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Materials comprised of deformable particles such as microgels and concentrated emulsions and foams
display complex rheological behavior that includes a yielding transition from an elastic solid to viscous
fluid. Most studies of this class of soft matter involve shear flows, and only a handful report both shear and
normal stresses. We present measurements of the shear stress and two normal stress differences for a
microgel subjected to constant shear rate flows. The shear stress evolves through the yield point in a manner
indicative of simple yield stress fluid behavior. Prior to yielding, the normal stress differences are
immeasurable; beyond the yield point, they evolve in a reproducibly chaotic manner.
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Yield stress fluids are an important class of soft matter
that display complex rheological behaviors. Materials such
as microgels [1], foams [2], and concentrated suspensions
[3,4] and emulsions [5], which are sometimes referred to as
soft particle glasses, often display yield stress fluid behav-
ior. Common examples of yield stress fluids include foods,
personal care products, mud, and cement. The rheological
behavior of yield stress fluids, which is crucial to their
function, is often described as elastoviscoplastic (EVP).
Prior to yielding, EVP materials behave like an elastic
solid, and after yielding they behave like a viscous fluid.
During the past two decades, there has been a surge in
research on the rheological behavior of this important class
of soft matter, and several excellent reviews are available
[6–9].
So-called simple yield stress fluids [9–13] display non-

thixotropic rheological behavior; that is, the stress depends
only on the applied strain rate and not on the prior
deformation history. Several systems including foams,
emulsions, and dispersions appear to behave as simple
yield stress fluids [10–14]. The most widely studied simple
yield stress fluid is a microgel known as Carbopol [14–17],
which is a dispersion of swollen, cross-linked polyacrylic
acid particles having a diameter of ∼10 μm. A common test
for simple yield stress behavior is to subject the sample to a
shear stress σ that is cycled from low to high to low values
and the shear rate _γ is measured—the absence of hysteresis
over the cycle indicates simple yield stress fluid behavior.
In principal, both experimental and theoretical studies of
simple yield stress fluids are more straightforward com-
pared to thixotropic fluids.
A critical issue in yield stress fluid rheology is the

determination of the stress (or strain) at which the solid-to-
fluid transition occurs, or the yield point [18–20]. Typically,
the yield point is quantified by a critical stress called the
yield stress τy below which the material displays solid
elastic behavior. One approach to determine the (dynamic)

yield stress τy is to subject the sample to a range of shear
stresses σ and identify the shear stress where the measured
the shear rate _γ vanishes. Alternatively, the sample is
subjected to a constant shear rate _γ and the point where
the shear stress σ deviates from a linear dependence on
strain γð¼ _γtÞ, or goes through a maximum, determines the
(static) yield stress τy.
The preponderance of rheological studies on yield stress

fluids involve simple shear deformations, and, with a few
exceptions, only the shear stress σ is considered. However,
complex fluids subjected to shear deformations develop
normal stresses [21–24], which result from anisotropy of
the fluid microstructure. For an incompressible fluid sub-
jected to simple shear flow with shear rate _γ ¼ ∂v1=∂x2, the
extra stress tensor τ is completely described by the shear
stress σ ¼ τ12 ¼ τ21 and the first N1 ¼ τ11 − τ22 and
second N2 ¼ τ22 − τ33 normal stress differences. While
notoriously difficult to measure, it is well established that
N1 > 0 and −N2 ≪ N1 for polymeric liquids [21,22],
while the picture is less clear for concentrated hard-
sphere suspensions [25,26]. By contrast, the evolution of
normal stresses in soft jammed matter remains virtually
unexplored.
In this Letter, we report new and somewhat surprising

results that illuminate the behavior of normal stresses
during the yielding of a soft particle glass in shear
deformations. The shear stress and two normal stress
differences (σ, N1, and N2) are measured for a Carbopol
microgel that is usually classified as a “simple” yield stress
fluid, so that the complete state of stress is known prior to,
at, and beyond the yield point. Great effort is taken to
eliminate artifacts in these measurements, including one
that appears to have previously been overlooked. We
further show that the designation of yield stress fluids as
simple based solely on shear stress may be inadequate.
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The small number of studies [27–33] that have reported
normal stresses for yield stress fluids show significant
variability. For Carbopol microgels and foams, several
studies report N1 > 0 [28–32] and N1−N2>0ðN2<0Þ
in constant shear rate and large amplitude oscillatory shear
deformations [31,32]. However, N1 < 0 and N1 − N2 < 0
have also been reported for microgels in constant stress
flows [33]. It is noteworthy that in several studies correc-
tions were applied for signal drift and capillary stresses to
ensure N1 > 0 at small shear rates [31,32].
The scarcity of normal stress data on yield stress fluids

severely limits attempts to understand the rheological
behavior of EVP fluids. Normal stresses are important to
the function of yield stress fluids, which are often subject to
complex deformations [34–37]. Thus far, the classification
of simple yield stress fluid behavior is based entirely on
the shear stress σ. An incomplete characterization of the
state of stress in yield stress fluids also hinders attempts to
develop both microstructural models and phenomenologi-
cal rheological constitutive equations [38–44].
A simple model for EVP rheological behavior in iso-

choric, simple shear flows can be written as

σ ¼ Gγ; for σ < τy; ð1Þ

σ ¼ τy þ K _γm; for σ ≥ τy; ð2Þ

which has four parameters: the shear modulus G, the
viscosity coefficient K, the power-law index m, and the
yield stress τy. In the limit G → ∞, (2) is known as
the Herschel-Bulkley model [45], and if m ¼ 1 and
K → η, the Bingham model [46] with viscosity η is
obtained. The model involving both elastic (1) and viscous
(2) behavior is associated with Oldroyd [47].
The most widely used yielding criterion for yield stress

fluids is the von Mises yielding criterion:
ffiffiffiffiffiffi

IIτ0
p

≥ τy, where
IIτ0 ¼ 1=2ðτ0∶τ0Þ is the second invariant of the deviatoric
stress tensor: τ0 ¼ τ − trðτÞ=3δ. For simple shear flows, the
von Mises yielding criterion is given by

ffiffiffiffiffiffi

IIτ0
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 þ ðN2
1 þ N1N2 þ N2

2Þ=3
q

≥ τy: ð3Þ

The EVP model in (1) and (2) implies N1 ¼ N2 ¼ 0 so that
ffiffiffiffiffiffi

IIτ0
p ¼ σ. Several studies have attempted to evaluate the
von Mises yielding criterion by considering elongational
[48–50] and complex (nonviscometric) [51,52] flows. For
example, in simple elongational flow with strain rate
_ϵ ¼ ∂v1=∂x1,

ffiffiffiffiffiffi

IIτ0
p ¼ σu=

ffiffiffi

3
p

, where σu ¼ τ11 − τ22 is
the tensile stress. Hence, according to the von Mises
criterion, the tensile stress σu at the yield point in simple
elongation is a factor of

ffiffiffi

3
p

larger than the yield stress in
simple shear. These flows are a challenge to realize
experimentally and/or are difficult to interpret, how-
ever, which has resulted in somewhat inconclusive results

[48–53]. Moreover, most attempts to test the von Mises
yielding criterion ignore contributions of N1 and N2 to the
yield stress criterion given in (3).
In the present study, experiments were conducted in both

cone-plate and parallel-plate geometries. For cone-plate
flow, the shear rate is approximately uniform throughout
the sample _γ ¼ Ω=β, where Ω is the angular velocity of the
cone and βð≪ 1Þ is the cone angle. The shear stress σ and
first normal stress difference N1 can be obtained from the
torqueM and axial force F exerted on the plate [21,22]. For
parallel-plate flow, the shear rate has a linear dependence
on radial position, and the shear rate at the edge of the plate
is _γR ¼ ΩR=H, where R is the plate radius and Hð≪ RÞ is
the plate separation. The shear stress σ and difference of
normal stress differences N1 − N2 are determined from the
torqueM and axial force F exerted on the plate using well-
known relations [21,22] (see Supplemental Material [54]).
All results presented here are for a 1.0% Carbopol

microgel. This material and the procedure used to prepare
it (see Supplemental Material [54]) are similar to those
described in the literature for making simple yield stress
fluids [10–12,16,17,32,33,42]. Cone-plate and plate-plate
fixtures were coated with sandpaper (400 grit, ∼20 μm
roughness) to mitigate slip. Experiments were performed at
room temperature 22� 1 °C with the sample inside an
environmental chamber having a water-saturated sponge to
minimize evaporation. Rheological data were obtained
using two instruments: an MCR302 (Anton Paar) con-
trolled stress rheometer and an RMS800 (Rheometrics,
Inc.) controlled strain rheometer. Samples were subjected
to a preshear consisting of the following sequence: _γ
ðor _γRÞ ¼ 1.0;−1.0; 1.0;−1.0 s−1 each for 100 s and then
allowing 30 min before rheological tests were performed.
A parallel-plate geometry (R ¼ 25.0 mm, H ¼ 2.0 mm)

was employed on the MCR302 to measure the complex
modulus G�ðωÞ ¼ G0ðωÞ þ {G00ðωÞ, where G0ðωÞ and
G0ðωÞ are the storage and loss moduli, respectively, in
small-amplitude oscillatory shear over a range of frequen-
cies ω. This device was also used with a cone-plate
geometry (R ¼ 25.0 mm, β ¼ 0.1) to conduct experiments
where _γ ½s−1� was ramped from 0.004 → 10 → 0.004 and
the steady-state shear stress σ was measured. The results of
this test are shown in Fig. 1, where the absence of hysteresis
in the flow curve indicates simple yield stress fluid
behavior [9–13]. This figure includes a fit of the
Herschel-Bulkley model (2) to the shear stress σ giving
a (dynamic) yield stress τy ¼ 112 Pa. The inset shows the
dynamic moduli G0ðωÞ and G0ðωÞ from which we estimate
the shear modulus G ¼ G0ð0.1 rad=sÞ ¼ 780 Pa.
Constant shear rate experiments were made on the

RMS800 with cone-plate fixtures (R ¼ 25.0 mm,
β ¼ 0.1 rad) and parallel-plate fixtures (R ¼ 25.0 mm,
H ¼ 2.0 mm) for _γðor _γRÞ ¼ 0.01; 0.1; 1.0 s−1 to a strain
of γ ¼ _γt ðor γR ¼ _γRtÞ ¼ 2.0. For each shear rate and
geometry, data were collected for at least ten repeat
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experiments that involved multiple sample loadings and
alternating the sign of the applied shear rate. We note that,
in conducting these experiments, great care was taken to
minimize the effects of transducer axial compliance on
normal stress difference measurements [56–64], which
does not appear to be the case in previous studies [31–
33] reporting normal stresses for yield stress fluids (see
Supplemental Material [54]).
Results from constant shear rate experiments are shown

in Fig. 2. Shear stress σ and first normal stress differenceN1

versus strain γ for shear rate _γ ¼ 0.1 s−1 for 12 repeat cone-
plate flow experiments are shown in Fig. 2(a). From this
figure, we see that σ initially displays a linear dependence
on γ followed by a monotonic approach to a constant
(steady) value and also that the repeat experiments have a
high degree of reproducibility with variations that are

comparable to the experimental uncertainty. The first
normal stress difference N1 shown in Fig. 2(a) is immeas-
urably small for γ ≲ 0.15, after which it evolves in a rather
chaotic manner with variations that are much larger than the
uncertainty of the measurement. It is important to empha-
size that, for each of the 12 repeat experiments shown in
this figure, σ and N1 were measured simultaneously. In
other words, looking only at σ, which show a high degree of
reproducibility, one would conclude that this material is a
simple yield stress fluid, while the chaotic behavior of N1

would suggest otherwise.
The shear stress 2M=πR3 and normal stress 2F=πR2

versus strain γR for shear rate _γR ¼ 0.1 s−1 for ten repeat
parallel-plate flow experiments are shown in Fig. 2(b).
From this figure, we see that the shear stress data are
qualitatively similar to σ data in Fig. 2(a) and show good
reproducibility. The normal stress data in Fig. 2(b) are
immeasurably small for γR ≲ 0.15 and then evolve to a
significant magnitude in a chaotic manner. Again, it is
important to emphasize that, for each of the ten repeat
experiments shown in Fig. 2(b), 2M=πR3 and 2F=πR2 were
measured simultaneously. Previous studies [28,30,32,33]
reporting normal stress data on similar Carbopol microgels
do not mention the reproducibility of these measurements
nor if they were chaotic in nature.
In Fig. 2(c), we show the average shear stress σ and

first normal stress difference N1 from the data in Fig. 2(a)
and the shear stress σ and difference of normal stress
differences N1 − N2 computed (see Supplemental Material
[54]) from the average of the data in Fig. 2(b), versus strain
γ. The good agreement of the shear stress σ from cone-plate
and parallel-plate geometries suggests that slip is not
present in the experiments. Prior to yielding γ ≲ 0.15, it
appears that both normal stress differences are effectively
zero. At and beyond the yield point γ ≳ 0.15, in spite of the
chaotic nature of the repeat experiments for the normal
stress measurements, it appears that N1 ∼ 0 while
N1 − N2 > 0, which means N2 < 0. The results presented
in Fig. 2 appear to be the first showing the evolution of the

0.0 0.5 1.0 1.5 2.0
-200

-100

0

100

200

300

0.0 0.5 1.0 1.5 2.0
-100

0

100

200

300

400

0.0 0.5 1.0 1.5 2.0
-250

0

250

500

750

σ 
[P
a]

 

γ

(a) (b) (c)

-400

-200

0

200

400

600

N
1
[P
a]

 

2M
/π

R
3  [P

a]
 

γR

-200

0

200

400

600

800

2F
/π

R
2  [P

a]
 

σ,
 N
1, 

N
1−

N
2
[P
a]

 

γ

FIG. 2. Shear and normal stresses versus strain γðγRÞ for 1% Carbopol microgel for constant shear rate _γ ¼ _γR ¼ 0.1 s−1. (a) σ (○) and
N1 (□) from cone-plate flow for 12 repeat experiments (different color symbols); (b) 2M=πR3 (○) and 2F=πR2 (□) from parallel-plate
flow for ten repeat experiments (different color symbols); (c) average σ (○) and N1 (□) from (a) and computed σ (red curve) and
N1 − N2 (blue curve) from averages of the data in (b). Symbols with error bars represent uncertainty of measured quantities in (a) and
(b), and error bars in (c) represent standard deviations from repeat experiments or estimated errors in computed quantities.
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FIG. 1. Flow curve for 1% Carbopol microgel measured in
cone-plate flow showing shear stress σ (_γ increasing ⊗, decreas-
ing ○) versus shear rate _γ. The solid curve is a fit of (2) with
τy ¼ 112 Pa, K ¼ 123 Pa sm, and m ¼ 0.32. The inset shows
dynamic moduli G0ð○Þ and G0ð□Þ versus frequency ω.
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normal stress differences in a yield stress fluid with strain
(time) as the material undergoes a yielding transition.
Results obtained at two other shear rates _γðor _γRÞ ¼
0.01; 1.0 s−1 display qualitatively similar behavior to that
shown in Fig. 2 (see Supplemental Material [54]).
Shear stress σ versus strain γ results for three shear rates

_γ ½s−1� ¼ 0.01, 0.1, 1.0 are shown in Fig. 3. For γ ≲ 0.15,
the shear stress σ is independent of _γ and has a linear
dependence on γ. Also shown in this figure is

ffiffiffiffiffiffi

IIτ0
p

computed from (3) using the results in Fig. 2, which is
consistent with σ for γ ≲ 0.15 as expected, since both N1

and N2 are small for this strain level. Hence, prior to
yielding, the behavior of the Carbopol microgel yield
stress fluid can be described as a Hookean elastic solid
(1). These results also suggest that the von Mises yield
criterion is simply σ ≥ τy, which is consistent with
those in Refs. [31,32,48–51] but contradicts those of
Refs. [33,52,53]. For γ ∼ 0.15, at which point the shear
stress σ coincides with the yield stress τy ¼ 112 Pa
obtained from the flow curve in Fig. 1, the shear stress
deviates from σ ∝ γ, and the normal stress differences N1

and N2 develop so that
ffiffiffiffiffiffi

IIτ0
p

deviates from σ. The results in
Figs. 2 and 3 indicate that normal stresses in yield stress
fluids develop only at the yielding point and are unim-
portant prior to yielding.
Figure 4 shows steady-state, postyield, values of the

shear stress σ and normal stress differences N1 and N2

versus shear rate _γ. Within the standard deviation of the
repeat experiments, N1 ∼ 0, but the data in this figure
suggest a sign change over this range of shear rates. In spite
of the large uncertainty, results for the second normal stress
difference are more clear N2 < 0. In relation to previous
studies with normal stress measurement on similar
Carbopol microgels, N1 > 0 at shear rates _γ ≳ 1 s−1 has

been reported [28,30,32]. The results of Ref. [32] also show
N2 < 0, and, for _γ ≲ 1 s−1, N1 data have large standard
deviations obtained from (two) repeat experiments and
appear to decrease with decreasing shear rate. Experimental
and simulation results for concentrated hard-sphere sus-
pensions [26,65] and experimental results for emul-
sions [31,66] show similar behavior, that is, small N1

and N2 < 0.
The experimental results presented in this Letter are

strong evidence that the yielding transition for soft particle
glasses in constant shear rate flow triggers the growth and
chaotic evolution of normal stresses, while the shear stress
evolves in a reproducible manner. We now address the
question of how these unexpected macroscopic observa-
tions are related to material microstructure and its flow-
induced change. Prior to each test, the sample is subjected
to a (pre)shear deformation and allowed to rest for at least
30 min, which determines the initial microstructure (state)
for a subsequent test. At small strains γ ≲ 0.15, the shear
stress σ results from the elastic deformation of the jammed
particles that are trapped in their cages. The absence of
normal stresses for γ ≲ 0.15 suggests that the particles
initially have an isotropic distribution. As the material
undergoes a yielding transition for γ > 0.15, the particles
are released from their cages, allowing the microstructure to
become anisotropic, which results in normal stresses. The
initial microstructure of the microgel examined in this work
appears to be relatively unimportant to the evolution of the
shear stress σ. The normal stress differences N1 and N2,
however, which evolve in a chaotic manner, appear to be
highly sensitive to the initial state of the microstructure.
This picture is consistent with particle-based simulation
results for a system composed of deformable parti-
cles [39,67,68] and those based on dissipative particle
dynamics [69].
Connections have been made between a yielding tran-

sition and chaotic behavior in systems comprised of both
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(curves) versus strain γ
for shear rates _γ ½s−1� ¼ 0.01 (black), 0.10 (blue), and 1.0 (red).
The dashed line is linear elastic solid prediction (1) with
G ¼ 780 Pa; the arrow indicates the yield stress τy ¼ 112 Pa
obtained from Fig. 1.
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FIG. 4. Steady state σ (○), N1 (□), and N2 (⊠) versus shear
rate _γ for 1% Carbopol microgel. Error bars on symbols represent
standard deviation in measured and computed quantities.
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hard [70] and soft [71] particles. Microscopic quantities
such as particle positions reveal a transition from reversible
to irreversible (nondiffusive to diffusive) dynamics above a
critical strain in oscillatory shear. Indeed, at the critical
strain, the particle mean-square displacement or diffusivity
can increase by several orders of magnitude. The results
presented here appear to be the first to show how this
transition is manifested in the chaotic evolution of normal
stresses in a soft particle glass. Further studies on additional
systems including emulsions and foams would shed light
on the generality of this phenomenon.
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