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On intermittency in sheared granular systems†

Miroslav Kramár, a Chao Cheng, b Rituparna Basakb and Lou Kondic *b

We consider a system of granular particles, modeled by two dimensional frictional soft elastic disks, that

is exposed to externally applied time-dependent shear stress in a planar Couette geometry. We

concentrate on the external forcing that produces intermittent dynamics of stick-slip type. In this

regime, the top wall remains almost at rest until the applied stress becomes sufficiently large, and then it

slips. We focus on the evolution of the system as it approaches a slip event. Our main finding is that

there are two distinct groups of measures describing system behavior before a slip event. The first group

consists of global measures defined as system-wide averages at a fixed time. Typical examples of

measures in this group are averages of the normal or tangent forces acting between the particles,

system size and number of contacts between the particles. These measures do not seem to be sensitive

to an approaching slip event. On average, they tend to increase linearly with the force pulling the spring.

The second group consists of the time-dependent measures that quantify the evolution of the system

on a micro (particle) or mesoscale. Measures in this group first quantify the temporal differences

between two states and only then aggregate them to a single number. For example, Wasserstein

distance quantitatively measures the changes of the force network as it evolves in time while the

number of broken contacts quantifies the evolution of the contact network. The behavior of the

measures in the second group changes dramatically before a slip event starts. They increase rapidly as a

slip event approaches, indicating a significant increase in fluctuations of the system before a slip event is

triggered.

1 Introduction

Avalanches are phenomena that are well known on geological
scales, with many familiar examples from earthquakes to snow
avalanches and landslides. The distribution of the times
between the avalanches and their sizes is statistically similar
to the distribution of abrupt events observed in many other
systems where the consequences are less spectacular but cru-
cial to understanding material responses that are of significant
technological importance. Relevant systems include dry and
wet granular systems, suspensions, colloids, foams, yield-stress
fluids, glass-forming materials, and several other soft matter
systems relevant to our everyday life. The response of these
systems to external driving is the subject of active research,
with a large body of research considering an intermittent
response where a system evolves via the stick-slip type of
dynamics, see ref. 1 for a review. Until recently, research

concerning the predictability of upcoming events (slip, or
avalanche) has been of a statistical nature.2,3 In recent years,
new approaches based on the information emerging from
simulations4,5 or experiments,6–13 in some cases coupled with
machine learning approaches,14–16 have been considered.
Despite progress, our ability to predict upcoming slips is still
limited. Thus, it is important to devise more precise predic-
tions, or at least to find out what type of information about the
considered system is needed to make such predictions feasible.

The intermittent type of dynamics of granular systems is often
explored because it provides a good testing ground for various
theoretical approaches, see ref. 17 for a recent review. In particular,
both experiments and simulations provide detailed information
about particles as well as their interactions. Experimentally, the
interactions between the particles have been extensively analyzed
by using methods based on photoelasticity.10,18–23 Complementary
information can be obtained for a wide variety of systems24–31 by
simulations based on discrete element methods. Therefore, a
significant amount of research has been carried out and here we
mention only a few examples. Various statistical measures of
intermittent dynamics have been considered in detail in
simulations,25–28,32 and experiments with particular focus on
quantifying intermittency were reported as well.33,34 The connec-
tions between different systems experiencing intermittency have
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been discussed extensively35–37 and significant progress has been
reached in understanding how a system yields, in particular based
on the shear transformation zone concept.2,38,39

One important question when considering intermittent
dynamics is the relation between micro (particle scale) and
macro (system size) behavior. The interactions between the
particles can be captured by a force network. Visual inspection
of these networks shows that local interactions between the
particles give rise to organized structures that form sponta-
neously on a mesoscale (with a typical length scale of ten or so
particle diameters). By now, it is widely accepted that the force
networks play an important role in determining the system-
wide response. However, it is still not clear how to extract
relevant information about the intermittent dynamics from the
properties of these networks, or some other particle-scale/
mesoscale properties of the system.

Our main goal is to identify measures that exhibit a clear
change in their trend as a system approaches a slip event, since
finding such measures is the first and necessary step towards
developing the ability to forecast slip events. To achieve this
goal, we consider a simple system in two dimensional (2D)
planar Couette geometry, with the top boundary pulled by a
harmonic spring, see Fig. 1. We investigate a wide variety
of measures that quantify various properties of inter-particle
contacts, forces (force networks), and particles’ dynamics. Some
of the measures are classical while others, based on persistent
homology (PH), have been implemented recently.40–45 We will
show that global measures, obtained by averaging any of the
considered quantities over the whole system, do not change their
behavior as the system approaches a slip event. On the contrary,
the measures quantifying the micro and mesoscopic evolution of
the system on a short time scale start increasing nonlinearly well
before the onset of the slip. Thus, these measures show

significant potential for predicting an upcoming slip event.
Our interpretation of this finding is that local time-dependent
measures capture increasing fluctuations on micro and meso-
scopic scales that lead to a slip event. The reported results are for
2D systems. This choice reduces the computational cost as well
as difficulties associated with a large amount of data. This being
said, we note that the considered methods and measures easily
extend to 3D.

The rest of this manuscript is structured as follows. Section
2 focuses on the description of simulation techniques. In
Section 3 we define the measures that we consider in this
paper. Section 4 provides the main results, motivated by con-
sideration of a single slip event that is discussed in Section 4.1.
In Section 4.2 we start by providing an overview of the statistical
analysis that we carry out, applied to the global measures in
Section 4.2.1, and then to the local ones in Section 4.2.2.
Section 5 is devoted to the summary and discussion of future
directions. Animation of DEM simulation as we together with
some of the considered measures are presented in ESI.†

2 Simulations

In this section, we provide a short overview of the considered
simulations. We also explain how we store the relevant infor-
mation about the system for the subsequent analysis. Since the
simulation techniques are identical to the methods described
in ref. 46 we limit ourselves to a summary and refer the reader
to earlier work47 for the description of experiments carried out
with photoelastic particles that provided the needed material
parameters. In our simulations, we model granular particles as
2D soft frictional disks, and place N = 2500 disks (system
particles) between two horizontal rough walls (made up of wall
particles) placed parallel to the horizontal x axis, see Fig. 1. The
system particles are bi-disperse, with 25% of large particles and
75% of small particles, and the diameter of a large particle is
25% larger than that of a small particle. The top wall is made of
small particles spaced slightly apart from each other. This
spacing and increased friction of the wall particles (as discussed
in what follows), reduces substantially the slip of the system
particles along the wall. The bottom wall is also made of small
particles. Since there is no observable slip of the system particles
next to this wall, we leave the wall particles at a distance equal to
the particle diameter. The bottom wall is kept fixed, while the
top one is pulled by a harmonic spring moving with the velocity
vs in the +x direction. The left-right boundary conditions are
periodic; we have carried out limited simulations with wider (in
the x direction) domain to confirm that the width of the domain
does not influence the results. The influence of the domain
height (in the y direction) is briefly mentioned in Section 4.

We use the linear spring-dashpot model to describe the
interactions between the system particles and between system
and wall particles. In what follows, we use the diameter of small
particles, d, as the length scale, their mass, m, as the mass
scale, and the binary collision time, tc, as the time scale.
Motivated by experiments with photoelastic particles,47 we

Fig. 1 Snapshot of the considered system. The system particles are
colored by their total current force magnitude while the wall particles
are shown in blue. The top wall is exposed to a linear force, in the
+x direction, by a spring and (constant) pressure force is applied in the
�y direction. The bottom wall is fixed.
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use d = 1.27 cm, m = 1.32 g, and tc = 1.25 � 10�3 s, as
appropriate for particles of Young modulus of Y E 0.7 MPa.
For such value of tc, the normal spring constant is kn = mp2/2tc

2 E
4.17 N m�1, and the tangential spring constant (needed for
modeling of tangential forces using the Cundall–Strack model48)
is kt = 6kn/7, which is close to the value used previously.49 The
coefficient of static friction, m, is equal to 0.7 for particle–particle
contacts and m = 2 for particle–wall contacts. We choose the larger
value for the latter to further reduce slipping of particles
adjacent to the walls, as discussed above. The force constant
of the spring applied to the top wall, ks, is significantly smaller
than the one describing particle interactions, ks = kn/400. The
(constant) restitution coefficient is 0.5. In addition, a normal
compression force is applied in the �y direction to model an
externally applied pressure (force/length in 2D) of p = 0.02;
gravitational effects are not included. We note that with our
choice of units, the numerical value of the applied pressure is
of the same order of magnitude as the average overlap (com-
pression) of the particles.

It is well known that a sufficiently large p and sufficiently
small spring speed, vs, are needed for the system to enter a
stick-slip regime.25 We found by experimenting that for p = 0.02
the value vs = 1.5 � 10�3 is appropriate to induce stick-slip
dynamics. We integrate Newtons equations of motion for both
the translational and rotational degrees of freedom using a
fourth-order predictor-corrector method with time step dt =
0.02. The states of the system, used to compute the quantities
presented in this paper, are stored every 10 time steps, so tc/5
apart. All the results are presented using tc as the time scale.

The simulation protocol starts by applying a pressure p to
the top wall and then letting the system relax until the ratio of
kinetic/potential energy becomes sufficiently small. To ensure
that the particles have settled we require that this ratio drops
below 10�5. The results are not sensitive to small changes of
this value. After the particles are settled, we start moving the
spring in the +x direction. Initially, the wall remains almost
stationary. Due to bulk compression of granular particles, the
wall moves slightly in the direction of applied spring force, as
discussed later in the text. Once the spring force becomes
sufficiently large, the top wall starts to slip. Initially, the
particles’ rearrangements cause the y-position of the wall to
decrease gradually. To avoid this transient regime, we shear the
system for approximately 6 � 105 time steps to ensure that a
steady state is reached. It is the long-time average of the
y coordinate of the top wall becomes constant. After this
preparation stage, we start production runs. We discard addi-
tional 3 � 104 time steps to ensure once again that the system is
in steady state, and then start collecting data. Fig. 2(a–c) shows a
short time window of the wall positions in the x and y direction
as well as the speed of the wall in the shearing direction, x. Fig. 3
depicts the detailed behaviour during the first slip event, shown
in Fig. 2, to illustrate typical dynamics. We note in passing that
each slip is accompanied by a jump of the wall in the y direction,
see Fig. 2(b) and 3(b). To reach reasonable statistics, we carry out
simulations for a long time so that a large number (400–500) of
slip events occur. The total number of data points (extracted

every tc/5) is 3 � 105. We note that good temporal resolution of a
slip event shown in Fig. 3 suggests that this sampling rate is is
sufficiently large to allow for precise detection of slip events.

3 Definitions of relevant quantities

In this section, we present the measures that we use to analyze
the behavior of the system before the onset of a slip event.
We start by defining what we mean by the start and end of a slip
event in Section 3.1. In Section 3.2 we formalize the notion of
the force networks and differential force networks that we use
to study the evolution of the system. To quantify the structure of
these networks and their evolution we use persistent homology
(PH), which is a valuable tool of topological data analysis, see ref.
50 and 51 for a review, and ref. 44 and 52 for examples of
applications. We will briefly explain the important concepts

Fig. 2 Representative system evolution from the beginning of the
production runs, as described in the text. The time (horizontal) axis in this
and the following figures is given in units of tc. (a) x position of the top wall,
(b) y position of the top wall, and (c) top wall velocity, vx, in the shearing
direction. The red dots indicate the times at which our algorithm detects
the beginning of the slip events.

Fig. 3 Wall behavior around the first slip event depicted in Fig. 2. The red
line indicates the time t0, defined in Section 3.1, at which the slip starts and
the behavior of considered measures changes abruptly.
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behind PH in Section 3.3. Finally, in Section 3.4 we summarize
the quantities that we use to characterize contacts between the
particles.

3.1 Slip detection

To study the behavior of the system before the onset of a slip,
we need to properly determine when the wall starts sliding and
the system enters the slip regime. To make sure that we
precisely identify the times at which the wall starts moving,
while ignoring small oscillations of the wall velocity after a slip
event (see Fig. 3(b and c)), we use the following protocol that
consists of two parts. These two parts could be labeled as
‘rough’ and ‘fine’. The ‘rough’ part is based on the fact that
the top wall velocity, vx, tends to differ by several orders of
magnitude in the slip and stick phases. We choose a threshold
v�f ¼ 2� 10�3 which is an order of magnitude smaller than a
typical velocity during a slip event and at least an order of
magnitude larger than the average velocity during the stick
phase (which is nonzero in part due to bulk compression of
granular particles, caused by the spring force). The rough part
of the algorithm identifies the times at which vx crosses the
value v�f as the beginnings of individual slip events. To avoid
considering small oscillations following a slip event as separate
events, we require that all slip events are separated by more
than 30tc. In the second part, we fine-tune the starting times of
the slip events as follows. First, we compute the mean, %vx, and
standard deviation, svx, of vx for all times at which vx o v�f .
These values are used to define a new threshold vf = %vx + svx E
2.5 � 10�4. Finally, we adjust the times identified as the
beginning of slip events, in the ‘rough’ part of the algorithm,
by decreasing them until the value of vx drops below vf. We have
verified that the precise values of the thresholds have only a
minor influence on the results that follow Naturally, a much
smaller value of the ‘rough’ threshold would lead to detection
of large number of ‘microslip’ events (see, e.g. ref. 53) char-
acterized by small fluctuations in the wall position. In the
present work, we focus on large slip events only.

For the results that follow, the identification of the end of a
slip is not necessary. However, we provide a protocol that is
designed to avoid premature detection of a slip end due to
small oscillations following a slip. To achieve this we require
that the wall velocity vx at the end of the slip event, as well as its
average over the preceding 50 states, is smaller than v�f . The
chosen number of states roughly corresponds to the period of
small oscillations following a slip event.

3.2 Force networks and differential force networks

The available information about particle interactions can be
encoded by a force network. In this paper, we utilize a force
network defined by normal interparticle forces, however, force
networks defined by tangential (or total) forces could be
considered as well.

We start by defining a time dependent contact network,
CN(t), that describes which particles are in contact at a given
time t. This network is based on vertices Vc(t) = {vi}

N
i=1 that

correspond to the centers of system particles,{pi}
N
i=1 (we do not

consider wall particles). An edge hvi, vji belongs to CN(t) if the
particles pi and pj are in contact at time t.

The force network, FN(t), is defined by assigning weights to
the edges of CN(t), so that the weight of the edge hvi, vji is the
magnitude of the normal force acting between the particles pi

and pj. Fig. 4(a and b) show the force network at two different
times before a slip event, depicted in Fig. 3, occurs. The time
evolution of the force network is illustrated by the animations
in ESI.†

One possibility for encoding differences between the force
networks FN(t) and FN(t + tc/5) is to consider a differential force
network, DFN(t), that expresses how much the force network
changes between two considered time instances. Because the
force bearing contacts might be created or destroyed during
the time interval [t, t + tc/5], the edges of DFN(t) are given by the
union of the edges in CN(t) and CN(t + tc/5). The weights of the
edges in DFN(t), defined as the absolute value of the difference
of its weights in FN(t) and FN(t + tc/5), indicate the changes in
forces acting between the particles between time t and t + tc/5.
If an edge is not present in FN(t) or FN(t + tc/5), then its weight
in the corresponding force network is set to zero. Fig. 4(c and d)
show two differential force networks. The weights of the edges
in DFN(t) increase as the system approaches a slip event, see
also ESI† for animations. Fig. 4(c) shows a localized increase of
the weights of the DFN at E(�4, 0). A further research is
necessary to investigate the relation between such localized
changes and localized particles modes discussed in ref. 54 and

Fig. 4 Force and differential force networks for the slip event, shown in
Fig. 3. (a) Force network before the onset of a slip event at time t = t0 � 4
where t0 is the time at which the slip event starts. (b) Force network at the
onset of a slip event at t = t0, (c) Differential force network at t = t0� 4, and
(d) Differential force network at t = t0. Note that the changes of the
network (shown in (c and d)) are on the scale that is much smaller than a
typical force in the force network shown in (a and b). Thus, the networks in
(a and b) appear almost identical. Animations of the differential force
networks are available as ESI.†
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the references therein. Here we just point out that the localized
changes in DFN do not necessarily involve particle dynamics.

To study DFN(t) we compute the maximum force value, f*,
such that the edges of DFN(t) with weights larger than f*
percolate through the system. In what follows, we will consider
both left-right and top-bottom percolation, and call the corres-
ponding f* values fplr and fptb, respectively.

3.3 Measures derived using persistent homology

To identify complex structures exhibited by force networks we
use persistent homology (PH) which is one of the major tools of
topological data analysis. PH has been extensively used to
describe complex patterns in a variety of settings.52,55–57 There
is also a growing body of literature that uses PH to study granular
systems exposed to compression,40,43 vibrations,41,45,58 or
shear.59 In this section, we only provide a brief summary of PH
and introduce the measures used in this paper. Detailed
guidance for using PH to analyze force networks is available
elsewhere.44

Every weighted network in two spatial dimensions can be
represented by two persistence diagrams,PD s, that provide a
compact but informative description of the structure of this
network. Each diagram is a collection of points in a plane and
these points describe how the topology of sub-graphs containing
only the edges with weights exceeding some threshold T changes
as the value of T is decreased. The first persistence diagram,
PD0, encodes the structure of connected components that can be
related to so-called ‘force chains’. To be more precise, every point
(b, d) A PD0 corresponds to a connected component that appears
at the threshold T = b and merges with another connected
component for T = d. Hence, the lifespan of the point (b, d),
given by b � d, indicates the prominence of the connected
component corresponding to this point. Similarly, a point
(b, d) A PD1 indicates that a loop appears in the sub-graph
for T = b. Once a loop appears at T = b it is present in all the sub-
graph for all T o b. In this paper we follow the convention
introduced in ref. 44 and set d = 0 for every point in PD1. ESI†
include an animation of the force network and the corres-
ponding PD s for a selected slip event.

Information contained in PD s can be further compressed in
several ways. One possibility of compressing a PD to a single
number is to compute the sum of the lifespans of all the points
in the diagram. We call this quantity total persistence,TP0 or
TP1 depending on whether it is extracted from PD0 or PD1. In
previous studies TP was found to be a very useful quantity e.g., in
ref. 59 TP1 was correlated with the viscosity of a shared suspen-
sion, showing directly the connection between force network
properties and rheological properties of the considered system.

In addition to considering system-wide averages at individual
times (such as TP), we also use PH to quantify the time evolution
of the force network. The space of persistence diagrams is a
complete metric space for a variety of metrics.51 The main idea
behind defining a metric on this space is to match the points in
one diagram with the points in the other. This matching can be
done in different ways leading to different metrics. In this paper
we consider the matching that minimizes the sum (W2 distance)

of the squares of LN distances between the matched points. If
the W2 distance is computed between the PD0 (PD1) diagrams
corresponding to the force networks FN(t) and FN(t + tc/5), we
denote it by W2B0 (W2B1). For simplicity we suppress the time
argument on W2’s. The distance depends on the difference
between the times at which the compared PD’s are computed.
We have verified that during the stick phases this dependence is
approximately linear, confirming that the considered sampling
rate is large enough to resolve the temporal evolution of the force
network.60

3.4 Broken, mobile and nonmobile contacts

In this section, we define the measures that we use to study the
changes of the contact network CN(t) and the nature of the
contacts. If the contact between the particles pi and pj is present
at time t, but not at t + tc/5, we say that the contact is broken.
A simple measure to quantify the difference between CN(t) and
CN(t + tc/5) is given by the ratio, rbc(t), between the number of
broken contacts and the total number of contacts at time t.
If the contact between two particles disappears, then the force
previously acting between them vanishes and we refer to this
force as a broken force. The average broken force, fbc, is defined
as the sum of all broken forces divided by the number of
broken contacts.

Until now, we only discussed quantities based on the normal
component of the force acting between the particles. In Section
4 we also discuss two quantities that involve both the magnitude,
Ft, of the tangential component of the force and the magnitude,
Fn, of the normal component. One considered quantity is simply
the ratio, Ft/Fn, calculated separately for each contact and then
averaged over all contacts. The other related quantity is the ratio
of mobile to non-mobile contacts, RMN. A contact between two
particles is mobile if the ratio Ft/Fn is at the Coulomb threshold,
m. Note that within the implemented model Ft r mFn, so that
mobile contacts are the ones for which Ft/Fn reaches the largest
possible value. In our computations, a contact is considered
mobile if Ft/Fn 4 m � e, with e = 10�3. All other contacts are
called non-mobile. As a reminder, we do not consider particle–
wall contacts.

4 Results
4.1 Motivation: a single slip event

To motivate the following discussion, we first discuss a single
slip event that starts at time t0. We are interested in the
behavior before the start of this event. Thus, we present the
results in terms of Dt = t � t0.

Fig. 5(a–c) shows the velocity of the top wall, vx, W2B0, and
the ratio of the mobile and non-mobile contacts, RMN. Note
that due to our definition of t0 the wall is essentially at rest
for Dt o 0 (except the slow drift due to bulk compression
combined with small fluctuations). However, Fig. 5(b) shows
that W2B0, which measures changes in the structure of the
force network, increases significantly already around Dt = �4.
This indicates that the force network starts changing rapidly as
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the system approaches a slip event. The fact that the W2B0
detects this increased activity suggests its potential for predicting
slip events. On the contrary, RMN does not exhibit any clear trend.
This finding motivates a more careful statistical analysis of a large
number of slip events. Such analysis, presented in what follows,
demonstrates that the difference between W2B0 and RMN, shown
in Fig. 5, is not just a coincidence.

4.2 Statistical analysis

To study the behavior of the system over a large number of slip
events, we average the considered measures over different slips
as follows. For each event we record the individual measures for
the last 100 consecutive samples before its beginning, that is
for Dt A {�20, �19.8,. . .,0}. Then, we compute average of each
measure for fixed values of Dt.

Fig. 6 shows the mean of wall velocity, vx, and of its
acceleration, averaged over the complete set of 465 slip events.
Due to our definition of a slip, the wall os almost stationary
before the slip starts at Dt = 0 (small component of the wall
velocity before the slip is due to bulk compression as

mentioned earlier in the text).‡ However, there is a change in
the trend around Dt = �5. For Dt o �5 the mean vx fluctuates
while it increases steadily for Dt 4 �5, however this increase is
orders of magnitude smaller than the increase observed at the
beginning of the slip. Note that the mean roughly doubles in
the time interval [�5, �0.2], and then it almost doubles again
between two consecutive outputs as the slip starts.

We proceed by discussing two sets of different measures.
The first set consists of the measures that are obtained as
(global) system-wide averages of the considered properties of
the system at a given time. The second set of measures is
devised to assess micro and mesoscale changes that occur as
the system evolves in time. We will show that these two sets of
measures provide very different information about the system’s
behavior before a slip event.

4.2.1 Global measures. Fig. 7 shows our results for the set
of measures based on the system-wide averages. Averaging the
considered measures over a large number of events produces
reasonably smooth results, despite the large variability of these
quantities between individual slip events. For brevity, we do not
discuss this variability in more quantitative terms here. In the
rest of this paper, we only report the standard errors to indicate
how well the individual means are estimated.

Fig. 7(a) depicts the force pulling the top wall. This measure
is not strictly speaking a system-wide average but we show it
since the results are similar to other quantities presented in
this figure. The value that this force reaches, before individual
slips, varies considerably (see, e.g. ref. 25 and 61 for examples of
simulations in similar settings). This variability shows the
stochastic nature of stick-slip type dynamics. Nevertheless,
Fig. 7(a) indicates that, despite large variations, the mean of
the force pulling the top wall is well estimated and increases
linearly.

Fig. 7(b) shows that the mean of the y coordinate of the wall
position also increases with time, since the system expands as
the force applied by the spring increases. This effect is known
as Reynolds dilatancy (could be also interpreted in terms of the
Poisson ratio of the granular system considered)§ and is caused
by the systems response to an increased applied stress. Note
that the effect is very weak and the system only expands by a
small fraction of the particle diameter. Based on the present
data, it is difficult to confirm quadratic increase of the wall
position with applied shear stress discussed recently.62 We note
that this (weak) expansion of the system also leads to a small
decrease of another global measure, the contact number,
shown in Appendix, Fig. 10.

Fig. 7(c and d) show two related quantities defined in
Section 3. The ratio of tangential and normal forces, Ft/Fn,
and the ratio of mobile to nonmobile contacts (RMN). The
value of Ft/Fn increases linearly with the applied spring force.

Fig. 5 (a) Velocity of the top wall, vx, in the x direction for the slip event
shown in Fig. 3 and 4. The inset shows the behaviour before the beginning
of the slip. The small increase of vx before the slip is typical but other
features such as the local minimum around �4 are not generic. The value
Dt = 0 indicates the time at which the event starts. (b) W2B0, (c) ratio of
mobile to non-mobile contacts, RMN.

Fig. 6 The mean of the wall speed, vx, and acceleration, ax before slip
events, averaged over all slip events. The value Dt = 0 corresponds to the
beginning of the slip events, t0. In this and the following figures, the means
are calculated using the approach described at the beginning of Section
4.2, and the error bars show the standard errors.

‡ For further physical insight, note that for the present choice of parameters,
dimensionless speed of 1.0 � 10�4 correspond to the physical value of E1.0 �
10�5 m s�1.
§ The connection between these two interpretations formulates an interesting
question which we however do not discuss here in order to keep the discussion
focused.
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This is not surprising because, in a static system, one expects Ft

to counteract the applied force and thus the linear dependence
seems natural. While this argument is more appropriate in a
limit of a single layer of separate particles between the walls,
Fig. 7(c) shows that it holds, at least on average, for the system
considered here as well. The increase of RMN is a consequence
of the increase of tangential forces, ignoring for the moment
the fact that the normal force may change as well. It is worth
pointing out that these simple scaling results hold only on
average and the behavior of the individual quantities can be
very different for a single event, see Fig. 5. We also note that the
total normal force between the particles increases as slips are
approached, making the above argument only approximate.

The next two global, system-wide measures are derived from
persistence diagrams. Fig. 7(e) shows the total persistence for
connected components, TP0, which increases linearly. This is
not surprising since this measure is expected to scale with the
applied force. The behavior of TP1, shown in Fig. 7(f) is
different and deserves further attention. Recall that TP1 is the
sum of the lifespans of the points in the PD1. The birth
coordinate of a point in PD1 is given by the magnitude of the
weakest force in the loop corresponding to this point. Because
the death coordinate is always zero, the lifespan of the point is
equal to its birth coordinate. The oscillations of the forces on
the weakest links cause oscillations of TP1. It turns out that
oscillations of the forces on the weakest links are caused by
minor oscillations of the top wall, barely visible in Fig. 7(b).
These oscillations, in turn, are essentially damped aftershocks
following slip events. Additional simulations (not shown here
for brevity) of the systems for which the average distance
between the top and bottom wall is approximately twice as
large (carried out by doubling the number of particles) show
that the period of these oscillations scales with the system
height. This finding suggests that the oscillations are caused by
compression waves propagating through the system in the y
direction. We note that the components of the Cauchy stress
tensor show similar behavior as the measures discussed so far.
These components are shown in Fig. 11 in the Appendix.

To further show that the system-wide averages do not exhibit
any clear signs of the approaching slip, as well as to facilitate
comparison with the results presented in Section 4.2.2, we
consider their derivatives. Fig. 8, which depicts the derivatives
of the measures presented in Fig. 7, indicates that the derivatives
do not change dramatically, except for a couple of data points
right before a slip occurs. This behavior, very close to the
beginning of a slip event is due to relaxation of the forces caused
by the fact that the system starts slowly evolving and breaking up
contacts between the particles. However, this relaxation only
happens very close to the slip itself and is not particularly useful
as a slip precursor. Hence, we conclude that global measures do
not capture the behavior which could be useful for predicting an
imminent slip event. This motivates the need for measures that
assess the evolution of the system on the micro (particle) and
mesoscopic spatial scales.

4.2.2 Local measures. In Section 3 we defined measures
that are capable of quantifying the changes of the system on the
particle scale as well as on mesoscopic scales relevant to our
study of the evolution of the force network. We remind the
reader that to quantify these changes we first compare local and
mesoscopic differences between the consecutive samples and
only then aggregate them to a single number quantifying the
difference. As discussed previously in the context of W2 dis-
tances, the output rate in our simulations is sufficiently high so
that the main features of the results are rate-independent.

Fig. 9 shows the results, again averaged over all slip events.
Fig. 9(a and b) depict the W2B0 and W2B1 distances measuring
the differences between two consecutive persistence diagrams
PD0 (PD1) that capture the structure of the connected compo-
nents (loops) present in the force network. The measures,
shown in Fig. 9(c and d), also evaluate temporal changes in
the force network structure by utilizing the notion of the
differential force network.

The parts (e and f) focus on broken contacts: part (e) shows
the ratio of the number of broken contacts divided by the
number of all contacts, and (f) shows the average normal force
of these broken contacts. We note that the behavior of the
broken contacts is very different from the time evolution of the
number of contacts shown in Appendix, Fig. 10. This stems
from the fact that the number of contacts (static, global

Fig. 7 Global measures averaged over all slip events: (a) spring force, fs,
(b) y position of the top wall, (c) the ratio Ft/Fn, (d) the ratio of mobile to
non-mobile contacts, RMN, (e) TP0, (f) TP1.

Fig. 8 Derivatives of the global measures, shown in Fig. 7, are depicted
using the same colors. The inset zooms into the measures whose change
is hardly visible in the main plot.
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measure) is aggregated from a single state of the contact
network while the number of broken contacts is obtained by
comparing two consecutive states.

Finally, the parts (g and h) show the mean speed, %vp, of the
system particles, and its standard deviation, svp. These quantities

are calculated as �vp ¼
PN
i¼1

vi=N and svp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

vi � �vp
� �2.

N

s
,

where vi is the speed of the i-th particle. Note that the ratio of
kinetic to potential energy of the particles, see Fig. 12 in the
Appendix, shows similar generic behavior, although an increase
of that measure appears to be delayed, compared to, e.g., %vp.

Although there is no obvious direct connection between the
measures presented in Fig. 9, they all show similar behavior. In
particular, all of them start growing rapidly before the beginning
of a slip event. We recall that this behavior is similar to the
behavior of the wall velocity, vx, see Fig. 6. Therefore, the trend
exhibited by the dynamic local measures is completely different
from the one exhibited by the static global measures, Fig. 7, or
their derivatives, Fig. 8. We note that the considered dynamic

measures exhibit a slow decrease before the onset of the slip.
We expect that this decrease is a consequence of a slow relaxation
from the preceding slip event. However, further research is
necessary to analyze this decrease in more detail.

All measures shown in Fig. 9 quantify the time evolution of
the system on either particle scale or mesoscale. The fact that
these measures increase before the onset of a slip event
indicates that the evolution on both particle scale and mesos-
cale intensifies before the slip. However, this increased activity
is not detected by the global measures. This suggests that the
increased activity is limited to local fluctuations. We expect that
these fluctuations intensify until they eventually reach a critical
level and trigger the slip event, which leads to global rearrange-
ments. Notice that these fluctuations do not only affect the
force networks but also the movement of the particles, as
indicated by the increase of their velocities shown in Fig. 9(g
and h).

Before closing this section, we comment on the very differ-
ent behavior of the wall velocities in the x and y directions
(compare Fig. 6 and 8). This difference is caused by the
different nature of these two measures. The velocity vy depends
on the (global) pressure while the velocity vx depends on local
interactions between the wall and the particles.

Fig. 9 (a) W2B0 distance, (b) W2B1 distance, (c) the horizontal percolating
differential normal force, fplr, (d) the vertical percolating differential normal
force, fptb, (e) the ratio of broken contacts to total contacts, rbc, (f) the
average normal force of broken contacts, fbc, (g) the mean of system
particle speed, vp, (h) the standard deviation of system particle speed, svp.

Fig. 10 Number of contacts per particle f averaged over all slip events.

Fig. 11 Measures based on the Cauchy tensor averaged over all slip
events. (a) sxx, (b) modulus of sxy, (c) modulus of syx, (d) syy.

Fig. 12 Ratio of kinetic to potential energy averaged over all slip events.
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5 Conclusions

We consider a granular system exhibiting intermittent
dynamics known as the stick-slip regime. To detect the slip
events, we use a strict a posteriori method, based on the wall
movement. Even though the system is essentially static before
slip starts, we can identify measures that dramatically change
their behavior as a slip event is approached.

The measures that we consider in this paper fall into two
categories. The first category of global measures is obtained by
averaging over the whole system. Such measures include the
system size (wall position), contact number, or system-wide
measures of the normal and tangential forces between the
particles. We find that before a slip event these measures show
(on average) approximately linear behavior. There is no clear
change in their behavior almost until the slip starts. The second
category of the measures quantifies local and mesoscopic
changes of the system, computed based on information at
different time instances. Such measures include the Wasser-
stein distance measuring time evolution of the force network,
percolating properties of the differential force network, or the
number of broken contacts, among others. We find that the
measures in this category behave differently. Namely, they start
to increase in a nonlinear fashion well before a slip starts. The
local nature of these measures suggests that their behavior is
caused by spatial and temporal fluctuations in the system
which cannot be detected by the global measures.

We hypothesize that the intensity of the fluctuations in the
system increases until it overcomes the stabilizing effects of the
force network and triggers a slip event. Therefore, information
about the evolution of the system on micro and mesoscopic scales
seems to be vital for accurately predicting the occurrence of a slip.

We expect that the local measures, introduced in this paper,
could be used to predict an upcoming slip event. However, the
variations between different slip events suggest that more
advanced statistical methods involving either machine learning
or some complementary approach will be needed to achieve
this goal. The development of such methods will be the subject
of our future work.

Conflicts of interest

There are no conflicts to declare.

Appendix

We present some additional global and local measures that
show similar trends as the measures presented in the main
body of the paper. Fig. 10 shows the number of contacts C per
particle averaged over all the slip events. Note this this global
static measure slowly decreases with time in an almost linear
fashion. As the other global measures it only changes its
behavior very close to the beginning of the slip.

We also analysed global static measures based on the Cauchy

tensor. This tensor is defined as sij ¼
1

2A

P
ck;p

Firj þ Fjri
� �

, where A

is the area of the domain, ri,j are the Cartesian components of
the vector pointing from the center of particle p toward the
particle contact ck, and Fi,j are the corresponding inter-particle
force components. The sum goes over all inter-particle contacts
ck for all particles p, excluding the particle–wall contacts. Fig. 11
shows the components of the tensor, averaged over all the slip
events. We note that from the behavior of these components and
the strain results, such as those shown in Fig. 7(b), one could
extract additional information about material response to exter-
nal forcing (such as stiffness tensor). In the present context, we
just note that the behavior of the measures based on the
components of the Cauchy tensor shown in Fig. 11 is similar
to other global measures.

Finally, Fig. 12 shows the ratio of kinetic and potential
energy averaged over all slip events. The total kinetic energy

Ek ¼
PN
i¼1

mivi
2
�
2 where mi and vi is the mass and the velocity of

system particles and the sum is over all the system particles. We
measured total potential energy Ep ¼

P
Ci; j

knxCi; j
2
�
2 where xCi, j

is

the compression of two particles that are in contact excluding
particle–wall contacts. Note that the kinetic energy is obtained
by first computing the kinetic energies of the individual
particles based on their velocities which are local dynamic
quantities. Thus the ratio of Ek to Ep shows a similar behaviour
as the other measures shown in Fig. 9.
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47–65.

49 C. Goldenberg and I. Goldhirsch, Nature, 2005, 435, 188.
50 T. Kacynksi, K. Mischaikow and M. Mrozek, Computational

homology, Springer, 2004, vol. 3.
51 H. Edelsbrunner and J. L. Harer, Computational topology,

AMS, Providence, RI, 2010, pp. xii+241.
52 Y. Hiraoka, T. Nakamura, A. Hirata, E. G. Escolar, K. Matsue

and Y. Nishiura, Proc. Natl. Acad. Sci. U. S. A., 2016, 113,
7035–7040.

53 A. A. Long, D. V. Denisov, P. Schall, T. C. Hufnagel, X. Gu,
W. J. Wright and K. A. Dahmen, Granular Matter, 2019,
21, 99.

54 C. Maloney and A. Lematre, Phys. Rev. Lett., 2004,
93, 195501.

55 A. Hirata, L. J. Kang, T. Fujita, B. Klumov, K. Matsue,
M. Kotani, A. R. Yavari and M. W. Chen, Science, 2013,
341, 376–379.

56 M. Kramár, R. Levanger, J. Tithof, B. Suri, M. Xu, M. Paul,
M. F. Schatz and K. Mischaikow, Phys. D: Nonlinear Phenom-
ena, 2016, 334, 82–98.

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
0 

A
pr

il 
20

22
. D

ow
nl

oa
de

d 
by

 N
ew

 J
er

se
y 

In
st

itu
te

 o
f 

T
ec

hn
ol

og
y 

on
 9

/2
5/

20
23

 2
:2

2:
27

 P
M

. 
View Article Online

https://doi.org/10.1029/2008JB005781
https://doi.org/10.1039/d1sm01780b


This journal is © The Royal Society of Chemistry 2022 Soft Matter, 2022, 18, 3583–3593 |  3593

57 D. Taylor, F. Klimm, H. A. Harrington, M. Kramár,
K. Mischaikow, M. A. Porter and P. J. Mucha, Nat. Commun.,
2015, 6, 1–11.

58 S. Ardanza-Trevijano, I. Zuriguel, R. Arévalo and D. Maza, Phys.
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