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Substrate-induced gliding in a nematic liquid crystal layer
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We consider the interaction between nematic liquid crystals (NLCs) and polymer substrates. Such substrates
can interact with NLCs, exhibiting a phenomenon known as director gliding: the preferred orientation of the NLC
molecules at the interface changes on time scales that are slow relative to the elastic relaxation time scale of the
NLC. We present two models for gliding, inspired by experiments that investigate the interaction between the
NLC and a polymer substrate. These models, though simple, lead to nontrivial results, including loss of bistability
under gliding. Perhaps surprisingly, we find that externally imposed switching between the steady states of a
bistable system may reverse the effect of gliding, preventing loss of bistability if switching is sufficiently frequent.
Our findings may be of relevance to a variety of technological applications involving liquid crystal devices, and
particularly to a new generation of flexible liquid crystal displays that implement polymeric substrates.
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I. INTRODUCTION

The interaction between nematic liquid crystals (NLCs) and
substrates is of great importance due to the widespread use
of portable electronic devices that use liquid crystal displays
(LCDs) [1,2]. A typical LCD consists of pixels, within each
of which is a thin layer of NLCs placed between two plates
a few microns apart [3]. In such devices, the amount of
light passing through the layer depends on the orientation
of NLC molecules, represented mathematically by a unit
vector referred to as the director field. This orientation in
turn depends both on boundary effects at the plates (NLC
molecules have a preferred orientation at solid boundaries, a
phenomenon known as anchoring) and on external forces (due,
in conventional display devices, to an applied electric field).
Broadly speaking, the “field on” and “field off” states are
optically distinct, giving the basis for a controllable display [4].

Anchoring may be weak or strong, depending on the
strength of the interaction between the molecules of the NLC
and those of the alignment material at each substrate. For both
weak and strong anchoring, the substrate is characterized by
an “easy axis,” the axis along which the interaction energy
between the substrate and the liquid crystal is minimized.
In the case of strong anchoring, the “easy axis” is nearly
parallel to the director alignment at the bounding surface.
For weak anchoring, the director alignment may deviate
significantly from the easy axis, giving rise to a surface
torque, which is balanced by the internal elastic torque at
the liquid crystal interface [5,6]. At the interface between a
NLC and a polymeric substrate, a continuous realignment of
the easy axis may occur, typically on a characteristic time
scale that is much longer than that of the elastic response of
the NLC film. Such a phenomenon has been called director
gliding [6,7]: polymeric surfaces are particularly prone to
exhibiting this behavior. Director gliding at an interface arises
as a result of prolonged exposure to an external force due,
e.g., to an applied electric or magnetic field or to the bulk
elastic distortion induced by different anchoring conditions
(specifically different anchoring angles, although anchoring
strength may also differ) at the two bounding interfaces of a
NLC layer [8–11].

Studying how director gliding affects the behavior of
NLCs is also of relevance due to recent developments in
the LCD industry regarding the design of flexible devices,
where bounding surfaces are polymeric [1]. Such devices offer
significant advantages over glass-based devices (lightweight,
unbreakable, flexible) provided that surface effects, including
possible gliding, can be well-controlled. We note that, in
most liquid crystal display applications, the liquid crystal is
not exposed to the bare substrate surface; the substrates are
coated with an alignment material (usually mostly organic).
The anchoring (and thus the gliding, where it occurs) is really
a property of the alignment material, not of the substrate, and
it is prevalent in polymer-coated substrates. In the following,
however, we do not always make this distinction, and we will
refer simply to the anchoring properties of the substrate under
gliding. For a polymer-based display based on conventional
LCD technology, if anchoring conditions are the same at
both bounding surfaces, then the field-free state has very low
elastic energy (it should be more or less uniform) and should
induce no gliding. With the electric field applied, however,
surface molecules experience significant torque, and gliding
could occur if the field is sustained for times comparable
to the gliding time scale. (Gliding should not, however, be
an issue for such devices in only short-term or intermittent
use.)

Another situation in which gliding could be an issue
is in polymer-based devices that use bistable technology
[3,12–16]. In a bistable device, the NLC layer can sustain
two stable field-free director configurations that are optically
distinct in the absence of an applied field. In contrast to a
conventional LCD display, an electric field is applied across
the layer for the sole purpose of switching between the
two director configurations, reducing the power consumption
of the LCD device. Bistability exists regardless of whether
gliding is present, but such systems may be prone to gliding
with soft substrates. To achieve such bistability, the two
bounding surfaces must have different anchoring properties,
which means that each of the stable states is associated with
significant bulk elastic energy, leading to surface torques at the
NLC/polymer interface, and hence to gliding over long time
scales.
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FIG. 1. (Color online) Sketch showing the setup and summarizing the key parameters in dimensional coordinates.

With such considerations in mind, in this paper we develop
a mathematical model describing a NLC layer sandwiched
between two parallel bounding plates, with different anchoring
conditions at each plate, where we assume gliding can occur.
Although the phenomenon of gliding may occur in both
strongly and weakly anchored systems, our model focuses
on gliding in the presence of weak anchoring only, and it may
require modification before it can be applied to a system with
strong anchoring. Furthermore, we focus on gliding of the
zenithal (or polar) director angle only, as observed in, e.g.,
[7]. We introduce two possible gliding submodels, and we
study the effect of each on the director. Although the effect
of an applied electric field on gliding is clearly of relevance,
we believe that gliding should be first understood precisely in
the absence of the field, and that is the focus of this paper. We
consider the simplest case in which the director is confined to a
plane perpendicular to the bounding plates: this, together with
our neglect of the dielectric and flexoelectric contributions in
the free-energy density, permits an analytical solution for the
director. In line with what is known about the relative time
scales of gliding and director reorientation in the bulk, we
consider a quasistatic model in which the director angle, θ ,
depends on time only via the changes in anchoring angles
on the long (gliding) time scale. The model we use permits
bistability, and therefore we study this aspect of the system
under gliding also.

The paper is laid out as follows: In Sec. II we introduce the
key variables, discuss the modeling assumptions, and present
the equations used to govern the evolution of the director field
and the anchoring angles at each surface. One of our modeling
assumptions for gliding is that, due to the properties of the
polymeric bounding plates, the anchoring angle cannot change
by an arbitrarily large amount from its initial value [6,8]: we
limit the change by some prescribed tolerance value, θtol. This
assumption is supported by the experimental results reported
by Jánossy and Kósa [6] and Joly et al. [7]. Section II A
discusses two possible ways to implement this: (i) gliding
is stopped abruptly when the tolerance is reached; (ii) gliding
stops smoothly as θtol is approached. Section III presents the
results for the two models, and Sec. IV discusses conclusions
to be drawn and future work.

II. MATHEMATICAL MODEL

Figure 1 shows the basic setup that consists of a nematic
liquid crystal layer placed between two parallel bounding
plates at z∗ = 0 and z∗ = h∗. Here, superscripts are used to
denote dimensional quantities; they will be dropped when
nondimensionalizing. The local average molecular orientation
throughout the layer is described by a unit vector director field,
n, which we assume lies in the (x∗,z∗) plane, but it does not
depend on x∗. Hence, we consider a one-dimensional model in
which the director can be expressed in terms of a single angle,
θ (z∗) ∈ (−π/2,π/2], the angle the director makes with the
z∗ axis: n = (sin θ,0, cos θ ). This assumption obviously limits
our investigation to gliding of the zenithal or polar director
angle only (as observed in [7]), although we note that gliding
of the director azimuthal angle may certainly occur in systems
with twist, e.g., [6]. In addition, we consider a steady-state
model, reflecting the assumption that the elastic response of
the NLC layer is established in milliseconds [7], much faster
than the time scale on which director gliding occurs (minutes
to hours [6,7,10,11,17]).

The free energy of the liquid crystal layer, in the absence
of an applied electric field and with specified anchoring
conditions at each bounding surface, includes both bulk
and surface contributions. The bulk free-energy density W ∗
comprises splay and bend elastic contributions (since the
director is confined to a plane, there is no twist), and with
the assumed form for n and the frequently used assumption of
equal bend and splay elastic constants, K∗

1 = K∗
2 = K∗

3 = K∗
[18,19], it is given by

W ∗ = K∗

2
θ2
z∗ . (1)

We focus on weak anchoring conditions since we expect
that, particularly in this case, interesting dynamics arise as a
result of the energy minimization between the substrate and the
liquid crystal. The total free energy of the system comprising
both bulk and surface energy contributions is then given as

J ∗ =
∫ h∗

0
W ∗dz∗ + g∗

0 |z∗=0 + g∗
h∗ |z∗=h∗ , (2)

062513-2



SUBSTRATE-INDUCED GLIDING IN A NEMATIC LIQUID . . . PHYSICAL REVIEW E 92, 062513 (2015)

where g∗
{0,h∗} (at z∗ = 0,h∗) are the Rapini-Papoular surface

energies used to model the surface anchoring at each boundary
[20]. They are given by g∗

{0,h∗} = A∗
{0,h∗} sin2(θ − α{0,h∗}),

where α{0,h∗} are the preferred anchoring angles at z∗ = 0,h∗,
respectively, and A∗

{0,h∗} are the anchoring strengths. An
accurate description of the dynamic process by which the
director evolves to minimize the free energy given by Eq. (2)
requires the full equations of nematodynamics that couple flow
and director orientation [18,21]. We follow several authors
(e.g., Davidson and Mottram [3], Cummings et al. [12,13], and
Kedney and Leslie [14]) in assuming that the system evolves
in the direction that minimizes its total free energy (a gradient
flow). This approach leads to the following time-dependent
problem:

μ̃∗θt∗ = K∗θz∗z∗ ,

ν̃∗θt∗ = K∗θz∗ − A0
∗

2
sin 2(θ − α0) on z∗ = 0, (3)

−ν̃∗θt∗ = K∗θz∗ + A1
∗

2
sin 2(θ − αh∗) on z∗ = h∗,

where μ̃∗ and ν̃∗ are bulk and surface rotational viscosities,
respectively. In the following, we supplement Eqs. (3)
by two proposed gliding models that capture the
dynamics of molecular reorientation under gliding, before
nondimensionalizing and simplifying the resulting full system.

A. Gliding

Fundamentally, the anchoring properties of a given polymer
surface are due to the orientation of its molecules at the exposed
polymer surface and their interactions with the molecules of
the NLC. At a nongliding surface, the preferred orientation of
the molecules is fixed, as dictated by the anchoring conditions.
At a gliding surface, by contrast, the molecules can slowly
reorient in time if there is a sustained torque on them due
to the molecules of the adjacent NLC. Such a torque arises,
for example, if the anchoring conditions within our NLC
layer are different at the two bounding surfaces, leading
to a director orientation that changes across the layer, with
attendant elastic stress throughout the layer (including at the
bounding surfaces). Such molecular torques at the bounding
surfaces lead to slow variation of the anchoring angles in time:
experimentally, the anchoring angle is observed to reorient
toward the director angle at that surface [5–8,10,11,17]. We
introduce two models to capture this gliding behavior. Both
models assume that the rate of anchoring reorientation at a

surface depends on the difference between the anchoring angle
and the director angle at that surface.

The models also incorporate an additional feature, observed
in experiments such as those of Jánossy and Kósa [6] and
Joly et al. [7]: gliding does not continue indefinitely; rather,
the anchoring angle stops reorienting after some time under
torque. The experimental setup used in [6] consists of a nematic
liquid crystal layer placed between two different substrates,
only one of which exhibits gliding (azimuthal gliding, rather
than the zenithal or polar gliding that we model). Anchoring is
strong and planar (aligned with a specific rubbing direction) at
the upper (nongliding) substrate, and it is weak and planar
at the lower substrate, where gliding occurs. The layer is
exposed to a magnetic field applied perpendicular to the
rubbing direction. The anchoring angle at the lower substrate
rotates (glides) in time under the magnetic torque. The field is
removed after some time (before any steady state is reached,
but after significant gliding), and the system is then allowed
to evolve under gliding alone. If gliding were unlimited, the
system would ultimately glide back to a fully undistorted state
throughout the layer, this being the global energy minimizer.
However, this does not happen, indicating that there is some
physical constraint on the degree of gliding that can occur.
(Similar observations regarding limited gliding were made by
Joly et al. [7], although with a slightly different setup.)

Jánossy and Kósa interpreted their experimental results
by developing a model based on the Q-tensor formulation
for nematics [6,18]. Although their model is in very good
agreement with the experimental results over reasonable times,
it does not capture the fact that the surface director appears
not to relax back to its original state in the experiments. By
contrast, we base our governing equations on the Ericksen-
Leslie theory for nematic liquid crystals. In addition, we
account for the observed limited gliding described above by
introducing the parameter θtol, as explained in detail below.

1. Gliding model I: Abrupt cessation

In the first gliding model, we assume that the anchoring
angle, α, changes at a rate directly proportional to its deviation
from the adjacent director angle. The anchoring reorientation
(gliding) persists until the anchoring angle has changed
by a maximal amount θtol or until θ (·,t∗) = α{0,h∗}(t∗), at
which point gliding stops abruptly. Mathematically, this is
represented as follows:

dα{0,h∗}
dt∗

=
{

λ∗
{0,h∗}[θ (·,t∗) − α{0,h∗}(t∗)] if |α{0,h∗}(t∗) − α{0,h∗}(0)| < θtol,

0 if |α{0,h∗}(t∗) − α{0,h∗}(0)| = θtol,
(4)

where θ (·,t∗) indicates that θ (z∗,t∗) is evaluated at the
appropriate boundary. Here, λ∗

{0,h∗} are the anchoring relax-
ation rates at z∗ = 0,h∗, respectively. When θtol = 0, the
interface exhibits no gliding, while as θtol → π/2 the gliding
process occurs indefinitely, as in the model described in
[6]. Unlimited gliding leads ultimately to a director that is
uniform throughout the layer, although this uniform value is

unknown a priori and will depend on the relative values of
the anchoring relaxation rate constants at the two boundaries.
The model given by Eq. (4) introduces gliding in perhaps
the simplest possible manner; we will use this simplicity
below to gain a better understanding of the basic features
of gliding. Before doing so, we introduce our second gliding
model.
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2. Gliding model II: Smooth cessation

Model I has the advantage of maximal simplicity, but it has
the perhaps unrealistic feature that gliding halts abruptly once
gliding through angle θtol has occurred. We therefore propose
a second gliding model (model II) with the same essential
features as model I, but here we ensure smooth cessation of
gliding by specifying the rate of change of the anchoring angles
according to

dα{0,h∗}
dt∗

=λ∗
{0,h∗}[θ (·,t∗) − α{0,h∗}(t∗)]

×
(

1 − |α{0,h∗}(t∗) − α{0,h∗}(0)|
θtol

)
. (5)

Note that the first factor on the right-hand side is present in both
models, ensuring that the anchoring angle always reorients
itself toward the director angle at that interface. The second
term leads, however, to a slowdown of the gliding process as
the maximum gliding angle is approached.

B. Scaling and nondimensionalization

We scale z∗ with the cell height h∗ and define t , the
nondimensional time variable, as t = t∗λ∗

0, where λ∗
0 is the

relaxation rate associated with the lower substrate z∗ = 0.
Relaxation rates can be inferred from experimental data
reported in the literature. We use the results of Janossy and
Kosa [6] to estimate λ∗

{0,h∗}. Their experiment consists of a
nematic liquid crystal layer sandwiched between two polymer
plates, where one plate is treated chemically to ensure strong
anchoring while the other is left as a “soft” plate, exhibiting
weak anchoring with gliding. Modifying our model to account
for strong anchoring at the plate, z∗ = h∗, we are able to
obtain good agreement between the experimentally observed
evolution of the anchoring angle at the “soft” plate [6] and
our model by using λ∗

0 ≈ 0.0031 s−1 as a relaxation rate
in gliding model I. Hence, we assume this value in our
nondimensionalization.

The surface energies g∗
{0,h∗} (at z∗ = 0,h∗) are nondi-

mensionalized by g{0,1} = g∗
{0,h∗}h

∗/K∗ leading to the
nondimensional Rapini-Papoular surface energies: g{0,1} =
(A{0,1}/2) sin2(θ − α{0,1}), A{0,1} = (h∗A∗

{0,h∗})/K
∗, where

α{0,1} ≡ α{0,h∗}. Equations (3) in turn become

δθt = θzz in 0 < z < 1,

δν̃θt = θz − A0

2
sin 2(θ − α0) on z = 0, (6)

−δν̃θt = θz + A1

2
sin 2(θ − α1) on z = 1,

where δ = h∗2μ̃∗λ∗
0/K

∗ and ν̃ = ν̃∗/(μ̃∗h∗). Note that δ

represents the ratio between two time scales: h∗2μ̃∗/K∗ is the
time scale of the bulk elastic response of the NLC, while 1/λ∗

0
is the time scale of the gliding response (the estimate above
gives a little over 5 min for the gliding response, but this time
scale may range from a few minutes to several hours depending
on the properties of the liquid crystal and the substrate
[6,7,10,11,17]). Typical values of the dimensional parameters
are h∗ ∼ 1 × 10−6 m, K∗ ∼ 1 × 10−12 N, μ̃∗ ∼ 0.1 N s m−2,
A∗

{0,h∗} ∼ 10−4–10−6 N m−1, and ν̃∗ ∼ 10−10 N s m−1 [3,5,22].

Hence the bulk elastic response time scale of the NLC is of the
order of a few milliseconds, and δ � 1, ν̃ � 1. We therefore
use a quasistatic approximation and set δ = 0 in Eqs. (6),
giving

0 = θzz, (7)

0 = θz − A0

2
sin 2(θ − α0) on z = 0, (8)

0 = θz + A1

2
sin 2(θ − α1) on z = 1. (9)

The dimensionless forms of the gliding models I and II given
by Eqs. (4) and (5) are as follows:

model I :
dα{0,1}

dt

=
{
λ{0,1}[θ (·,t)−α{0,1}(t)] if |α{0,1}(t)−α{0,1}(0)|<θtol,

0 if |α{0,1}(t)−α{0,1}(0)|=θtol;

(10)

model II :
dα{0,1}

dt

= λ{0,1}[θ (·,t) − α{0,1}(t)]
(

1 − |α{0,1}(t) − α{0,1}(0)|
θtol

)
,

(11)

where λ{0,1} = λ∗
{0,h∗}/λ

∗
0 (so λ0 = 1 always; in fact, for all

simulations shown in this paper we also set λ1 = 1). Equations
(7)–(9) governing the director orientation will be dynamic
once supplemented with the gliding model [Eq. (10) or (11)]
describing how α{0,1} change in time. Note that the actual
gliding time scale, 1/λ∗

0, is important only if we wish to convert
our dimensionless results back to real time.

III. ANALYSIS AND RESULTS

A. Solution scheme

Equations (7)–(9) in conjunction with either Eq. (10) or
Eq. (11) constitute a complete model to describe the director
field angle θ (z,t) within a simple sandwich of NLC with
gliding at both interfaces [dynamic evolution of α0(t), α1(t)].
Due to the quasistatic approximation, Eqs. (7)–(9) can be
solved independently of the gliding model if the anchoring
angles α{0,1} are assumed known: θ = az + b, where a and
b are fixed by Eqs. (8) and (9). Following [13], the director
solution may be written as

θ = az + 1

2
sin−1

(
2a

A0

)
+ α0, (12)

where a satisfies a nonlinear algebraic equation,

f (a) = a + a
A1

A0
cos[2a + 2(α0 − α1)]

+
A1

√
A2

0 − 4a2

2A0
sin[2a + 2(α0 − α1)] = 0 (13)

(here the time dependence in a, α0, and α1 is suppressed
for brevity). Given the initial conditions α0(0), α1(0) for the
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anchoring angles and the values A0, A1 for the anchoring
strengths, Eqs. (12) and (13) describe possible initial states for
the system. We choose values of A0 and A1 that correspond
to “weak anchoring” (A∗

{0,h∗} ∼ 10−6 N m−1). In addition, we
expose any behavior due to different anchoring conditions at
each substrate by settingA0 	= A1: in all simulations presented
in this paper, we take A0 = 5.0, A1 = 2.4, as used in [13].

Depending on the values of {α0(0),α1(0)}, Eq. (13) may
have multiple solutions. For the chosen values of A0,A1, the
number of solutions is always one or three, and we will focus
on this case in the rest of the paper. Choosing different values
of A0 and A1, however, may lead to more than three solutions,
each of which is associated with a root of Eq. (13). In such
cases, the multiple roots of larger amplitude correspond to
complex director configurations in which the director bends
through large angles. These configurations are unlikely to
be observed in physical systems due to the associated high
elastic energy, and they will not be considered further. [Such
solutions may be considered an artifact of our assumption of
purely two-dimensional (2D) geometry: real systems are 3D
and the director can “escape” from a highly bent 2D solution,
unwinding into the third dimension.] When Eq. (13) has one
root, the system has only one steady state (monostability);
when it has three roots, the system is bistable (one of the three
roots always represents an unstable solution for θ , a local
maximum of the free energy).

The results that we present are obtained as follows. From
our chosen initial state, integrating either Eq. (10) or Eq. (11)
through one time step using the appropriate integrating factor,
we compute the evolution of the anchoring angles based on
models I and II. These anchoring angles are used to obtain a
new director solution using Eqs. (12) and (13) at the new time
step. To ensure accuracy, we use a relatively small time step,
dt = 10−3; we have verified that such dt leads to results that
are accurate to 0.1%.

B. Effect of gliding on a monostable system

We focus first on an initially monostable system, and we
consider how the proposed gliding models I and II drive the

−2 −1 0 1 2
−2

−1

0

1

2

3

a

f
(a

)

s table root

FIG. 2. (Color online) The location of the root of f (a) [see
Eq. (13)] for a monostable system. The anchoring angles are α0(0) =
0 and α1(0) = π/6. The arrow accompanying the root indicates its
initial evolution under gliding (model I). The symbols on the curves
shown in this and upcoming figures are purely for identification with
the legend.

evolution of the anchoring angles and the director field under
unlimited (θtol = π/2) and limited (θtol < π/2) gliding (we use
θtol = π/20 as a representative example). We expect unlimited
gliding to smooth the director solution throughout the layer,
leading to a uniform solution at large time, while limited
gliding may lead to a nonuniform steady state for the director.

Figure 2 shows a snapshot of f (a), defined in Eq. (13),
for a monostable system. Figure 3(a) shows the evolution of
the director field from the initial state represented by the root
in Fig. 2 under unlimited gliding. These results are computed
using model I; results obtained using model II are very similar
and are therefore omitted. Figure 3(b) shows the accompanying
evolution of the anchoring angles α0,α1 for both gliding
models I and II. For both models, with θtol = π/2, the director
field evolves to a solution that is uniform throughout the layer,
with θ (z,∞) = α0(∞) = α1(∞). However, the steady states
attained by the two models are not the same in Fig. 3(b):
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FIG. 3. (Color online) Gliding effect for θtol = π/2 (unlimited gliding) using models I and II: α0(0) = 0, α1(0) = π/6, and λ0 = λ1 = 1.0
(these values for the dimensionless relaxation constants are assumed throughout this paper). (a) Evolution of the director field in time as a result
of gliding model I. (b) Evolution of anchoring angles for model I: α0(t)–(�), α1(t)–(◦); and model II: α0(t)–(�), α1(t)–(�).
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FIG. 4. (Color online) Gliding effect for θtol = π/20 (limited gliding) using models I and II: α0(0) = 0, α1(0) = π/6, and λ0 = λ1 = 1.0.
(a) Evolution of the director field in time as a result of gliding model I. (b) Evolution of anchoring angles for model I: α0(t)–(�), α1(t)–(◦); and
model II: α0(t)–(�), α1(t)–(�).

the additional smoothing factor [1 − |α{0,1}(t) − α{0,1}(0)|/θtol]
in Eq. (5) becomes important, leading to quantitatively
different results. This observation highlights the importance of
accurately capturing the intermediate dynamics in any gliding
model. Note also that, regardless of the model used, α1(t)
varies more from its initial value than does α0(t) due to the
lower associated anchoring strength (A0 = 5.0, A1 = 2.4).

Figure 4 shows the evolution of the director solution and
the anchoring angles under gliding models I and II for θtol =
π/20, with all other parameters as in Fig. 3. We note that
the anchoring angles at the two boundaries no longer settle
at the same steady-state value: α0(∞) 	= α1(∞), leading to a
director solution that is nonuniform throughout the layer at
large times. In addition, we observe that, unlike the unlimited
gliding example of Fig. 3, under limited gliding the two models
lead to the same steady-state solution at long times, at least
for sufficiently small θtol as used here. This is due to the fact
that, for sufficiently small θtol, gliding stops (for both models)
due to the maximum gliding angle being reached: |α{0,1}(t) −
α{0,1}(0)| = θtol at finite time [see Eq. (10) or Eq. (11)].

C. Effect of gliding on a bistable system

The existence of two (or more) stable field-free steady states
that are optically distinct is of relevance to applications, since
in this case contrast can be maintained in a display without
an externally applied electric field (a field is required only
to switch the device from one state to the other). Theoretical
investigations of bistable devices have been carried out by
many authors: see, e.g., [3,12–14] and references therein. In
[12], bistability is obtained in a special case in which the
anchoring angles are π/2 out of phase and the anchoring
strengths are the same at both boundaries; switching between
the states is obtained through the application of a transient
electric field. In particular, two-way switching is possible for
weak anchoring only. In [13], Cummings et al. generalized
the study by treating the anchoring conditions as adjustable
parameters, providing the values of A{0,1},α{0,1}, for which
bistability and switching are possible. In the same spirit,

bistability may be achieved in the simple model considered
here by appropriate choice of (initial) anchoring conditions:
whether the system remains bistable over long times depends
on how the anchoring angles evolve under gliding. In this
section, we consider the effect of gliding on bistable systems
by means of specific examples.

Figure 5(a) shows an example of the function f (a),
defined in Eq. (13), for a bistable system. The roots of this
function determine director solutions as in Eq. (12); here
f (a) has three roots, only two of which represent stable
solutions, as discussed below. With anchoring strengths fixed,
we find that whether the system specified by Eqs. (7)–(9)
is bistable [three roots of f (a)] or monostable [one root
of f (a)] depends primarily on the difference of the initial
anchoring angles, 	α(0) = α1(0) − α0(0), with only weak
dependence on individual values of the two anchoring angles;
therefore, for purposes of illustration we set α0(0) = 0 and
vary α1(0). Figure 5(b) shows how the number of solutions
of Eqs. (7)–(9) then depends on 	α(0). We observe that
if 	α(0) = α1(0) − α0(0) < 	αc ≈ 0.82, the function f (a),
defined by Eq. (13), has only one root, corresponding to
a single solution n = (sin θ,0, cos θ ), where θ is given by
Eq. (12). Two stable steady states emerge if 	α(0) > 	αc:
in this case, f (a) has three roots, two corresponding to stable
solutions given by Eq. (12) [local minima of the free energy
given in Eq. (2)], and one corresponding to an unstable solution
(local maximum of the free energy). Note that the particular
value of 	αc in a given system depends also on the anchoring
strengths, A{0,1}; in Fig. 5, as elsewhere, these are set at
A0 = 5.0, A1 = 2.4.

1. Effect of unlimited gliding on a bistable system

The discussion presented so far in this section pertains to
the initial states of a system before any gliding dynamics are
seen. Since gliding can affect the structure of an initially
bistable system, we explore its effect below, discussing a
specific example. Before doing so, we observe that as the
anchoring angles α0(t), α1(t) vary under gliding, the function
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FIG. 5. (Color online) (a) Location of the roots of f (a) for a bistable system with α0(0) = 0, α1(0) = π/3. The arrows accompanying the
stable roots indicate their initial evolution under gliding. Two steady-state configurations n1 and n2 are shown, corresponding to a1 ≈ 0.63
and a2 ≈ −1.17. (b) Dependence of solution multiplicity on 	α = α1(0) − α0(0), where 	α varies from 0 to π/2 with α0(0) = 0. When f (a)
[defined by Eq. (13)] has three roots, two correspond to stable steady states (�) and one to an unstable steady state ( ). The vertical line is
drawn at 	α(0) = π/3, the state shown in (a).

f (a) defined by Eq. (13) evolves in time as well. In the
following, we say that we “track” n1 or n2 when the director
solution [given by Eq. (12)], whose behavior is dictated by
the evolution of the largest or smallest root of f (a), evolves
under gliding. It is important to emphasize that this evolution
under gliding is totally different for each steady state, as we
now discuss.

Given values for the surface energies, A0, A1, and initial
values for the anchoring angles, α0(0), α1(0), the system has
a choice of two steady states, n1 or n2, corresponding to two
distinct roots of Eq. (13). If we start with state n1 and track it
under gliding, the anchoring angles will evolve according to the
solution of Eq. (10) or Eq. (11). Since each of these equations
depends on the director solution n1 itself, the evolution here is
quite different than if we started from the solution n2.

Note also that, when we track solution n1, the solution
n2 corresponding to the other (stable) root of f (a) exists “in
the background,” but is not manifested. This “background”
evolution of n2, when tracking n1, is again quite different
from the evolution of n2 when it is the solution being
tracked. The following explicit examples should clarify these
remarks.

Consider the two possible scenarios for the evolution of
f (a) in Fig. 5(a) with 	α(0) = π/3. Initially this system has
two stable steady states, n1 and n2, corresponding to the roots
of f (a) as shown in Fig. 5(a). Figures 6(a) and 7(a) show
the evolution of the director field when tracking n1 and n2,
respectively, under unlimited gliding using model I. Similarly
to the monostable case, independently of which gliding model
we choose, for θtol = π/2 gliding smooths the solution θ (z; t)
as time progresses, leading ultimately to a director solution
that is uniform throughout the domain. Note, however, that, in
line with our remarks above, the long-time uniform solution
obtained depends on which solution was tracked; compare the
final states in Figs. 6(a) and 7(a).

As the steady states n1 and n2 evolve under gliding toward
the uniform state, in either case the system switches from

bistable to monostable. To illustrate how bistability is lost,
we show early time evolution of f (a) in Figs. 6(b) and 7(b).
We see that in both cases, f (a) evolves in a way that leads to
the loss of two roots under gliding, leaving only a single root,
corresponding to one stable steady state. Figure 6(b) shows
that, while tracking n1, the root corresponding to n1 persists in
time while the root corresponding to n2 disappears at t ≈ 0.6
[f (a) moves to the left and down]. Similarly, Fig. 7(b) shows
that, when tracking n2, the root corresponding to n2 persists in
time while the root corresponding to n1 disappears at t ≈ 2.5
[f (a) moves to the right and up]. These figures also illustrate
that the time at which bistability is destroyed, tb, depends on
which state we are tracking, n1 or n2.

As the director solution n1 (or n2) is tracked under gliding,
the director begins to relax and move smoothly toward a
uniform state, as in Fig. 6(a) [or Fig. 7(a)]. As this happens, the
total energy associated with n1 (or n2) decreases. At the same
time, however, the total energy associated with the other “back-
ground” stable state n2 (or n1) increases, as shown in Fig. 6(c)
[or Fig. 7(c)]. If, as is the case in Figs. 6 and 7, gliding is not
halted, the energy of that background state, n2 (or n1), will ulti-
mately increase to a stage where that solution is no longer a lo-
cal minimum of the free energy [at which point that steady state
ceases to exist, simultaneously with the loss of roots of f (a)].

In the particular case considered in Figs. 6 and 7, bistability
is destroyed faster when tracking n1. This seems to be a
consequence of the higher bulk energy associated with the
director solution for n2. This solution n2 represents a shallower
local minimum of the free energy for this parameter set, so that
it is destroyed sooner under gliding. Figures 6(c) and 7(c)
show the total free energies [given by J = J ∗h∗/K∗; see
Eq. (2)] of both the solution being tracked (solid line) and
the “background” solution (dashed line): we see that in both
cases the solution being tracked decreases its total free energy
under gliding, while the energy of the background solution
increases. In these unlimited gliding examples, the dashed line
stops abruptly in both cases, corresponding to the loss of the
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FIG. 6. (Color online) (a) The evolution of director solution n1

under gliding model I for α0(0) = 0, α1(0) = π/3, and θtol = π/2.
(b) The evolution of f (a) under gliding (same parameters) when
tracking n1. Bistability is lost at t ≈ 0.6. (c) The free energy J (t)
for n1 (solution tracked, solid curve) and n2 (“background” solution,
dashed curve). The dashed curve stops where the background solution
disappears.

background solution (its free energy at that point ceases to
be a local minimum in the energy landscape and the solution
disappears). Note that it is never the solution being tracked
that disappears under gliding but always the other solution,
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FIG. 7. (Color online) (a) The evolution of director solution n2

under gliding model I for α0(0) = 0, α1(0) = π/3, and θtol = π/2.
(b) The evolution of f (a) under gliding (same parameters) when
tracking n2. Bistability is lost at t ≈ 2.5. (c) The free energy J (t)
for n2 (solution tracked, solid curve) and n1 (“background” solution,
dashed curve). The dashed curve stops where the background solution
disappears.

resulting in a continuous evolution of a. The tracked solution
always decreases its total free energy, becoming more stable
with time, while the reverse applies to the background solution.
Gliding model II leads to similar results: although the time
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FIG. 8. (Color online) The time, tb, at which bistability of a system is destroyed, vs θtol given a steady state n1 shown in (a) or n2 shown in
(b) for various 	α(0) = α1(0) − α0(0) with α0(0) = 0. Gliding model I is used here.

at which bistability is destroyed varies slightly from gliding
model I, it too ultimately destroys bistability provided that θtol

is sufficiently large, as in model I.

2. Effect of limited gliding in model I

To determine how limited gliding, using model I, affects
the structure of an initially bistable system in time, we solve
Eqs. (7)–(10) for a range of values of θtol. Figure 8 shows
the times tb at which bistability is destroyed for different
values of θtol and 	α(0). Both steady states n1 and n2 are
considered separately. We first discuss the general properties
of the behavior of the gliding system, and then we discuss
the specific properties of each steady state separately. We
observe that if θtol is small, then gliding lasts for a short time
only, and the system will retain its bistability independently
of which solution we track. In contrast, if θtol is sufficiently
large, then the system will glide until bistability is destroyed.
Figure 8 shows four different bistable cases, characterized by
different values of 	α(0). While the results are quantitatively
different between these four cases, three common key features
are observed. First, if θtol is sufficiently small, then gliding
always stops before bistability is destroyed, hence tb = ∞.
Second, if θtol is sufficiently large, then bistability will be lost
before either anchoring angle has glided through the tolerance
value; therefore, in such situations tb is independent of θtol (the
horizontal portions of the graphs). Third, the horizontal and
vertical portions of the graphs are connected by intermediate
sloped portions. These relate to situations in which, depending
on the value of θtol and the initial anchoring conditions, gliding
may stop first at one boundary but continue at the other, leading
to the ultimate loss of bistability.

The transitions between the different portions of the (θtol,tb)
graphs depend on which solution is considered (n1 or n2)
and on the initial state, characterized by 	α(0). Due to the
special symmetry of the case, 	α(0) = π/2, where n1 and
n2 are simple mirror images, these two curves are the same
in Figs. 8(a) and 8(b). However, for other values of 	α(0),
the two corresponding steady states, n1 and n2, give rise to
different behavior. We find that, in line with our observations

about energetics in the unlimited gliding case at the end of
Sec. III C 1, in general when tracking n2 we require larger
values of θtol to destroy bistability (compare Figs. 6 and 7: the
solution n1 is associated with a relatively deep free-energy
minimum, and it takes longer to eliminate under gliding).
Therefore, when tracking solution n2, gliding must proceed
for a longer time in order to eliminate the stable steady state n1

and destroy bistability, hence higher values of θtol are required
for this to happen.

Since the number of steady states (at any given time) in an
initially bistable system depends on both θtol and the difference
in initial anchoring angles 	α(0), we now further investigate
how 	α(0) influences bistability under gliding. We define θmin

tol
to be the smallest value of θtol that leads to the loss of bistability
under gliding for each value of 	α(0). Figure 9 plots θmin

tol
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FIG. 9. (Color online) θmin
tol (representing the smallest value of θtol

that leads to loss of bistability under gliding) plotted as a function of
	α(0) for each steady state [n1 (�) and n2 (◦)]. These plots identify
three regions in (θtol,	α(0)) parameter space with initial steady states
n1 and n2: Region I: bistability is not destroyed regardless of which
steady state is tracked; region II: bistability is lost when tracking
n1 but not for n2; and region III: bistability is lost independently of
which steady state we start from.
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versus 	α(0) for both initial steady states n1 and n2. We
observe that θmin

tol increases (very nearly linearly) with 	α(0)
for n1, but it decreases (again almost linearly) with 	α(0) for
n2. The two curves in Fig. 9 meet where 	α(0) = π/2: this is
again due to the mirror-image symmetry of n1 and n2 in this
situation [with α0(0) = 0].

We can use these results to identify regions in (	α(0),θtol)
space where the system retains its bistability, depending on
which director solution is tracked. With the chosen values
of anchoring strengths and α0(0) = 0 we distinguish three
such regions in Fig. 9: region I, in which bistability is never
destroyed regardless of which steady state is tracked; region
II, in which bistability is lost when tracking n1 but not
when tracking n2; and region III, in which bistability is lost
regardless of whether n1 or n2 is tracked.

3. Effect of limited gliding in model II

We now briefly outline the results analogous to those of
Sec. III C 2 for gliding model II, Eqs. (7)–(9) and Eq. (11).
Figure 10 (analogous to Fig. 8) shows the time tb at which
bistability is destroyed as a function of θtol. The behavior is
qualitatively similar to that of model I, but smoothed. In the
regions to the left of the nearly vertical portion of the curves,
θtol is sufficiently small that bistability is never destroyed.
When tracking n2 under gliding, larger values of θtol are needed
to destroy bistability than when tracking n1 (see also Figs. 6
and 7). Also, for sufficiently large (but fixed) θtol, tb decreases
with 	α(0) for n1 and it increases as 	α(0) decreases for n2.
Again, the results for the symmetric case, 	α(0) = π/2, in
which n1 and n2 are mirror images, are identical in Figs. 10(a)
and 10(b), as anticipated.

Unsurprisingly, models I and II generate quantitatively
different results. Comparing the plots of tb for n1 in both
models [see Figs. 8(a) and 10(a)], we observe that when θtol is
small, tb is larger for model II, with the reverse trend for large
θtol. Similarly, when tracking n2 in model II [see Fig. 10(b)],
bistability is destroyed faster for large values of θtol and slower
for small values of θtol [see Fig. 8(b)].

D. Effect of switching and unlimited gliding in a bistable system

Switching between the two stable steady states in an
initially bistable system is possible in the absence of gliding
[12,13]: with the application of a suitable transient electric
field, one can achieve two-way switching in the appropriate
parameter regimes. Motivated by the relevance of switching in
devices that are both flexible and bistable, and by our results
in Sec. III C, we now examine a bistable system in which both
unlimited gliding (θtol = π/2) and switching act sequentially,
and we investigate the effect that such switching has on the
system dynamics.

As an illustrative example, we consider an initially bistable
system with anchoring conditions α0(0) = 0, α1(0) = π/3. As
noted above, in practice two-way switching would be obtained
through transient application of an electric field; however, in
the present work, we simply impose the switch between states
at specified times: we switch the system instantaneously from
one stable state to the other by selecting the alternative (stable)
root of Eq. (13) at the chosen switching time to obtain the new
director solution (in any practical application, switching would
occur on a time scale that is much faster than gliding, so from
the point of view of the gliding dynamics this instantaneous
switch is reasonable). Gliding is then continued, but now with
the new steady state. For the example, illustrated in Fig. 11, we
initially track n2, and then we impose a series of switches at
chosen switching times t = 1,2,3,4, etc. Note that the initial
steady state influences only the details of the results that follow;
similar results are obtained if we initially track n1.

Figure 11(a) shows the evolution of the director field over
four successive switches. Figure 11(b) shows the evolution
over many more successive switches, via the plot of the root,
a(t), of Eq. (13) that corresponds to the director solution being
tracked under gliding, and via the corresponding total free
energy J (t) = J ∗h∗/K∗ [see Eq. (2)] of that solution. We
observe that, in contrast to the case of unlimited gliding without
switching, bistability is not destroyed, even though gliding
occurs continuously throughout. If switching had not been
imposed, then bistability would have been lost at tb ≈ 2.3; see
Fig. 8.
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FIG. 10. (Color online) The time at which bistability of a system is destroyed, tb vs θtol given a steady state n1 shown in (a) or n2 shown in
(b) for various 	α(0) using gliding model II. Compare with Fig. 8 for model I.
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FIG. 11. (Color online) (a) Switching from n2 → n1 → n2 → n1 → n2 for α0(0) = 0, α1(0) = π/3 using gliding model I. (b) Switching
and gliding dynamics for the same system over long times, monitored by plotting the selected root a (solid curve) of Eq. (12) and the free
energy J (dashed curve) of the corresponding solution.

Figure 11(b) shows that, except at switching events, where
energy is put into the system to make the switch, |a(t)| (the total
director bending angle across the layer) and J (t) (the system
free energy) are always decreasing under gliding, regardless of
which state we track. The director is always relaxing toward a
uniform state between switches, lowering its energy as it does
so. However, recalling the results of Figs. 6 and 7, we know that
as this happens, the “background” solution is simultaneously
increasing its free energy.

Consider the behavior of |a(t)| and J (t) at the switching
times t = 1,2,3,4, . . . ,n. At each switching time, both |a(t)|
and J (t) jump (the states before and after the switch have
different energies). Consider, for example, the switch from
n2 → n1 at t = 2. Here, |a(2+)| > |a(2−)| (the ± super-
scripts denote right- and left-handed limits, respectively), and
J (2+) > J (2−), indicating that (i) the solution after switching
(n2 here) has a greater elastic bend across the layer than the
solution before the switch (n1), and (ii) energy input is required
to effect the switch (which in practice would most likely come
from transient application of an electric field). Figure 11(b)

reveals that, although the initial behavior of the system is
irregular, after many regularly spaced switches both J (t) and
|a(t)| fall into a periodic behavior. This implies that regular
switching can sustain bistability indefinitely: while gliding acts
to dissipate elastic energy from the bulk, the act of switching
puts new energy into the system. Providing that switching
takes place sufficiently often, the bulk elastic energy can be
maintained at a high enough level to retain the bistability.
Another way to view this periodic behavior is that the regular
switching reverses the effect of the gliding. Consider times
t = n sufficiently large that we are in the periodic regime.
Immediately after a switch (to solution n1|t=n+ , say) this
solution begins to glide, evolving eventually to n1|t=(n+1)− .
We can undo this gliding exactly if we now switch to solution
n2|t=(n+1)+ , allow it to glide for one time unit to n2|t=(n+2)− ,
and then switch to n1|t=(n+2)+ ≡ n1|t=n+ .

The example shown in Fig. 11 raises an interesting question:
Since switching reverses the gliding effect in a bistable system,
and we know that indefinite gliding with no switching leads
inevitably to a loss of bistability, how often must we switch
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FIG. 12. (Color online) (a) Switching from n2 → n1 → n2 → n1 for α0(0) = 0 and α1(0) = π/3 using gliding model I, with all switches
imposed when the system is about to lose bistability. (b) Switching and gliding dynamics for the same system over long times, monitored by
plotting the selected root a (solid curve) of Eq. (12) and the free energy J (dashed curve) of the corresponding solution.
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FIG. 13. (Color online) Evolution of f (a), Eq. (13), close to the root and the switching time t = 1.650 from n2 → n1 when α0 = 0,
α1(0) = π/3. (a) Tracking the director configuration n2 before switching at t = 1.650. (b) Tracking n1 after switching at t = 1.650. The switch
takes place just before bistability would have been lost.

to retain bistability? To answer this question (at least for
our specific example), we modify the previous procedure:
instead of switching between steady states at the chosen
fixed times, we now let the system glide until it is about to
lose bistability, then switch, ensuring that switching occurs
at tlb, which we define as the last time for which the system
is bistable. Figure 12 shows an example of this procedure,
applied repetitively. Figure 12(a) shows the director field, and
Fig. 12(b) plots a(t) and J (t) as switching between the states
occurs. As above, bistability can be maintained indefinitely
with this approach. In addition, with this switching strategy we
observe that |a(t)| and J (t) both fall into a periodic behavior
immediately after the first switch occurs.

It is curious that this particular switching strategy changes
the dynamics of the director solution immediately after the
switch. For t = t+lb , |a(t)| starts to increase briefly before the
anticipated decrease under gliding. This behavior is reflected
both in the plot of the director in Fig. 12(a) and in the
plot of a(t) in Fig. 12(b). Plotting the evolution of f (a)
before and after the first switching time tlb = 2.335 (shown
in Fig. 13), we observe that when tracking the initial solution
n2, f (a) (and the corresponding root) moves to the right [see
Fig. 13(a)], while after switching to n1, f (a) moves to the
left and down [see Fig. 13(b)]. A transition phase occurs at
t = 2.335+ immediately following the switch where the root
|a(t)| continues to increase despite the change in evolution of
f (a) at the switch time [see the profiles of f (a) at t = 2.335
and 2.400 in Fig. 13(b)]. Note, however, that, although this
nonmonotone behavior of a(t) under gliding immediately
following switching is curious, the total energy following
the switch immediately begins to decrease in time under the
gliding, as anticipated.

Another interesting question to ask is how the energy lost
due to gliding (compensated by the energy input in switching)
depends on the switching interval, and whether there is an
“optimum” switching strategy minimizing the total energy
expenditure. To answer this question, we consider a general
periodic switching strategy, and we compute the total energy
lost due to gliding, 	Jn+1 = J (t)|t+n − J (t)|t−n+1

, for different

switching intervals 	t = t−n+1 − t+n . Table I shows the total
energy expenditure, S	J , for the period t = 20 to 100, during
which the system has settled into a periodic behavior. We
observe that, at least for the case considered here, the total
energy input needed to maintain bistability decreases as the
time interval at which switching is applied increases (even
though more energy is lost during each gliding cycle as
its length increases). We conjecture that the most efficient
approach to maintaining the bistability is to switch as late as
possible.

Although in this section we have used specific examples
to illustrate our results, we believe that certain conclusions
apply quite generally. They are summarized as follows: (i) If
an initially bistable system undergoes unlimited gliding, and
no switching between states occurs, then a loss of bistability
is inevitable (the system will approach a uniform director
solution); (ii) if switching between the states is imposed
sufficiently often (specifically, one must always switch to the
“background” solution before it disappears), then bistability
can be retained indefinitely; (iii) if the switching is imposed
periodically, then the whole system will approach a periodic
state at large times; and (iv) if we always wait the maximum
time before switching (waiting until the background state is
about to disappear), then the periodic behavior is attained
immediately [possibly with some anomalous behavior in a(t)].

TABLE I. Total energy input as a result of switching measured
from t = 20 until t = 100.

Total Energy Input vs Switching Interval
Switching Interval S	J

t = 0.5 47.34
t = 1.0 46.79
t = 1.5 44.71
t = 2.0 44.58
t = 2.3 42.67
t = tlb 42.39
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Finally, we remark that these examples and observations
represent a worst-case scenario in which gliding is unlimited,
so that a loss of bistability is inevitable with no switching.
The introduction of limited gliding, θtol < π/2, will only
improve matters since, as we already know, if θtol is sufficiently
small, then bistability can be retained indefinitely even with
no switching.

IV. CONCLUSIONS

We have presented two models (I and II) that describe
the evolution of the director field within a confined layer of
a nematic liquid crystal, bounded by two infinite polymeric
plates, where the anchoring is weak at both plates. At these
plates, director gliding may occur: the anchoring angle or easy
axis undergoes a continuous realignment under the torque
due to the bulk elasticity of the nematic layer. In model
I, gliding occurs at a rate proportional to the difference
between the anchoring angle and the director angle at the
interface considered, but it stops abruptly once the deviation
of the anchoring angle from its initial value reaches some
tolerance value, θtol (abrupt cessation). In model II, gliding
is halted smoothly as θtol is approached (smooth cessation).
Both models exploit the separation in time scales between
gliding (long time scale) and elastic response (short time scale)
to justify a quasistatic approximation for the director field
orientation within the layer, with the model dynamics driven

purely by the gliding. We investigate in detail how director
gliding, governed by each model, affects the evolution of the
director field, as θtol and the initial anchoring angles vary. For
large θtol, gliding leads to a director solution that is uniform
throughout the domain for both gliding models.

We pay particular attention to the behavior under gliding of
an initially bistable system. For large values of θtol, gliding de-
stroys bistability independently of the model chosen. However,
the time at which bistability is destroyed is model-dependent.
Furthermore, we investigate how switching between stable
steady states, in the presence of gliding, can affect the number
of available steady states at a given time. We conclude that
switching can retain bistability, even under unlimited gliding,
as long as it occurs sufficiently often. Furthermore, we find that
if retention of bistability is the sole aim, then it is advantageous
to switch as late as possible (just before the system is about to
lose bistability): such a strategy minimizes the energy lost due
to gliding.

We expect that the models proposed here will provide
an appropriate foundation for considering more realistic
switching driven by an applied electric field, combined with
gliding. This will be the subject of our future work.
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