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We investigate experimentally and 
theoretically the stability and collapse 
of holes in liquid layers on bounded 
substrates with the addition of surface 
vibrations. 

It is shown that for a liquid layer with a 
thickness of the order of the capillary 
length, a stable hole exists when the 
hole diameter is bigger than a critical 
value ￼ . 

Consequently, a further increase of 
the liquid volume causes the hole to 
collapse. It is found that ￼  increases 
with the size of the container, but 
decreases with the magnitude of the 
surface vibrations [1].
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Abstract

        Equations

Summary
Vertical surface vibrations can cause a 
decrease in the stable hole size of holes 
in liquid layers.  

As flux is supplied at decreasing rates 
we can find the new critical diameter for 
a given value of ￼ .


This new ￼  is shown to be less than the 
critical diameter without vibrations.

Future Work: Experiments involve larger 
values of Reynolds number  so we 
would like to include inertial terms in our 
simulations.
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       Motivation 
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Control of the evolution of vibrated wetting 
fluids on the micro-scale. Example: Smoothly 
adding liquid to a vibrated film containing a 
hole until an unstable state is reached [1].

Fig. 1: (a) Schematic illustration of the 
experimental set-up with a needle connected to a 
syringe pump controlling the flow rate. Time lapse 
images of the collapse of a hole at the centre of a 
liquid layer on a bounded superhydrophobic Al 
plate are shown in top (b) and side (c) view, which 
are results from two different experiments.

Main assumptions 
• Long wave theory describing thin film 

dynamics is used [2].

• Direction normal to the plane must be 

shorter than any in plane dimensions

• The slope of the free surface is small 


• We are working in an axis-symmetric 
coordinate system


• Neumann conditions were used at the 
left and right boundary along with zero 
flux condition on the left but fixed non-
zero flux on the right 

         Results

Fig. 3: Fluid front evolution as a function of time 
for ￼  = -2Ĉ
The fluid front oscillates with the same 
frequency as the surface vibrations and 
approaches a new stable radius size as time 
progresses.

Fig. 4: Averaged front position as a function of time 
for decreasing ￼  valuesĈ

Fig. 5: Fluid front stability plot for ￼ = -3 and 
decreasing values of supplied flux
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Fig. 2: Sketch of the modeling problem. 
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