend of the data.

IV. CONCLUSION

In this paper, we discussed the origin of energy dissipa-
tion in sheared wet and dry granular systems in numerical
simulations following a similar setup as in recent experi-
ments [11,21] in the regime characterized by the presence of
individual capillary bridges. For small confining pressure, wet
systems are stiffer than dry ones due to the cohesion by virtue
of capillary bridges formed between neighboring particles,
which increase the energy dissipation in two ways. For the
material parameters used in the simulations, about two thirds
of the dissipated energy was found to result from breaking
of the capillary bridges which were elongated above their
maximum length. The remaining one third is caused by the
cohesion which increases the contact forces between particles
and thus causes friction even in an unconfined wet granulate.
An increase of applied confining pressure is found to have
two consequences. First, the simulations show that energy
dissipation due to breakup of capillary bridges becomes less
relevant due to a decrease of the nonaffine particle motion.
Second, the energy dissipation for both dry and wet granulates
increases linearly with externally applied confining pressure
due to increased particle-particle friction. Thus for sufficiently
large confining pressure energy dissipation is always domi-
nated by friction between grains. We expect that the exact
proportions describing relevance of various energy loss mech-
anisms may depend on the material parameters of the granular
particles, and possibly on the system geometry (two versus
three physical dimensions); however, the main conclusion is
general: For sufficiently small pressures, the dominant part of
the energy loss is due to the effects related to cohesion and in
particular due to breakups of capillary bridges.
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APPENDIX: DETAILS OF SIMULATION TECHNIQUES

The particles in the considered numerical system are mod-
eled as 2D soft frictional inelastic circular particles that
interact via normal and tangential forces, specified here in
nondimensional form, using d, m, 7. asthe length, mass, and
time scale introduced in the main text of the paper.
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Dimensionless normal force between the ith and jth parti-
cles is
sz = k,,x,-,.,-n - nnﬁvﬁj s (Al)
where vﬁ i is the relative normal velocity, 7 is reduced mass,
and x; ; = dae — 7;; is the amount of compression, with
dave = (d; +d;)/2 and d;, d; diameters of the particles i and
Jj- The distance of the centers of the ith and jth particles is
denoted as r; ;. Parameter 7, is the damping coefficient in the
normal direction, related to the coefficient of restitution e.
We implement the Cundall-Strack model for static friction
[30]. The tangential spring & is introduced between particles
for each new contact that forms at time 7 = T and is used to
determine the tangential force during the contact of particles.

Due to the relative motion of particles, the spring length &

T )
evolves as & = [, v ;(t)dt with v} ; =v;; — v} and v,

i
being the relative velocity of particles i, j. The tangential
direction is defined as ¢ = vj ;/|v} ;|. The direction of &
evolves over time and we thus correct the tangential spring

as & = & — n(n.§). The tangential force is set to
F' = min(u|F"|, |F™|)F"™ /|F"™|, (A2)

with
F"* = —k§ — nmv; ;. (A3)

Viscous damping in the tangential direction is included in the
model via the damping coefficient n, = n,.
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