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Director gliding in a nematic liquid crystal layer: Quantitative comparison with experiments
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The interaction between nematic liquid crystals and polymer-coated substrates may lead to slow reorientation
of the easy axis (so-called “director gliding”) when a prolonged external field is applied. We consider the
experimental evidence of zenithal gliding observed by Joly et al. [Phys. Rev. E 70, 050701 (2004)] and Buluy et al.
[J. Soc. Inf. Disp. 14, 603 (2006)] as well as azimuthal gliding observed by S. Faetti and P. Marianelli [Liq. Cryst.
33, 327 (2006)], and we present a simple, physically motivated model that captures the slow dynamics of gliding,
both in the presence of an electric field and after the electric field is turned off. We make a quantitative comparison
of our model results and the experimental data and conclude that our model explains the gliding evolution very well.
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I. INTRODUCTION

Liquid crystal display (LCD) devices make up a large
portion of the electronic devices in today’s market due to their
high optical resolution screens. A typical LCD consists of
many pixels, each consisting of a layer of nematic liquid crystal
(NLC) sandwiched between two bounding plates and crossed
polarizers. These devices exploit the NLC’s ability to rotate
the plane and shift the phase of polarized light, to generate two
distinct optical configurations. The “bright” and “dark” pixels
of the display are a result of the different orientation of LC
molecules within the layer. The molecular orientation depends
on the boundary conditions at the plates as well as the external
forces (usually an applied electric field). To give a simplified
explanation (for brevity): when an electric field is applied
across the layer, the LC molecules align with the field and
cannot rotate the polarized light beam, so that it cannot pass the
second (crossed) polarizer and the pixel remains “dark.” On the
contrary, if no electric field is applied, the LC molecules have a
preferred orientation dictated by the boundary conditions that
allows the polarized light beam to be rotated so that it passes
the second crossed polarizer, forming a “bright” pixel in the
display.

In an effort to improve LCD design and function, much
research has been focused on understanding and controlling
the interaction between the bounding surfaces and the liquid
crystal molecules, known as anchoring. As noted above, the
molecules have a preferred orientation at the boundary plates,
often dictated by the substrate coating material and different
mechanical and/or chemical treatments. Anchoring may be
weak or strong. In both cases, the substrate is characterized by
an “easy axis,” the axis along which the interaction energy be-
tween the substrate and liquid crystal molecules is minimized.
If anchoring is strong, the NLC molecules align nearly parallel
to the easy axis at the boundary. If anchoring is weak, the NLC
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molecules may deviate from the easy axis, generating a surface
and elastic torque, which balance. Experiments have shown
that if a strong applied torque exists for extended periods of
time, the easy axis can slowly rotate, leading to a phenomenon
known as easy axis gliding or director gliding [1] (the director
is a unit vector characterizing the average molecular orientation
of the long axis of the molecules). Director gliding has been
observed in lyotropic, thermotropic, and nematic LCs with
multiple experiments reporting both zenithal and azimuthal
gliding [1–8].

Understanding the mechanism behind director gliding is
important since it is believed to lead to “image sticking” in
LCD technology. Image sticking is a phenomenon where an
outline (ghost image) of a previously displayed image remains
visible on an LCD screen after the image has been removed [9].
Director gliding may also pose a challenge in the development
of flexible LCDs since experiments have shown that director
gliding is more prevalent at LC-polymer interfaces, often
present in flexible LCDs.

Two mechanisms have been proposed to describe the gliding
phenomenon observed in experiments. The first, introduced
by Vetter et al. [5], describes gliding in terms of adsorption
and desorption of the LC molecules on the solid substrate as
follows: initially, the LC molecules are adsorbed along the
direction of the director in the cell. As an electric field is
applied across the layer, the director reorients according to the
electric field, leading to the adsorption of LC molecules along
this new direction. As a consequence, the symmetry axis of
the angular distribution function of the adsorbed molecules
reorients, together with the associated easy axis [10].

The second mechanism, proposed by Kurioz et al. [11],
describes gliding as follows: due to weak anchoring imposed
on the boundary, applying an electric field reorients the
director on the surface, which drags the flexible fragments
of the molecules in the polymer surface. This results in the
reorientation of both the liquid crystal molecules and the
flexible fragments with the rate determined by the anchoring
strength and the liquid crystal-flexible fragment interaction.
Both mechanisms present the gliding phenomenon in a general
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way, but to our knowledge, have not been described by
mechanistic predictive models.

In this paper, we discuss experiments that present both
azimuthal and zenithal gliding. In the case of zenithal gliding
we consider two sets of experiments, carried out by Joly et al.
[6] and Buluy et al. [10], that focus on zenithal gliding in
the presence of an electric field and after the electric field is
turned off. In the case of azimuthal gliding, we consider the
experiment carried out by Faetti and Marianelli [12], which
provides evidence for azimuthal director gliding of a strongly
anchored system as an electric field is applied across the layer.
Zenithal director gliding is observed as an electric field is
applied perpendicular to the bounding plates [6] and after the
applied electric field is removed [6,10]. By contrast, azimuthal
gliding is observed as an electric field is applied parallel to the
plates [12].

All investigations present simple models used to obtain the
best fit to each experiment. In Ref. [6], the authors argue that
the director angle at the gliding substrate can be fitted by a
sum of no fewer than three exponential terms, with the three
exponents determined independently for field on and off cases
(six exponents total). Buluy et al. [10] present a similar model
but consisting of two exponential terms, chosen specifically to
best fit the experimental data; while Faetti and Marianelli [12]
compare the experimental results with a stretched exponential
function and two fitting parameters.

In this paper, we develop mechanistic models that aim to
capture the physics of the interaction between NLC molecules
and the adjacent polymer-coated boundary, and that explain
the gliding data observed in all three sets of experiments.
The paper is laid out as follows: in Sec. II A, we present
the mathematical model that governs the evolution of the
director field, coupled to two gliding models that capture the
slow zenithal reorientation of the easy axis. Similarly, in Sec.
II B, we present a mathematical model that captures the slow
azimuthal reorientation of the easy axis as an electric field
is applied across the layer, parallel to the bounding plates.
Sections III A, III C, and III E summarize the experimental
data observed in Refs. [6,10,12], respectively, while Secs. III B,
III D, and III F present the numerical results of our models and
compare them to the experimental data. Section IV presents
the conclusions.

II. MATHEMATICAL MODEL

In the following we develop mathematical models for
director gliding for two simple cases in which the director field
is confined to a plane (zenithal gliding and azimuthal gliding).
In both cases the slow timescale on which gliding operates
(relative to the elastic response time of NLC molecules) will be
exploited to derive a simplified quasistatic model. We address
the case of zenithal gliding first.

A. Zenithal molecular orientation

The basic setup consists of a NLC layer bounded between
two parallel plates shown in Fig. 1. The local average molecular
orientation can be described by a unit vector director field n.
Since the experimental data considered in Refs. [6,10] describe
zenithal gliding, we assume that the director field lies in the
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FIG. 1. Sketch showing the setup of the zenithal model.

(x∗,z∗) plane, with its properties varying in the z∗ direction
only (the direction perpendicular to the bounding plates). Here
∗ is used to denote dimensional quantities; unstarred quantities
introduced later will be dimensionless. Hence, the director n =
(cos θ,0, sin θ ) can be written in terms of a single angle θ (z∗).
An electric field E∗ is applied perpendicular to the bounding
plates and is assumed to be uniform throughout the layer: E∗ =
E∗(0,0,1). In reality, the NLC molecules interact with the field,
leading to gradients in the field, but in many practical situations
such gradients may be shown to be small [13] and we assume
this is the case here.

Our mathematical model is based on the Ericksen-Leslie
continuum theory of nematics [14–16] where the total free-
energy density of the liquid crystal layer consists of the bulk
and surface energy densities, both functions of the director
orientation, n. With the above assumptions, the total free energy
per unit area is given by

J ∗ =
∫ h∗

0
W ∗dz∗ + g∗

0 |z∗=0 + g∗
h∗ |z∗=h∗ , (1)

where W ∗ is the bulk energy density and g∗
{0,h∗} are the Rapini-

Papoular surface energies at boundaries z∗ = 0,h∗ given by

W ∗ = K∗

2
θ2
z∗ − E∗2ε∗

0(ε‖ − ε⊥)

2
sin2 θ

− E∗(e∗
1 + e∗

3)

2
θz∗ sin 2θ, (2)

g∗
{0,h∗} = A∗

{0,h∗}
2

sin2(θ − α{0,h∗}). (3)

Here, K∗ represents the single elastic constant of the NLC,
under the frequent assumption that the bend and splay elastic
constants are equal in magnitude (i.e., K∗ = K∗

1 = K∗
3 ). The

parameter ε∗
0 = 8.854 × 10−12 C2N−1m−2 represents the per-

mittivity of free space, while ε‖ and ε⊥ are the relative dielectric
permittivities parallel and perpendicular to the long axis of
the nematic molecules, and e∗

1 and e∗
3 are the flexoelectric

coefficients, different for each liquid crystal type. In the
following, however, we will omit this flexoelectric contribution
from the model, noting that in the one dataset we compare to
with an applied field [6], the experiments use a high-frequency
AC power supply, so that over the relevant experimental
timescales the flexoelectric terms in the model will average to
zero. For the dielectric contribution, we consider the common
case in which the LC molecules align parallel with the electric
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FIG. 2. Sketch showing the setup of the azimuthal model.

field (rather than perpendicular to it) since the LC material
5CB used in Refs. [6,10] has a positive dielectric coefficient,
ε‖ − ε⊥ > 0. The parameters A∗

{0,h∗} represent the anchoring
strengths associated with each boundary, while α{0,h∗} are the
preferred zenithal anchoring angles at z∗ = 0,h∗ boundary (see
Fig. 1). Following the approach adopted in Refs. [13,17–19],
we assume that the system evolves as a gradient flow to its total
free-energy minimum, leading to the following time-dependent
problem:

μ∗θt∗ = K∗θz∗z∗ + ε∗
0(ε‖ − ε⊥)E∗2

2
sin 2θ, (4)

ν̃∗θt∗ = K∗θz∗ − A∗
0

2
sin 2(θ − α0)

∣∣∣∣
z∗=0

, (5)

−ν̃∗θt∗ = K∗θz∗ + A∗
h∗

2
sin 2(θ − αh∗)

∣∣∣∣
z∗=h∗

, (6)

where μ∗ and ν̃∗ represent the bulk and surface rotational
viscosities, respectively. In the following section, we briefly
discuss the model for azimuthal molecular orientation.

B. Azimuthal molecular orientation

The basic setup for an azimuthal model, shown in Fig. 2,
consists of a NLC layer bounded between two parallel plates
where the local average molecular orientation can be described
by a unit vector n, and anchoring is planar. Faetti and Marianelli
[12] consider a NLC layer bounded by two nearly parallel
plates creating a wedge cell of shallow angle. In our model, we
assume that the two bounding plates are exactly parallel, one
plate occupying the (x∗,y∗) plane, and that the director field lies
in a plane parallel to this plane, its properties varying in the z∗
direction only. Hence, the director n = (cos φ, sin φ,0) can be
written in terms of a single angle, φ(z∗). A uniform electric
field is applied parallel to the bounding plates and nearly
perpendicular to the x∗ axis: E∗ = E∗(cos 85◦, sin 85◦,0).

As with the zenithal model, we base the azimuthal model
on the free-energy density given in Eq. (1). Here, however, W ∗
and g{0,h∗} take the following form:

W ∗ = K∗

2
φ2

z∗ − E∗2ε∗
0(ε‖ − ε⊥)

2
cos2(φ − 85◦),

g∗
{0,h∗} = B∗

{0,h∗}
2

sin2(φ − β{0,h∗}),

where B∗
{0,h∗} represent the anchoring strengths associated

with each boundary while β{0,h∗} are the preferred azimuthal

anchoring angles at z∗ = 0,h∗, and all other parameters are as
defined previously. Again, assuming evolution via a gradient
flow to the total free-energy minimum, we obtain the following
time-dependent problem, analogous to Eqs. (4)–(6):

μ∗φt∗ = K∗φz∗z∗ + ε∗
0(ε‖ − ε⊥)E∗2

2
sin 2(φ − 85◦), (7)

ν̃∗φt∗ = K∗φz∗ − B∗
0

2
sin 2(φ − β0)

∣∣∣∣
z∗=0

, (8)

−ν̃∗φt∗ = K∗φz∗ + B∗
h∗

2
sin 2(φ − βh∗ )

∣∣∣∣
z∗=h∗

, (9)

where μ∗ and ν̃∗ represent the bulk and surface rotational vis-
cosities, respectively. In the following section, we supplement
Eqs. (4)–(6) and Eqs. (7)–(9) with additional models designed
to capture the slow molecular reorientation at the boundary
under the gliding process for both zenithal and azimuthal
models. We then proceed by introducing the scales used to
nondimensionalize the models.

C. Gliding

The orientation that NLC molecules adopt at a polymer-
coated boundary depends on several factors, including: the
preferred molecular orientation at the boundary (the easy
axis, also known as the anchoring direction); the anchoring
strength at the boundary; anchoring conditions at other nearby
boundaries, which can induce bulk elastic distortions leading to
molecular torques at interfaces; and any other external forces
(such as an applied electric field). At a nongliding surface,
the preferred orientation (easy axis) is a fixed property of the
NLC-surface pair, while at a gliding surface, the easy axis
can slowly reorient in time. The slow reorientation occurs
due to a sustained torque on the substrate molecules, created
(for example) by a prolonged exposure to an applied electric
field [2–5,7,8,20,21], or due to internal elastic stresses created
by different anchoring properties at the two boundaries of
a confined layer [22]. The (simplified) physical picture we
have in mind is that the surface substrate molecules (those
in contact with the NLC) experience competing forces: on one
hand, they are bound within the substrate; while on the other
hand, they interact with the molecules of the adjacent NLC.
At a nongliding surface, the former forces are fully dominant
and the surface substrate molecules remain firmly fixed. At a
gliding surface, however, the forces due to the NLC interactions
can be significant, and over timescales of minutes to hours, can
reorient the surface substrate molecules, leading to an attendant
change in the direction of the easy axis.

Figure 3 summarizes the zenithal gliding observed by Joly
et al. [6]. Under prolonged application of an applied field,
these authors tracked the evolution of the easy axis at the lower
surface (Nissan SE 3510), observing that its angle increases
from its initial value [Fig. 3(a)]. After the electric field is turned
off, the easy axis at this surface is tracked again, and is observed
to glide back almost to its initial position [Fig. 3(b)].

Similarly, Fig. 4 schematizes the experimental procedure
of Buluy et al. [10]. An electric field is applied continuously
across a layer, causing the anchoring angle at the lower sub-
strate (PVCN-F) to begin to deviate (glide) from its preferred
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FIG. 3. Schematic summarizing the drift of the easy axis (gliding)
at the lower substrate in Ref. [6] (a) during the time of application of
an electric field and (b) after the electric field is turned off. Anchoring
angles in this and following figures are not drawn to scale.

orientation. After the electric field is removed, the anchoring
angle glides back toward its initial position.

The experiment described in Ref. [12] consists of a slightly
different setup, shown in Fig. 5. Here, an electric field is applied
parallel to the bounding plates, at an angle of 85◦ from the x∗
axis. The preferred anchoring angles at the gliding surface are
parallel to the x∗ axis. Upon application of the electric field the

authors report an immediate jump of the easy axis, followed
by a gradual increase, attributed to gliding.

We propose two models to describe the gliding behavior
observed in Refs. [6,10,12], assuming in all cases that gliding
occurs at the surface z∗ = 0. In the following presentation we
assume the zenithal anchoring case, and later make the natural
extension to the azimuthal case. Both gliding models assume
the same basic principle: that the direction of the easy axis at the
gliding substrate is determined by how the substrate molecules
are anchored. If we think of the substrate molecules as able
to rotate slowly under torque, then the easy axis can rotate
also (gliding). Considerations of force-balance for the substrate
molecules on the timescales appropriate for gliding give that
the torques acting on them should equilibrate. We assume two
sources of torque: (i) a net force due to the interactions with the
adjacent NLC molecules which, we posit, should be a function
of [α0(t∗) − θ (0,t∗)] (the difference between the easy axis and
the director angles at that surface); and (ii) a resistive force. It
is reasonable to assume that the resistive force is an increasing
function of the rate of gliding, dα0/dt∗; lacking detailed data
to support a better model we assume linear dependence. These
considerations lead to a general gliding law of the form

dα0

dt∗
= f [α0(t∗) − θ (0,t∗)].

We consider two choices for the function f , motivated by the
experimental observations:

dα0

dt∗
= λ∗

0[α0(t∗) − θ (0,t∗)]

(
1 − |α0(t∗) − α0(0)|

αtol

)n

(Gliding Model I), (10)

and

dα0

dt∗
= λ∗

0[α0(t∗) − θ (0,t∗)] exp

(
−|α0(t∗) − α0(0)|

ᾱtol

)
(Gliding Model II). (11)

Both models assume that the gliding force on the substrate
molecules is as though they are tethered by springs to the
adjacent NLC molecules: for small displacements the force
is linear in the difference between anchoring angle and NLC
orientation angle, but for larger displacements the driving
torque decreases. This is in line with the experimental data,
which strongly suggest that the degree of gliding that can occur
is limited. In the first model, Eq. (10), we impose a maximal
gliding angle αtol, while in the second model, Eq. (11), we
assume the existence of some angle ᾱtol, below which gliding
follows an approximately linear model, and above which the
torque driving gliding drops rapidly. The exponent n in the first
model allows the degree of nonlinearity to be tuned to fit the
data. As one might anticipate, the two models display similar
behavior as n becomes large as we will see in Sec. III; indeed,
we find that large n is necessary for the model to fit well the
data. The parameter λ∗

0 in both models represents the relaxation
rate of the anchoring angle at the gliding surface z∗ = 0.

We note that the same principles used to derive Eqs. (10)–
(11) can be extended to the azimuthal case. To model az-
imuthal gliding, we replace the zenithal anchoring angles
α{0,h∗} with the azimuthal anchoring angles β{0,h∗}, the zenithal
director angle θ (·,t∗) with the azimuthal director angle φ(·,t∗)

and parameters αtol, ᾱtol with the corresponding parameters
βtol, β̄tol.

D. Scaling and nondimensionalization

We nondimensionalize Eqs. (4)–(6) (zenithal) and Eqs. (7)–
(9) (azimuthal) as follows:

z = z∗

h∗ , t = λ∗
0t

∗, (A,B){0,1} = h∗

K∗ (A∗,B∗){0,h∗}, (12)

where h∗ is the thickness of the NLC layer which varies
depending on the experimental setup. Note that time is scaled
using the gliding timescale, (λ∗

0)−1. This parameter will depend
on system characteristics, such as substrate material, treatment,
and the NLC used. We note also that the applied field may affect
not only the orientation of the NLC molecules but also that of
the polymer molecules in the coating layer (the material used
to coat the gliding surface in Ref. [6] is the polyimide Nissan
SE 3510, which has a dielectric constant of approximately
3.0). Therefore, we allow different values (based on the
experimental data) for λ∗

0 in “field on” and “field off” cases.
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FIG. 4. Schematic summarizing the drift of the easy axis (gliding)
at the lower substrate in Ref. [10] (a) during the time of application
of an electric field and (b) after the electric field is turned off.
As indicated, the authors do not provide data on the initial gliding
dynamics under the applied electric field.

After nondimensionalization, Eqs. (4)–(6) become

δθt = θzz + D sin 2θ, (13)

δν̃θt = θz − A0

2
sin 2(θ − α0) on z = 0, (14)

−δν̃θt = θz + A1

2
sin 2(θ − α1) on z = 1, (15)

and Eqs. (7)–(9) read as

δφt = φzz + D sin 2φ, (16)

δν̃φt = φz − B0

2
sin 2(φ − β0) on z = 0, (17)

−δν̃φt = φz + B1

2
sin 2(φ − β1) on z = 1. (18)

The parameter δ = (h∗2μ∗λ∗
0)/K∗ in Eqs. (13)–(18)

represents the ratio between the timescales of the bulk elastic
response of the NLC, given by h∗2μ∗/K∗ and the gliding
response, 1/λ∗

0. The parameter ν̃ = ν̃∗/(μ∗h∗) represents the
dimensionless surface viscosity, whileD represents the dimen-
sionless dielectric strength:

D = h∗2E∗2ε∗
0(ε‖ − ε⊥)

2K∗ . (19)

Nissan SE 3510

x∗ x∗

Gliding under EF

Electric
Field

y∗

1.4° 1.9°
y∗

FIG. 5. Schematic summarizing the drift of the easy axis (gliding)
in Ref. [12] during the application of an electric field.

We consider the common case in which the NLC molecules
align parallel to the electric field direction, so the dielectric
anisotropy is positive and D > 0 in our model. With the
following parameter values: h∗ ∼ 1.5–10 μm (h = 1.5 μm
in Ref. [6] and h = 10 μm in Ref. [10]), K∗ = 8 × 10−12N,
μ̃∗ = 0.1 N s m−2, ν̃∗ ∼ 10−10 N s m−1 [23], and relaxation
rates in the range of 0.3–3.7 min−1 (based on the experimental
data for zenithal gliding [6,10]; see later Secs. III B and
III D), we observe that δ � 1 and ν̃ � 1. Furthermore, since
the anchoring at the upper (nongliding) boundary is much
stronger than at the lower (gliding) boundary in both zenithal
experiments [6,10], we assume A1 � 1 (strong anchoring
at the upper boundary). Together these assumptions give, to
leading order in δ, ν̃, A−1

1 :

0 = θzz + D sin 2θ, (20)

0 = θz − A0

2
sin 2(θ − α0) on z = 0, (21)

θ = α1on z = 1. (22)

In the azimuthal gliding setup of Faetti and Marianelli,
both bounding surfaces experience gliding. With parameter
values h ≈ 50 μm in Ref. [12], K∗ = 8 × 10−12N, μ̃∗ =
0.1 N s m−2, ν̃∗ ∼ 10−10 N s m−1 [23], and relaxation rates
λ∗

0 = 0.275 min−1 (based on the experimental data [12]),
δ � 1 and ν̃ � 1. Hence, Eqs. (16)–(18) become

0 = φzz + D sin 2φ, (23)

0 = φz − B0

2
sin 2(φ − β0) on z = 0, (24)

0 = φz + B1

2
sin 2(φ − β1) on z = 1. (25)

The dimensionless forms of Eqs. (10) and (11) are

dα0

dt
= [α0(t∗) − θ (0,t)]

(
1 − |α0(t∗) − α0(0)|

αtol

)n

, (26)

dα0

dt
= [α0(t) − θ (0,t)] exp

(
−|α0(t) − α0(0)|

ᾱtol

)
, (27)

for zenithal gliding at z = 0, with analogous equations govern-
ing the gliding evolution of β0 and β1 in the azimuthal gliding
case.

Equations (20)–(22) together with Eq. (26) or Eq. (27)
make up the complete model that describes the evolution of
the easy axis within a NLC layer where the molecules are
allowed to bend and splay in the (x,z) plane and where gliding
can occur at z = 0. Similarly, Eqs. (23)–(25) together with the
azimuthal versions of Eq. (26) or Eq. (27) (gliding imposed at
both boundaries) make up the complete model that describes
the evolution of the easy axis within a NLC layer where the
molecules are allowed to twist about the z axis, while confined
to the (x,y) plane, and where gliding can occur at both z = 0
and z = 1.

We solve each set of equations numerically by implement-
ing the following procedure: first, we solve Eqs. (20)–(22)

032704-5



E. MEMA, L. KONDIC, AND L. J. CUMMINGS PHYSICAL REVIEW E 97, 032704 (2018)

[or Eqs. (23)–(25) in the azimuthal case] using the built-in
MATLAB routine BVP4c to obtain a solution θ (·,t) for the
director angle. Then, we use this solution in Eq. (26) or Eq. (27)
(or the corresponding azimuthal gliding models) to compute
the anchoring angle α0 (or β{0,1}) at the next time step. This
process is repeated until we have simulated the entire duration
of the corresponding experiment.

III. RESULTS

In this section, we first summarize briefly the experimental
results presented in Refs. [6,10,12]. Then, we present our
numerical results obtained by solving numerically Eqs. (20)–
(27) and make direct comparisons with the experimental data.

A. Overview of experimental results presented in Ref. [6]

The experimental setup considered in Ref. [6] consists of
a NLC layer bounded between two substrates treated such
that the lower substrate exhibits gliding, while anchoring is
strong and planar at the upper boundary. The initial preferred
anchoring orientation at the gliding boundary is α0 = 6.7◦,
measured from the horizontal axis (Fig. 3), before application
of the electric field. Joly et al. [6] observe the easy axis to
glide (zenithally) through an angle of 2.2◦ over the 150 h,
during which the electric field is applied, increasing from its
initial angle of 6.7◦ to 8.9◦. On removal of the electric field,
the easy axis direction glides back towards its initial position.
After 13 days, its angle has decreased to 7.3◦ (0.6◦ larger than
its value before the electric field was first applied). Joly et al.
[6] state that anchoring is “strong” at this gliding boundary
but do not provide precise values for anchoring strength, only
a lower bound on the anchoring extrapolation length at that
boundary. In the absence of firm data, we take A0 = 1500 for
the dimensionless anchoring strength at the gliding boundary,
an order of magnitude larger than the lower bound suggested
by their estimate.

Based on the values reported in Refs. [6,23,24], we solve
our models with the following parameter values: h∗ = 1.5 μm,
ε‖ − ε⊥ ∼ 5 for the dielectric coefficient, givingD = 69 when
E∗ = 5V μm−1.

In both gliding Models I and II [Eqs. (26) and Eq. (27),
respectively], we use the parameters αtol, ᾱtol and n (αtol and n

in Model I and ᾱtol in Model II) to fit the experimental results
shown in Ref. [6]. The goal of the remaining section is to
determine which values of n and αtol (for Model I) and ᾱtol (for
Model II) most accurately describe the experimental results.
These are the optimal parameters denoted by α

opt
tol , nopt, and

ᾱ
opt
tol , respectively.

B. Comparison of numerical results with data of Ref. [6]

We solve Eqs. (20)–(22) in conjunction with Eq. (26)
(Model I) and Eq. (27) (Model II) to obtain the evolution
of the anchoring angle, α0(t∗), at the gliding substrate, and
the director angle, θ (0,t∗) there. We quantify how well each
model predicts the gliding behavior observed in Ref. [6] by
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FIG. 6. The error min(||θexp[5] − θnum||2) vs. αtol for electric field
on and electric field off scenarios using Model I and the data of Ref. [6].
Each data point represents different n values.

introducing ||θexp − θnum||2 defined as

||θexp − θnum||2 =
√∫ t1

t0

(θexp − θnum)2dt, (28)

which denotes the norm of the difference between the exper-
imental data and the numerical results. In each model, the
norm is calculated for both gliding scenarios: (a) when the
electric field is turned on and (b) after it is turned off. In each
scenario, plots of ||θexp − θnum||2 versus αtol (not shown here)
demonstrate that there exists an optimal value of αtol (for each
n-value; Model I), or ᾱtol (Model II) that produces the best
global fit, i.e., the gliding curve with the lowest error. We denote
these optimal values by α

opt
tol , ᾱopt

tol , respectively. In what follows,
we discuss the numerical results obtained from each model in
detail.

1. Gliding Model I: Eq. (26)

We investigate the model behavior as parameters αtol and n

are varied. As discussed in Sec. III A, the values of several
model parameters have already been fixed. The remaining
parameter, the relaxation rate λ∗

0, is obtained by fitting the early
time behavior: we take λ∗

0 = 0.15 h−1 when the electric field
is turned on, and λ∗

0 = 20 h−1 when the electric field is turned
off; the values of αtol and n mainly affect the intermediate-to-
late time behavior.

Figure 6 presents the lowest norm, min||θexp − θnum||2, for
each n, versus the value of αtol giving this minimum, both when
an electric field is applied (results shown by black symbols)
and after the electric field is shut off (red symbols). We observe
that the minimized error, min||θexp − θnum||2, decreases as n

increases, for both electric field on and off cases. Hence, we
can conclude that highly nonlinear models [high values of n in
Eq. (26)] better describe the gliding behavior in both electric
field on and off scenarios.

The fitting procedure described above assumes both αtol

and n can be varied independently to obtain optimal results in
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and electric field off scenarios using Model I and the data of Ref. [6].
Each data point represents a minimum obtained over all relevant αtol

values (the minimizing values of αtol are not shown here).

the field-on and field-off cases. However, the results in Fig. 6
show that in fact there exist “optimal” modeling scenarios with
||θexp − θnum||2 < 0.1 in both electric field on and off gliding
scenarios, with the value of αtol fixed. For example, setting
αtol ≈ 4.3◦ together with n = 6 (electric field on) and n = 11
(electric field off) leads to a gliding curve with error norm
||θexp − θnum||2 = 0.06, for both electric field on and off cases.
Similar gliding curves with slightly higher errors (norm values)
can be obtained by setting α

opt
tol = 2.0◦ and 2.6◦ (and their

corresponding values of n, seen in Fig. 6). Note that we choose
to restrict n to integer values in Model I.

A similar conclusion can be reached when fixing n

and varying αtol. Figure 7 illustrates the minimized error,
min||θexp − θnum||2, versus n for the two gliding scenarios of
Joly et al. [6] (the values of α

opt
tol that give the lowest norm

are not shown in the figure). We observe that in both gliding
scenarios, as the value of n increases, the minimum error
decreases, reaching a plateau value of less than 0.06 at large
n. We obtain the best fit to the experimental data when n = 12
and αtol = 8.12◦ for the electric field on case, and n = 12
and αtol = 4.6◦ for the electric field off case [see Eq. (26)].
As in the previous scenario, the lowest error is achieved by
a highly nonlinear model [Eq. (26) with n = 12; though in
fact any n � 5 gives an acceptably small error]. Figures 6
and 7 illustrate that we do not need to vary two parameters
αtol and n independently to obtain a good global fit to the
experimental data observed in Ref. [6]. Moreover, they show
that higher values of n lead consistently to better descriptions
of the experimental data.

2. Gliding Model II: Eq. (27)

Motivated in part by the strong nonlinearity suggested by
the results just described, we now investigate how Model II
[given by Eq. (27)] predicts the experimental data observed by
Ref. [6]. This model has the advantage of only one variable
parameter, ᾱtol. This parameter represents a threshold below
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FIG. 8. The error ||θexp[5] − θnum||2 vs. ᾱtol for electric field on and
electric field off scenarios using Model II and the data of Ref. [6].

which gliding follows a linear model and above which the
torque driving gliding drops rapidly, and we enter a strongly
nonlinear regime. As with Model I, we quantify how well
the numerical results compare with the experimental data by
varying the parameter ᾱtol and measuring the error between
the experimental data and numerical results, ||θexp − θnum||2
[defined in Eq. (28)].

Figure 8 presents the norm ||θexp − θnum||2 as ᾱtol varies.
We observe that in both gliding scenarios there exists an
optimal value of ᾱtol, ᾱ

opt
tol , such that ||θexp − θnum||2 is min-

imized. In the electric field on case, ᾱ
opt
tol = 0.63◦ (resulting

in ||θexp − θnum||2 < 0.06); while in the electric field off case,
ᾱ

opt
tol = 0.33◦ (giving ||θexp − θnum||2 < 0.05). Note that Model

II is able to describe the experimental data observed in Ref. [6]
as accurately as Model I with only one variable parameter: in
both gliding scenarios, the error norm ||θexp − θnum||2 < 0.06,
similar to Model I.

3. Comparison of models with experimental data

We now illustrate how the best fits for the two models,
obtained as described above, compare to the experimental
results of Joly et al. [6]. Figure 9 shows the gliding evolution
of θ (0,t∗) using Model I (solid black line) and Model II
(dashed red line) plotted on the same axis as the gliding data
obtained in Ref. [6] (a) when an electric field is turned on
and (b) after the electric field is turned off. Experimental data
were extracted from Ref. [6] (and later from Refs. [10,12])
using Data Thief III (Ref. [25]). In both cases we convert our
model results to show evolution in dimensional time (hours),
since that is how the experimental data are presented in the
original work. In the electric field on scenario, we use n = 12
and αtol = 8.12◦ to obtain the best fit with Model I and we
use ᾱtol = 0.63◦ to obtain the best fit with Model II. After
the electric field is turned off, the best gliding fit is obtained
using n = 12 and αtol = 4.6◦ for Model I and ᾱtol = 0.33◦ for
Model II; these parameters produce gliding curves with the
lowest error: ||θexp − θnum||2 < 0.06 in all cases. We observe
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FIG. 9. Experimental results [6] (blue circles) and the results for
θ (0,t∗) using Models I (solid black line) and II (dashed red line) when
the electric field is (a) on and (b) off. Parameters used to obtain the
numerical results using Model I are: (a) λ∗

0 = 0.15 h−1, n = 12, αtol =
8.12◦ and (b) λ∗

0 = 20 h−1, n = 12, αtol = 4.6◦. Parameters used to
obtain the numerical results using Model II are: (a) λ∗

0 = 0.15 h−1,
ᾱtol = 0.63◦ and (b) λ∗

0 = 20 h−1, ᾱtol = 0.33◦.

that our numerical results provide an excellent fit to the gliding
evolution observed in Ref. [6], with gliding Model II [Eq. (26)]
performing slightly better than gliding Model I [Eq. (27)].

C. Overview of experimental results presented in Ref. [10]

Buluy et al. [10] consider a set up similar to that of Joly
et al. [6]. A layer of 5CB is bounded between two parallel
plates, 10 μm apart, treated such that only the lower substrate
exhibits gliding. The initial preferred anchoring orientation
is measured to be α0 = 0.8◦ from the horizontal axis, with
anchoring strengthA∗

0 ∼ 0.25 × 10−3 Jm−2, corresponding to
A0 = 312 [Eq. (12) with h = 10 μm]. An electric field of
magnitude 1 Vμm−1 is applied perpendicularly to the substrate
for a period of 16 h, during which gliding occurs. The field is
then removed and the new easy axis orientation is measured:
3.0◦. The easy axis then begins to glide back toward its
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FIG. 10. The error min(||θexp[9] − θnum||2) vs. αtol for electric field
off using Model I and the data of Ref. [10]. Each data point represents
different n values.

original orientation, and its evolution is tracked over a period of
1000 h.

D. Comparison of numerical results with data of Ref. [10]

We use a similar approach to Sec. III B, where we com-
pare the experimental results obtained in Ref. [10] under
zenithal gliding with the numerical results obtained by solving
Eqs. (20)–(22) in conjunction with Eq. (26) (Model I) or
Eq. (27) (Model II). We use the technique described at the
end of Sec. II D to obtain the gliding evolution of θ (0,t∗) using
the following parameters: A0 = 312, α0(0) = 0.8◦, D = 0 (in
Ref. [10] the authors only present data for the gliding after the
electric field has been removed, so we are only able to compare
our model for this regime). As with the experimental data in
Ref. [6] (see Sec. III B 1) the relaxation rate λ∗

0 is obtained by
fitting the early time behavior of the numerical results to the
experimental data and it is set to λ∗

0 = 3.7 min−1.

1. Gliding Model I: Eq. (26)

We investigate the numerical results obtained by solving
Eqs. (20)–(22) together with Eq. (26) and observe (as in Sec.
III B) that for each value of n, there exists an optimal value of
αtol, α

opt
tol , that produces the best global fit to the experimental

data. Figure 10 shows the smallest error, min||θexp − θnum||2
plotted against the corresponding value of αtol, for different
integers n. We observe that as n increases, the error between
the numerical results and experimental data decreases at first
(when n < 6), reaching its lowest value (||θexp − θnum||2 <

0.05) when n = 6 (and αtol = 5.4◦), followed by a slight
increase when n > 6. Hence, we conclude that the parameters
n = 6 and αtol = 5.4◦ in Model I lead to the best global approx-
imation of the experimental results reported in Ref. [10] with
an error ||θexp − θnum||2 < 0.05. Note that, as with the zenithal
gliding data reported in Ref. [6], a highly nonlinear model
(n = 6 and αtol = 5.4◦) is needed to best fit the experimental
data observed in Ref. [10].

032704-8



DIRECTOR GLIDING IN A NEMATIC LIQUID CRYSTAL … PHYSICAL REVIEW E 97, 032704 (2018)

αtol (deg)
0 0.5 1 1.5 2 2.5 3

||θ
ex

p
−

θ n
um

|| 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

FIG. 11. The error ||θexp[9] − θnum||2 vs. ᾱtol for electric field off
scenario using Model II and the data of Ref. [10].

2. Gliding Model II: Eq. (27)

We now investigate whether Model II given by Eq. (27)
can better describe the gliding data observed in Ref. [10].
Figure 11 shows the norm of the difference between numerical
and experimental results plotted against ᾱtol. Here, as in
Fig. 8, we observe that there exists an optimal value of ᾱtol,
ᾱ

opt
tol = 0.75◦ such that ||θexp − θnum||2 is minimized (||θexp −

θnum||2 < 0.08). Note that although Model II [Eq. (27)] leads
to a slightly “worse” prediction with ||θexp − θnum||2 ≈ 0.079
than Model I (with ||θexp − θnum||2 < 0.05 when n = 6 and
αtol = 5.4◦), it requires only a single fitting parameter, ᾱtol.

3. Comparison of models with experimental data

We now illustrate how the best numerical results for both
models compare to the experimental data of Ref. [10]. Fig-
ure 12 shows the gliding evolution of θ (0,t∗) using Model
I (solid black line) and Model II (dashed green line) plotted
on the same axis as the gliding data (again we convert our
simulation results to dimensional time, measured in minutes).
The best fit for Model I is obtained when n = 6 and αtol =
5.4◦; while for Model II it is obtained when ᾱtol = 0.75◦.
These parameters lead to gliding curves with the lowest error:
||θexp − θnum||2 < 0.05 (Model I) and ||θexp − θnum||2 < 0.08
(Model II). We observe that each model provides an excellent
fit to the gliding evolution shown in Ref. [10], with gliding
Model I [Eq. (27)] performing slightly better than gliding
Model II [Eq. (26)].

E. Overview of experimental results presented in Ref. [12]

The experiment considered by Faetti and Marianelli in
Ref. [12] consists of a slightly different setup, designed to
induce azimuthal gliding of the easy axis: a wedge cell con-
taining NLC is bounded between two substrates treated such
that they both exhibit gliding. The initial preferred anchoring
orientation at each boundary is β{0,1} = 0◦, measured from the
x∗ axis [see Fig. 5 and Eqs. (23)–(25)]. Faetti and Marianelli
state that anchoring is “strong” at both boundaries with an-
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FIG. 12. Evolution of θ (0,t∗) using Models I (solid black line)
and II (dashed green line) and the experimental data of Ref. [10] (blue
circles; obtained after the electric field is turned off). Parameters for
Model I are: λ∗

0 = 3.7 min−1, n = 6, and αtol = 5.4◦; and for Model
II, λ∗

0 = 3.7 min−1, ᾱtol = 0.75◦.

choring strength values around B∗
{0,h∗} ∼ 0.33 × 10−3 Jm−2.

An electric field of magnitude 0.25 V μm−1 is applied parallel
to the lower plate, at an angle 85◦ from the x axis.

Based on the reported data [12] we solve our model
with the following parameter values: h∗ = 75 μm, ε‖ − ε⊥ ∼
13.1, K∗ = 3.93 × 10−12 N, B∗

{0,h∗}∼0.33 × 10−3 Jm−2, and
obtain B{0,1} = 4500 and D = 5188 for the dimensionless an-
choring strength and dielectric coefficient, respectively, when
E∗ = 0.25 V μm−1.

As the electric field is turned on, Faetti and Marianelli [12]
initially report a jump of the easy axis from 0◦ to 1.4◦ from
the x axis in the first 2 min followed by a gradual increase to
1.9◦ over approximately 60 min. We attribute the initial jump
to the response of the NLC molecules to the electric field and
the subsequent gradual increase to gliding.

F. Comparison of numerical results with data of Ref. [12]

For these experimental data we present only results obtained
from Model II [Eqs. (23)–(25) plus Eq. (27)], since Model I
proves less satisfactory here. Given the parametersB0 = 4500,
β0(0) = 0◦, D = 5188, determined in Sec. III E above, we
obtain very good agreement with the data using the value
of β̄tol that minimizes ||φexp − φnum||2 (as with our previous
examples, the value of λ∗

0 is obtained by fitting the early time
behavior of the numerical results to the experimental data:
λ∗

0 = 0.275 min−1).
Figure 13 illustrates the well-defined minimum of the error

||φexp − φnum||2 [defined as in Eq. (28)], obtained at β̄
opt
tol =

0.1◦. Figure 14 shows the direct comparison of numerical
results (red curve) and experimental data (blue circles, [12])
for this value of β̄tol. We use the reported post-jump value,
φ(0,0) = 1.4◦, as our initial condition, attributing the fast
initial change to the initial response to the applied field, before
any gliding occurs (such a jump in φ(0,0) would be observed
even at a nongliding surface, with finite anchoring strength).
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scenario using Model II and the data of Ref. [12].

As with the previous cases considered, the fit obtained with
Model II is excellent.

IV. CONCLUSIONS

We present two simple models that describe the evolution of
the director field within a NLC layer in the following scenarios:
(i) when an electric field is applied perpendicularly to the plates
and zenithal gliding occurs at one plate; and (ii) when an
electric field is applied parallel to the plates and azimuthal
gliding occurs at both plates. We investigate in detail the
long-term evolution of the easy axis on the gliding surface
that occurs both when the layer is subjected to an electric
field and after the electric field is turned off. The models that
we introduce are based on the assumption that the anchoring
angles, α0 (zenithal gliding) and β0,β1 (azimuthal gliding),
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FIG. 14. Evolution of φ(0,t∗) using Model II (solid red line) and
the experimental data of Ref. [12] (results obtained under an electric
field applied at time t∗ = 0). Parameters used to obtain the numerical
results are: λ∗

0 = 0.275 min−1 and β̄tol = 0.1◦.

reorient at a rate that depends on the difference between
the anchoring angle and the surface director at the gliding
surface. In Model I, given by Eq. (26), gliding persists until
the anchoring angle has changed by a maximal amount, αtol (or
βtol in the azimuthal gliding case), or until the director takes the
same value as the preferred anchoring angle at the boundary. In
Model II, given by Eq. (27), we assume the existence of some
angle ᾱtol (β̄tol for azimuthal gliding), below which gliding
follows an approximately linear model, and above which the
torque driving gliding drops rapidly. In each model, we take
advantage of the separation of the time scales between gliding
and the elastic response, and assume a quasistatic model to
describe the evolution of the director field within the layer. We
investigate in detail how the easy axis evolves in time under the
two gliding models, and compare our numerical results with
the experimental data observed in Refs. [6,10,12].

We observe that, given the appropriate parameter values,
αtol(βtol),λ∗

0 and n for each zenithal (azimuthal) experiment,
both models predict the gliding data observed in Refs. [6,10,12]
extremely well. Model I obtains a slightly better global fit to
the data of Refs. [6,10] (Secs. III B and III D), but uses two
fitting parameters (an exponent n characterizing the degree of
nonlinearity, in addition to the limiting gliding angle). Model
II performs only marginally worse in terms of overall error,
with the advantage of only a single fitting parameter in the
nonlinear regime. The fact that the optimal values for the fitting
parameters are found to be different in field-on and field-off
cases is attributed to the possible effect that the electric field has
on the molecules of the polymeric bounding substrate itself.
Since excellent overall fits are obtained to all datasets with this
model, we suggest that Model II provides a simple, robust way
in which to characterize director gliding, in the presence or
absence of an electric field.

After this work was completed, another study by Antonova
et al. [26] was brought to our attention. This study shares some
similarities with those of Refs. [6,10], in that the same basic
experimental setup is considered (application of an electric
field across a NLC layer with strong anchoring at one substrate
and gliding at the other; the same polymer, PVCN-F, was used
as in the experiments of Buluy et al. [10] at the gliding surface),
and a tri-exponential function of the kind used by Joly et al. [6]
is used to fit the data, again confirming the strong nonlinearity
of the gliding response. Antonova et al. [26], however, take the
work further, repeating the experiment through several cycles
of gliding to study the aging of the system. Given that our
simulations do not exhibit full reversibility (on removal of the
electric field the easy axis does not return to its exact value
before application of the field), our model has the potential to
capture dynamically such system aging. It would be interesting
in future to pursue this direction making direct comparison to
the experimental data of Ref. [26].
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