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ABSTRACT

INTERMITTENT DYNAMICS OF DENSE PARTICULATE MATTER

by
Chao Cheng

Granular particle systems are scattered around the universe, and they can behave like solids

when there exist strong force-bearing networks, so that the granular system can resist

certain stress without deformation. When such a network is not present, particles yield to

small stress and behave like a fluid. A wide range of systems exhibit intermittent dynamics

as they are slowly loaded, with different dynamical regimes governing many industrial

and natural phenomena. While a significant amount of research on exploring intermittent

dynamics of granular systems has been carried out, not much is known about the connection

between particle-scale response and the global dynamics. In this work, four different types

of systems are investigated both through experiments and numerical simulations to reveal

the connection.

At the beginning of this work, a spherical intruder is considered, which is initially

buried in a granular column exposed to an upward pullout force. Analysis of the

interparticle forces, using both classical and novel methods based on persistent homology,

uncovers the details of the failure process. The intruder and the granular particles are

essentially static before failure, however, the force network that includes the information

about the particle contacts goes through significant changes. The failure occurs through

a culmination of temporally intermittent changes that take place predominantly in the

proximity to the intruder.

Next, experiments involving a slider moving on top of granular media consisting of

photo-elastic particles in two dimensions are investigated. Such systems exhibit various

dynamics, from continuous motion to crackling, and stick-slip type of behavior. By

applying image analysis and persistence homology, a clear correlation between the slider

dynamics and the response of the force network properties is revealed. Furthermore, the



correlation is particularly strong in the dynamical regime characterized by well-defined

stick-slip type of dynamics.

The stick-slip dynamics of dense granular systems is further investigated via two

dimensional discrete element simulations. The focus of this work is understanding what

type of information is needed to be able to predict upcoming events. Both static and

dynamic measures are considered. The static measures are obtained from observing the

state of the system at a given time, while dynamic measures are obtained by considering

the information from system evolution. A set of dynamic measures is identified with a

promise to predict slip events.

Finally, the intermittent dynamics of a dense granular system, exposed to slow

compression and decompression in three spatial dimensions, is considered. Both compression

and decompression involve transitional events involving fast irreversible transitions which

are not always associated with rearrangement of particles and contact networks. The

analysis of the force networks using the tools of persistent homology shows that the

evolution of pressure is strongly correlated with the evolution of the topological measures

quantifying loops in the force networks. Frictional effects are found to smoothen system

evolution and to decrease both the amplitude and the duration of the transition events that

occur during compression or decompression.
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CHAPTER 1

INTRODUCTION

1.1 Brief History and Application

Granular particles are scattered around the universe. They can form the Saturn rings in the

outer spaces, sand dunes in Sahara, or a pile of cherries in a grocery store. We encounter

granular material on a day-to-day basis, from a scoop of coffee beans in the morning to a

pinch of salt at dinner. Granular material can be defined as assemblies of large particles,

of the size larger than about 100 µm [9], so that thermal agitation is negligible. Granular

materials are dealt with on a massive scale in industry. Nearly 75% of raw material in

industry is in the form of granular materials [110]. Therefore, understanding the physics of

handling and storing granular material is of importance to a number of practical situations.

Granular material can behave like solid when there exists strong force-bearing

networks, so that the granular system can resist certain stress without deformation. When

such a network is not present, particles yield to small stress and behave like a fluid. If

granular particles are sparsely scattered and rarely collide, we can think of a granular

system as a gas.

The transitions of dense particulate matter between solid-like and liquid-like states,

jamming and unjamming, are similar to the phase transitions between solid and liquid.

Jamming is the physical process by which granular materials become rigid with increasing

density [110]. The reverse of jamming transition is unjamming, which is related with

earthquakes and avalanches. Both jamming and unjamming transitions of dense particulate

system are still poorly understood.

Characterizing the jamming transition in granular matter has attracted significant

interest [30, 32, 43, 58, 110, 111, 116, 161, 201]. The dynamics close to jamming

transitions exhibits percolation of strong force network [110], and is influenced by multiple
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parameters, including friction and system preparation protocols [111, 201]. To understand

the transitions between jammed and unjammed states, the connection between force

networks and system response in jamming transition needs to be unveiled [32].

Stick-slip behaviors of granular system can be considered as unjamming transitions

from jammed states, which is related to earthquakes in nature. Several mechanical models

are developed to capture the nature of earthquakes [44, 54, 65, 144]. Since the mechanical

properties of granular material are related to the force networks of the systems, force

network distribution is studied in many works [140, 148]. From the perspective of force

networks, we can understand stick-slip transition using topology tools [58, 93, 100, 103],

with a particular goal of exploring the existence of precursors to slip events.

Due the complexity of granular material, the general approach is either experimental

or numerical. Results from experiments are usually processed by statistical tools.

Numerical approach includes two directions, continuum methods and discrete element

methods. Continuum models consider granular material as a continuum domain, assuming

that the particles have infinitesimal size [110]. Continuum models can effectively

describe bulk properties of granular assemblies and system dynamics on macroscale. The

fundamental laws for continuum models involve conservation laws which include mass,

energy, and momentum. When a granular system is inelastic, such that energy is not

conserved, continuum models are more challenging to formulate. In addition, it is difficult

to describe the microscale structure and properties in granular systems for continuum

models. An alternative is to consider discrete models, that focus on the particle scale. Here,

interactions between particles are treated explicitly, via linear or nonlinear interaction laws.

Such an approach, that we will follow in this work, leads to a large number of coupled

ordinary differential equations that are solved numerically. One important challenge

is correlating the results of these differential equations with the collective dynamics of

granular particles on the scales that are much larger than the particle size itself.
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1.2 Overview

This work consists of four separate but related projects described in Chapters 2-5. The

material presented in Chapters 2 and 3 has been published, and the text of the chapters is

essentially the one from the published papers, with minor modifications. The material in

Chapters 4-5 is still under preparation. It should be noted that such a structure leads to

some repetitions of the background material and some minor differences in the notation.

In Chapter 2, based on our published work [158], in collaboration with Drs. Srujal

Shah and Payman Jalali from Lappeenranta-Lahti University of Technology, Finland, we

investigate computationally the pullout of a spherical intruder initially buried at the bottom

of a three dimensional (3D) granular column. The intruder starts to move out of the

granular bed once the pulling force reaches a critical value, leading to material failure.

The failure point is found to depend on the diameter of the granular column, pointing out

the importance of particle-wall interactions in determining the material response. Discrete

element simulations show that prior to failure, the contact network is essentially static, with

only minor rearrangements of the particles. However, the force network, which includes

not only the contact information, but also the information about the interaction strength,

undergoes nontrivial evolution. An initial insight is obtained by considering the relative

magnitudes of normal and tangential forces between the particles, and in particular the

proportion of contacts that reach Coulomb threshold. More detailed understanding of

the processes leading to failure is reached by the analysis of both spatial and temporal

properties of the force network using the tools of persistent homology. We find that the

forces between the particles undergo intermittent temporal variations ahead of the failure.

In addition to this temporal intermittency, the response of the force network is found to be

spatially dependent and influenced by proximity to the intruder. Furthermore, the response

is modified significantly by the interaction strength, with the relevant measures describing

the response showing differing behaviors for the contacts characterized by large interaction

forces.
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In Chapter 3, based on our work [41], in collaboration with Dr. Aghil Abed Zadeh

from Duke University, which is accepted for publication the Powders & Grains proceedings

(to appear 2021), we focus on the experiments involving a slider moving on top of granular

media consisting of photo-elastic particles in two dimensions which have uncovered

elaborate dynamics that may vary from continuous motion to crackling, periodic motion,

and stick-slip type of behavior. We establish that there is a clear correlation between the

slider dynamics and the response of the force network that spontaneously develop in the

granular system. This correlation is established by application of the persistence homology

that allows for formulation of objective measures for quantification of time-dependent force

networks. We find that correlation between the slider dynamics and the force network

properties is particularly strong in the dynamical regime characterized by well-defined

stick-slip type of dynamics.

In Chapter 4, in collaboration with Dr. Miroslav Kramar at University of Oklahoma,

we continue investigating the stick-slip dynamics of dense granular system in two

dimensions (2D) via discrete element simulations. We focus on the discussion regarding

what type of information is needed to be able to predict an upcoming slip event. We

consider both static measures and dynamic measures. Static measures describe static

properties of the system, obtained from observing the state of the system at a given time

point, and dynamic measures are obtained by considering the information about system

evolution. We identify a set of dynamic measures that show promise to be able to predict

avalanche type of behavior in the considered system. The general pattern of the results is

that dynamic information needs to be included in order for a considered measure to have a

predictive power.

In Chapter 5, in collaboration with Drs. Stefan Luding and Kianoosh Taghizadeh

from University of Twente, the Netherlands, we consider dense granular system in three

spatial dimensions exposed to slow compression and decompression. The evolution of the

granular system is nontrivial, with smooth, continuous (de)compression periods interrupted
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by fast, irreversible transitions. These transitions are often, but not always, associated with

rearrangement of the particles and of the contact network. The analysis of the force network

that is built on top of the contact networks, shows that it is possible for the transitions to

occur even if a rearrangement of the particles is absent. The analysis of the force networks,

carried out using the tools of persistent homology, shows that the evolution of global

measures, such as pressure, is strongly correlated with the evolution of the topological

measures quantifying loops in the force networks. Frictional effects are found to lead to

smoother system evolution, both decreasing the amplitude of the transition events, and

decreasing their duration.

In Chapter 6, we conclude the work with summary and conclusions.
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CHAPTER 2

FAILURE OF CONFINED GRANULAR MEDIA DUE AN INTRUDER

2.1 Introduction

The processes related to failure in soft solids have been explored for a long time, and in

particular during last couple of decades a significant progress has been achieved; excellent

review articles are available, discussing soft solids in general [62], failure in the context

of fracture and avalanching [52], and related issue in the context of glass transition of

amorphous materials [29], among other research directions. In the context of granular

matter, the concept of failure is closely related to jamming, another topic that has produced

a significant interest, see [25, 115, 117, 176] for reviews. In particular, a close connection

between particle scale information, including local contact networks, and macroscale

rheology of sheared or compressed granular materials, has been established. In addition,

a point was made years ago [39, 40] that not only contact networks per sé are important

in governing the system response, but also their strength; this point will be of particular

relevance in present work.

In this chapter, we focus on a system in which the connection between contact and

force networks, and material failure, can be analyzed in detail. We consider a spherical

intruder, large compared to particles size, that is initially buried in a granular column.

The intruder is exposed to an upward pullout force which increases with time until the

material fails, similarly as considered recently in two dimensions (2D) in experiments with

photoelastic particles [199], and even more recently in 3D experiments [89]. To some

degree, this pull-out setup may be considered as a reverse of the impact of an object onto

the surface of granular material [45, 95], although one may wonder to which degree slowing

down a moving intruder is similar to the failure due to an applied force on an initially static

object. Another related setup of relevance is the one of a solid rod that is pulled out of
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a granular column. This setup was analyzed both computationally and experimentally,

suggesting that, once the rod starts to move, shear occurring in a cylindrical shear zone

surrounding the rod may lead to local jamming that increases frictional resistance [66].

After discussing general, system-wide response to applied pull-out force, we will

focus in particular on the question of particle-scale response, both from static and dynamic

points of view. As pointed out, even if the intruder and the granular particles are stationary,

there could still be changes in the network describing mutual interactions between the

granular particles, particles and the intruder, as well as particles and the walls. In the present

context, such a network is weighted by the strength of the force between the particles. This

strength can be quantified by either normal, tangential, or some combination of these force

components. By now it has been established that the properties of such force network

are crucial for the purpose of developing better understanding of granular systems in the

context of analysis of static packs [196], shear [14, 58], compression [98, 100, 104], wave

propagation [21, 22], or impact [165]; see also [25] for a recent review. Reaching this

understanding is however complicated by the complexity of the force networks due to a

large amount of time-dependent data. Obviously, some type of simplification is needed;

in addition, one would like to use measures that are precisely defined and that allow for a

meaningful comparison of the force networks at different time instances, since we will be

also interested in a dynamic setting.

In recent years, significant progress has been made towards developing better

understanding of force networks using a variety of tools, including force network ensemble

analysis [153, 164, 170], statistics-based methods [33, 143, 172, 173], network type of

analysis [21, 70, 82, 171, 182], and application of topological methods, more precisely

persistent homology [10, 11, 12, 100, 101, 103, 104, 105, 147]; see [25, 141] for recent

reviews. While different methods provide a complementary insight, we will focus here

on persistent homology based approach since it allows for significant data reduction, for

formulation of objective measures describing the force network, as well as for precise
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comparison of different networks in a dynamic setting. Such an approach was used

with success to discuss force networks for the systems that were compressed [100, 104],

vibrated [101, 147], or sheared [67], as well as for the analysis of experimental data [58,

165]. For the problem considered in this chapter, one crucial aspect of the method is that

it allows for consideration of the strength of interaction between the particles. This will be

an important quantity in the analysis of the results. The robustness (and simplicity) of the

measures describing the considered network will allow us to obtain both more precise and

more intuitive understanding of the connection between the system-wide failure and force

networks properties.

This chapter is organized as follows. We continue in Section 2.2 by discussing the

methods used, providing first the basic description of the system considered in Subsection

2.2.1, and then describing briefly the discrete element techniques employed in simulations

in Subsection 2.2.2, normalization and scaling in Subsection 2.2.3, followed by again brief

description of the persistence homology techniques that allow for the analysis of time-

dependent weighted networks in Subsection 2.2.4. Then, in Section 2.3, we discuss the

main results, starting in Subsection 2.3.1 with the macro-scale results describing intruder

dynamics, pullout force, as well as the force on the system boundaries. In Subsection 2.3.2,

we analyze the force network, describing in detail the process of failure. Section 2.4 is

devoted to the conclusions of the present study and to the discussion of possible future

research directions.

2.2 Methodology

2.2.1 General Setup

The simulation geometry consists of a vertical column of diameter Dc filled with mono-

disperse spherical particles and a spherical intruder. The intruder is initially at contact

with the center of the bottom of the column. Two column sizes are used, motivated by the

ongoing experimental efforts [89]. The columns are filled with glass beads to a specified
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height, H, by pouring them randomly from the top at a certain mass flow rate. The initial

configuration of particles and intruder is shown in Figure 2.1. After filling to a desired

Figure 2.1 (a) Initial configuration of particles filling the column with the intruder at the
bottom. (b) A snapshot showing the configuration of particles and the intruder as it travels
upwards after failure. Note that the particles in the front half of the column are not shown
for a clear visualization.

height, the granular material is relaxed until particles velocities are near zero. Once the

particles come to a rest, the intruder is pulled vertically upward by a force, Fp, which is

specified as a linear function of time with the slope of 1 N/s. At a certain force, namely

the pullout force at failure Fpf(H,Dc), the granular material fails and the intruder leaves

the granular bed in fraction of a second. Figure 2.1(b) shows a snapshot of the assembly

where the intruder is halfway out of the granular bed. For further illustration, Figure 2.2
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shows the forces between granular particles just prior to the failure. Normal and tangential

forces between the particles are displayed in this figure as a function of radial and vertical

coordinates, and averaged over the angular direction. We note a significant modification

of the inter-particle forces in the region just above the intruder, despite the fact that the

intruder itself (and the granular particles, as we will discuss later in the manuscript) are

essentially static.

Figure 2.2 Forces between granular particles just before failure at the time when the
pullout force (nondimensionalized as discussed later in the text) is Fp = 50, as a function
of r,z, both scaled by the intruder diameter. The intruder itself is at the bottom left corner
of the figures, and the visibly step-like contour for intruder surface is the result of binning
process used for the averaging of forces. The simulation parameters correspond to the
reference case (circled data point in Figure 2.4) as presented later in the chapter. (a - b)
Normal force between the particles in the r (a) and z (b) directions. (c - d) Tangential force
between the particles in the r (c) and z (d) directions.

2.2.2 Computational Approach

DEM Solver We use the open source software, LIGGGHTS, for discrete element method

(DEM) simulations of our granular system [96]. The DEM solves the equations of motion

for individual particles and identifies the contacts and contact forces with neighboring

particles. Applying the Newton’s second law for a particle j with mass mj, the moment
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of inertia Ij, translation velocity, vj, and angular velocity, ω j, the equations of motion can

be written as follows

mj
dvj

dt
= ∑

k

(
Fn,jk +Ft,jk

)
+mjg,

Ij
dω j

dt
= ∑

k
Tjk,

where Fn,jk and Ft,jk are the normal and tangential components of the contact forces

between particles j and k. Tjk is the torque imposed by the tangential component of

the contact force from particle j on particle k, and g is the acceleration due to gravity.

The normal and tangential forces contributing in building the two terms of stiffness and

damping coefficients can be computed from the modified Hertz-Mindlin model as below

[57, 174]

Fn,jk =−
4
3

Y
√

Rδ
3
2

n njk +2

√
5
6

β
√

Snmvn,jk, (2.1)

Ft,jk =−8G
√

Rδntjk +2

√
5
6

β
√

Stmvt,jk, (2.2)

where Sn = 2Y
√

Rδn and St = 8G
√

Rδn. Here, δn is the normal overlap distance between

the particles, njk is the normal unit vector directed from the center of particle j to that of

particle k, tjk is the tangential displacement vector calculated by integrating the relative

tangential velocity at the contact over time, vn,jk and vt,jk are the normal and tangential

components of the relative velocity of particles j and k. The expression for the torque

is given as Tjk = Rjnjk×Ft,jk. The magnitude of the tangential force is truncated by the

Coulomb friction criterion: Ft,jk ≤ µFn,jk, where µ is the friction coefficient. In the above

Equations 2.1 - 2.2, the coefficient β , expressed as a function of restitution coefficient e, is
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given by β = lne/
√

ln2 (e)+π2. The other quantities used in Equations 2.1 - 2.2 are given

as follows

1
Y

=
1−σ2

j

Yj
+

1−σ2
k

Yk
,

1
R
=

1
Rj

+
1

Rk
,

1
m

=
1
mj

+
1

mk
,

1
G

=
2
(
2−σj

)(
1+σj

)
Yj

+
2(2−σk)(1+σk)

Yk
,

where Y is the effective Young’s modulus, G is the effective shear modulus, σ is the

Poisson’s ratio, R is the effective radius and m is the effective mass. Similar equations

as the above-mentioned ones are used to compute particle-wall contact forces, in which

particle k is assumed to be a particle with infinite radius and mass.

Simulation Details Table 2.1 specifies the mechanical properties of materials and

simulation parameters. The mechanical properties of materials as given in Table 2.1

represent glass beads as the granular material, the sidewall of the column has properties

close to PVC, and the intruder and bottom wall of the column have properties close to

steel, motivated by recent experiments [89]. The Young’s modulus and the Poisson’s ratio

were obtained from literature [85, 97, 166].

The value of the restitution coefficient between glass beads is taken as 0.9 [97]. The

restitution coefficient of steel is typically in the range of about 0.6−0.9, and a value of 0.8

is assigned here for steel and glass bead contacts. The restitution coefficient between glass

beads and sidewall is assigned as 0.85. The relevance of all above-mentioned values of the

coefficient of restitution is found to be insignificant in present simulations as the granular

material remains essentially in static state prior to failure.
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Table 2.1 Mechanical Properties of Materials and Simulation Parameters

Mechanical Value Mechanical Value

properties properties

Young’s modulus, GPa Friction coefficient

intruder, bottom wall 200 intruder-glass beads, µig 0.45

glass beads 10 glass beads-glass beads, µgg 0.4

sidewall 3 glass beads-sidewall, µgw 0.3

Poisson’s ratio Restitution coefficient

intruder, bottom wall 0.3 intruder-glass beads 0.8

glass beads 0.2 glass beads-glass beads 0.9

sidewall 0.4 glass beads-sidewall 0.85

Simulation Value Simulation Value

parameters parameters

Density, kg/m3 Diameter, m

intruder 7728 intruder 0.0349

glass beads 2500 glass beads 0.005

Mass of intruder, kg 0.172 DEM time step, s 5×10−7

2.2.3 Normalization of Relevant Quantities

To obtain a better insight into the physics of the studied system, and for simplicity, we

normalize the relevant quantities using the intruder diameter, Di and the reference force,

F0. The choice of F0 is based on the weight of a reference volume, which is taken as

a cylinder of diameter Di and height Di, filled with granular matter. Since the volume

13



fraction changes (very slightly) with filling height, H, due to gravitational compaction, we

choose the average value obtained in simulations (that use different H), giving the value of

F0 = 0.425 N. We will see later in Subsection 2.3.1 that the force scale chosen as specified

is natural for the considered problem. From this point, all the results are given using Di

and F0 as the scales for the length and force, except if specified differently. At a couple of

places we will also need a time scale, which for simplicity we take as
√

Di/g.

We note that the pullout force, Fp, does not include the weight of intruder. Therefore,

the value of Fp = 0 corresponds to the time at which the applied force on the intruder is

exactly equal to its weight.

2.2.4 Persistent Homology

For the present purposes, persistent homology could be thought of a tool for describing a

complicated weighted network (such as the one describing interaction forces between the

particles) in a form of diagrams, so called persistent diagrams (PDs). These diagrams are

obtained by filtration, or thresholding, the strength of the interactions between the particles.

As an example, let us assume that this strength is quantified by the normal interaction force

between the particles in the system. Then, the simplest persistence diagrams, which we

refer to as β0 PD for the reasons that will become clear shortly, essentially traces how

‘structures’ (could be thought of as ‘force chains’, without attempting to define them)

appear as a filtration level is decreased, or disappear as two structures merge. Such a PD

contains rather complete information about how connectivity between the contacts depends

on their strength. Figure 2.3 shows examples of the PDs computed at a given time for the

system considered in the chapter (both for β0 discussed above, and for β1, that describes

loops or cycles, and discussed further below). Each point (generator) in this diagram has

two coordinates, ‘birth’ - specifying when (at which filtration level) it appeared, and ‘death’

- specifying when it disappeared, due to merging with another structure. Note that the

term ‘persistence’ in this context refers to the force range over which a certain structure
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‘persists’, or survives, as a considered filtration level is changed. The interested reader

could find rather detailed description on how these diagrams can be (properly) defined

and computed in [105], and a simplified description including toy examples and insightful

animations in [104]. For the purposes of the chapter, we list here few key features of PDs

that are important for understanding their meaning, relevance, and use:

Figure 2.3 Examples of persistence diagrams, PDs, for (a) components (clusters), β0, and
(b) for loops (cycles), β1. The axes show the force level at which a structure appears (B)
and disappears (D) The lifespan L = B-D illustrates the force threshold range over which a
structure persists. These particular PDs were obtained for the reference case discussed later
in the text (circled data point in Figure 2.4), and for pulling force Fp = 9 (dimensionless
value, as discussed in Subsection 2.2.3).

• Persistent diagrams live in a metric space and therefore can be compared in a
meaningful manner. This means that one can compare the weighted force network
at different points in time, which is a crucial feature if one wants to understand an
evolving system.

• Since the description of a weighted force network in terms of persistence diagrams
provides a significant data reduction, there is an associated loss of information,
and therefore PDs do not provide full information about the underlying network.
However, the information contained in PDs still provides for all practical purposes a
reasonably precise insight not only regarding the number of structures, but about how
their connectivity changes as one considers different thresholding (filtering) levels.
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• The number of PDs for a given weighted network is equal to the number of spatial
dimensions: i.e., for a 3D system considered here, in principle there are three PDs
that can be associated: β0 PD describing clusters; β1 PD describing loops (cycles),
and β2 PD describing three dimensional holes. In the present work, we do not find
β2’s, and therefore focus on β0 and β1 PDs. Figure 2.3 shows that the β0 generators
appear on higher force level than β1 ones, since β0 structures need to merge to form
loops, and this happens on lower force levels. The points at the death level D = 0
in Figure 2.3(b) show all the loops that formed, but never died: a loop dies at the
threshold level D when it is filled up with contacts with the force of at least D, and
for many loops this does not happen; see [105] for more details. On the other hand,
all β0 components disappear at nonzero D, since for low values of force all separate
clusters merge.

• A PD provides information about a weighted network that is threshold independent:
there is no need to specify a threshold level to describe the considered network.
A PD provides information about all threshold levels at once. This is a major
difference compared to other measures describing force networks, which often
require separation of a force network into a ‘strong’ or a ‘weak’ network. With this
being said, one can in principle consider only a subset of points in a PD, and focus on
a particular range of interest. For example, for the diagram shown in Figure 2.3, one
could consider only the points found for large thresholds, describing a strong part of
the force network, or the points for small thresholds, describing a weak part of the
network.

• The number of ‘force chains’ or ‘clusters’ of connected contacts (or the number of
loops (cycles)) characterized by a force larger than a specified threshold can be easily
extracted from the PDs, providing therefore information about Betti numbers, βn,
that essentially measure a number of features of a given type. Note however that
the number itself does not provide any information about connectivity. Furthermore,
one can show [105] that Betti numbers are susceptible to noise, meaning that a small
change in the input data could lead to a large change of the Betti numbers. Finally,
the βn’s are threshold dependent, and therefore provide less complete information
about the underlying weighted network.
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• The PDs are essentially point clouds, and an appropriate measure for their quantification
needs to be developed. One possibility is based on the idea that both the number
of points in a diagram, and for how long (that is, for how many thresholds levels)
a point persists, are appropriate measures describing the force network between
particles. Using landscape as an analogy, the number of points in β0 PD specifies
the number of (mountain) peaks, and their lifespan (see below) describes how well
developed these peaks are, or, to push the landscape analogy further, how high they
are compared to the ‘valleys’ that surround them. The concept of lifespan, L is
illustrated in Figure 2.3, as essentially the difference between birth (B) and death, D,
coordinates, so L = B−D. Both measures could be combined into one by defining
total persistence, TP, as a sum of all lifespans. We will be using TP in discussing
some properties of the force networks in the considered system.

• The reader should note the enormity of the data reduction described so far: first a
weighted force network is reduced to a point cloud (PD) and then this point cloud to
a single number (TP). Such a reduction clearly leads to huge data loss, but as we will
see, still provides an insightful information about the underlying weighted network.

PDs provide information about the state of the system at a given time, and do

not include any information about the dynamics. As pointed out, however, PDs can be

compared, and in particular the concept of distance between PDs is well defined [105].

The distance between two PDs could be thought as a minimum (Euclidian) distance by

which the points in one diagram need to be adjusted to map them exactly to the other one;

if the number of points in two PDs is different, then extra points are mapped to the diagonal.

Stated formally

dW q(PD,PD′) = inf
γ : PD→PD′

(
∑

p∈PD
‖p− γ(p)‖q

∞

)1/q

. (2.3)

Here, dW q stands for the degree q Wasserstein distance, and PD, PD′ are the two considered

PDs. Computing the distance is a computationally expensive process in particular for

complex diagrams with many points. In the present work, we focus on q = 2 for simplicity,

and perform calculations using the method discussed in [1, 64].
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2.3 Results and Discussion

We discuss main findings in this section, focusing first in Subsection 2.3.1 on the system-

scale response, including the force at the failure point, the influence of system boundaries,

geometry, and material parameters. These results set a stage for Subsection 2.3.2, where

more in-depth analysis of the failure process itself is discussed by considering the weighted

force networks that form spontaneously between granular particles.

2.3.1 Failure: Macro-scale Picture

Failure Force We start by discussing the magnitude of the pulling force applied to the

intruder that causes failure. Figure 2.4(a) shows how the pullout force at failure, Fpf,

depends on the filling height, H, for the two granular columns; at first we focus on the s

symbols (connected by the solid lines) which show the results obtained using the friction

parameters given in Table 2.1.

We see that Fpf increases with H, as expected, since larger H leads to a larger pressure

on the intruder. Figure 2.4(a) (inset) also clarifies the force scaling: with the choice

of F0 specified in Subsection 2.2.3, Fpf extrapolates to Fpf ≈ 1 as H → 1 (note that all

quantities are dimensionless). Furthermore, we observe that Fpf is larger for the smaller

diameter column, showing the relevance of particle-wall interactions. This finding can be

understood based on an increased forces on the side walls (Janssen effect, see [126] for

a recent discussion), which are considered in more detail in Subsection 2.3.1. Note that

the effect of the sidewall on Fpf diminishes as H decreases, since for small H we enter the

hydrostatic regime where the column size is not relevant. Figure 2.4(b), which also plots the

results obtained using smaller particles (diameter 3 mm, in contrast to 5 mm particles used

in Figure 2.4(a) while keeping Dc the same) leads to a consistent conclusion: influence of

the sidewall decreases as the number of particles increases, since for smaller particle sizes

there are more particles between the intruder and the sidewall.
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Figure 2.4 (a) The pullout force at failure, Fpf, for different filling heights, H, and
for two different column diameters, (red), Dc = 1.49, and (blue) Dc = 1.75. s and t

corresponding to the higher (given in Table 2.1) and lower (discussed in the text) values of
the friction coefficients, respectively. The circled data point shows the reference case that
is analyzed in detail later in the chapter. The inset expands the region for small H, showing
that Fpf→ 1 as H → 1 ((purple) dashed line). (b) The pullout force at failure, Fpf, as the
size of particles is modified, and the tube diameter is kept fixed at Dc = 1.49: (red) 5 mm
particles (the same data as shown in (a), and (green) 3 mm particles. Note that all quantities
in this and the following figures are dimensionless.

One important question involves the influence of friction coefficient on the pullout

failure force. In the present DEM simulations, there are three relevant friction coefficients:

intruder - glass beads, µig, glass beads - sidewall, µgw, and glass beads - glass beads, µgg.

Figure 2.4 shows the influence of friction: s were obtained using the values of friction

coefficients given in Table 2.1, and the values shown by t were obtained for lower values

of friction coefficients (µig = 0.4, µgg = 0.35, and µgw = 0.25). One could wonder which of

the three friction coefficients is the most/least relevant; to answer this question, we discuss

the reference case (circled data point in Figure 2.4) in more detail. The Fpf for the reference

case is 50.8. When only µig is reduced, we find Fpf = 50.1; when µgg is reduced, Fpf = 46.6,

and when µgw is reduced, Fpf = 43.8. Thus, the effect caused by the change in particle-wall

friction coefficient is the most dominant, although all friction coefficients influence Fpf.

We note that these variations are considerably larger than the ones found between different

realizations of nominally the same simulation, when initial particle configurations were

modified. This variability is less than 1%.
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The relevance of particle-wall friction discussed above also suggests a possible

explanation for a slightly weaker influence of friction for a larger column diameter, Dc.

Furthermore, the influence of friction disappears for small values of H. This finding shows

that in the hydrostatic regime frictional effects do not influence the failure process; it should

be noted however that frictional effects may be important once the system fails and the

intruder starts to move, as discussed for the case of a rod pulled out of granular matter [66].

Parameter Study Here we compare the results obtained using the smaller column

diameter, and varying the height of the granular material, H. Figure 2.5(a) shows the

(vertical) z-component of the force exerted by particles on the sidewall, Fw, versus the

pullout force, Fp, as H is varied. The reported values of Fw are obtained by averaging the

instantaneous values over a short time window (of duration t ≈ 0.13).

We focus at first on the results obtained for large filling heights in Figure 2.5(a).

Clearly Fw grows with Fp, showing that the pullout force is transferred via particles to the

sidewall. This growth is non-trivial however: as Fp increases, the difference Fp−Fw, shown

in the inset of Figure 2.5(a), reaches a plateau whose height depends on H. Therefore,

for small Fp, the coupling of Fp and Fw is not complete, with Fp increasing faster than

Fw. However, for larger values of Fp, the coupling becomes stronger, with essentially all

the applied force transferred to the sidewall. The fact that the height of the plateau is

H-dependent suggests that the forces between the particles (that may depend on both H

and Fp) play a role. We defer further discussion of this effect until considering these forces

in Subsection 2.3.2.

For small filling heights (H = 1.78 and H = 2.21 in Figure 2.5(a)) the results are less

clear, with non-monotonous growth of Fp and Fp−Fw as H is increased; possibly in this

regime inverse Janssen effect discussed recently [126] becomes relevant. We leave detailed

discussion of this regime for future work.
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Figure 2.5 The sidewall force, Fw in the (vertical) z direction exerted by the particles. (a)
Dc = 1.49 with variation of the filling height: H = 4.18 (solid blue line), H = 3.78 (dashed
orange line), H = 2.89 (dash-dot green line), H = 2.21 (dotted red line), and H = 1.78
(loosely dashed purple line). (b) H = 4.18 with variation of the column diameter: Dc = 1.49
(solid blue line) and Dc = 1.75 (dashed red line).

Next, we focus on comparing the results of simulations carried out using different

column diameters, Dc, with the height, H, kept fixed. Figure 2.5(b) shows the results:

we observe Fw depends on Dc, with the larger magnitude of Fw at the failure for smaller

Dc. The inset in Figure 2.5(b), which plots the difference Fp−Fw, shows that the height

of the plateau at which this difference saturates increases as Dc increases, and the plateau

itself becomes less clearly defined. This again shows that for larger column diameters, the

wall forces become less important in helping the granular material to avoid failure. This

motivates us to analyse further the response of the force networks prior to the failure. This

is discussed in the next section.

2.3.2 Road to Failure

In this section, we discuss the failure process itself, focusing on a single choice of

parameters, represented by the reference case (circled data point in Figure 2.4). To analyze

the failure, we use the measures that are appropriate for discussion of the static and dynamic

properties of the system, starting from the classical ones, such as forces, energies, and

particle contacts, and then focusing on the force networks between the particles and the

particles and the intruder.
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Figure 2.6 Average normal (dashed red line) and tangential (dotted red line) forces,
Fn,a, Ft,a, respectively, between the granular particles, and the particles and the intruder
(left vertical axis); z-position (solid blue line) of the intruder (right vertical axis); Inset:
average ratio of Ft/Fn.

Forces, Energies, Contacts Figure 2.6 shows the normal and tangential average forces,

Fn,a, Ft,a, respectively, between the particles (and the particles and the intruder), as well

as the intruder’s z-position. We focus on the time period for which the pulling force is

positive (after subtracting scaled intruder’s weight). Figure 2.6 shows that the dynamics of

the intruder is minimal before the granular system fails: note that the whole range on the

vertical z axis is just 1% of the intruder’s diameter. While for smaller values of Fp, Fn,a

does not change much, for larger Fp’s, Fn,a grows approximately linearly with Fp. Since

the change of Fn,a is considerable, in what follows we will use this time-dependent value

of Fn,a for normalization of the results discussing properties of the force network.

The tangential force, Ft,a, also shown in Figure 2.6, provides relevant additional

information. While Ft,a is smaller than Fn,a (being limited by the Coulomb threshold),

the ratio Ft,a/Fn,a grows as failure is approached. This result provides an initial insight

regarding failure: the particle contacts get increasingly loaded by the tangential force, and

approach sliding. Significant amount of sliding contacts appears as a precursor to failure.

The sliding effect is also confirmed by the inset which shows the average of Ft/Fn value
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at each contact (note that this quantity is not necessarily the same as Ft,a/Fn,a). We also

comment on the similarities of the insets of Figures 2.6 and 2.5, with both showing similar

qualitative behavior: this is not surprising since the tangential inter-particle force clearly

plays a role in determining Fw. For larger filling height, H, the normal forces between the

granular particles will be larger due to gravitational effects and therefore the allowed range

for tangential forces would be larger as well, leading to stronger wall force, consistently

with the results shown in the inset of Figure 2.5(a).

Continuing the discussion of sliding contacts, Figure 2.7 plots three quantities of

interest: Ns, the ratio of the number of contacts that have reached Coulomb threshold

(sliding contacts) and the total number of contacts; Nb, the ratio of the number of broken

contacts and the total number of contacts, and the ratio of kinetic and potential energies

of the granular particles, Ek/Ep (here Ek includes only translation degrees of freedom, and

Ep is measured relative to the bottom of the column). All quantities are calculated over

the time intervals of duration ∆t ≈ 0.84. While the results are rather noisy, we can still

reach some relevant conclusions, which could be also verified by inspecting the inset of

Figure 2.7, which shows an expanded view of the energy ratio and Ns. First of all, very

small values of Ek/Ep suggest minimal rearrangements of the particles during the period

before failure, consistently with small Nb (note that the latter quantity is barely visible

in Figure 2.7, showing that only small fraction of contacts breaks before failure). While

detailed inspection of the data does not show any correlation between Nb and Ek/Ep, the

same conclusion does not apply to Ns, for which we find significant (anti)correlation with

Ek/Ep. This result shows that, while reaching Coulomb threshold may not lead to breaking

of a contact, it may lead to sliding, which reflects itself in an increase of kinetic energy. We

note that Ep itself is essentially constant before failure.

The results presented so far provide a basic idea about the processes leading to

failure: the tangential force increases at particle-particle and particle-intruder contacts

faster than the normal force; the number of sliding contacts increases as well, until at
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failure point the Coulomb threshold is overcome and the intruder starts to move. Until

failure occurs, the intruder is essentially static, with the change of position measured as a

small fractions of the intruder diameter. Additional insight can be reached by considering

spatial and temporal properties of the force network, as discussed next.

Figure 2.7 (left) Ek/Ep (dashed red line): the ratio of kinetic and potential energies of the
particles; (right) Ns (solid blue line): the ratio of the number of contacts reaching Coulomb
threshold and the total number of contacts, the orange solid line shows the running average
of Ns; Nb (dash-doted blue line): the ratio of the number of broken contacts and the total
number of contacts. Inset: expanded view showing Ek/Ep and Ns illustrating frequent
anti-correlation.

Force Network and Failure The tools of persistent homology, discussed briefly in

Subsection 2.2.4, provide an extensive information about the force networks. We start

by discussing rather straightforward measures focusing on the structures (clusters or loops)

introduced in Subsection 2.2.4. For brevity, we focus in this section on discussing the

measures computed using the normal force, Fn, only; the findings obtained by considering

the tangential forces are found to provide consistent information with the one reported here.

Figure 2.8 shows the results for the β0 (a, c), and β1 (b, d), both for the size, Sc

(a, b) and the (Betti) numbers (c, d) of the structures. These quantities can be easily

extracted from the corresponding persistence diagrams: Betti numbers, β0, β1 could be

24



found by subtracting the number of components that die from the number of components

that are born above specified threshold, and Sc is simply the number of contacts (with force

above chosen threshold) divided by β0 or β1. Consistently with the results discussed in

Subsection 2.3.2, Figure 2.8 shows that the force network evolves even while the intruder

is almost stationary, and the contact network is essentially unperturbed. This evolution is

particularly obvious when considering β1 structures for the large thresholds values: the

(average) size of β1 structures increases significantly as Fp increases, see Figure 2.8(b),

while the corresponding β1 decreases, Figure 2.8(d), albeit not so fast (note the log scale

on the vertical axes). Basically, what happens here is that the loops become smaller and

their number grows as the pullout force increases. The conjecture is that the loops play an

important role in stabilizing the system exposed to external forcing, consistently with the

findings reached by considering impact experiments [165], where loops were found to play

a significant role in slowing down an intruder entering the domain filled with particles. The

changes in the size and number of β0 structures are much more gradual, but consistent,

showing (again for the large thresholds) a slow increase in the size and slow decrease in the

number - essentially, the clusters merge together and encompass more and more contacts as

the pullout force increases. Regarding the threshold dependence, we note that the number

of β0 structures is an increasing function of chosen threshold for the range chosen: here we

are considering the range of thresholds at which we still have many contacts (viz. the PD

diagrams shown in Figure 2.3; for even larger thresholds, β0 would decrease similarly as

observed in a recent study of suspensions [67]. We also note that the sizes, Sc, of β0 and

β1 structures are comparable at large thresholds, as expected. We remind the reader that

the force thresholds used in this figure are normalized by the current value of the average

(normal) contact force plotted in Figure 2.6.

The concept of clusters and loops is useful since these quantities provide an initial

insight, and also since they can be related to the commonly considered ‘force chains’

and ‘cycles’. However, this concept suffers from a significant deficiency, and that is
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Figure 2.8 (a, c) β0 component (‘force chains’) size (a) and number (c); (b, d) β1
component (loops, ‘cycles’) size (b) and number (d) for different force threshold values
(shown by the color bar). Note the opposing trend of β0 and β1; e. g., Betti numbers for
the clusters (β0) increase for the considered thresholds since for small threshold values all
clusters are connected; the loops (β1) (d) are more numerous for small threshold values due
to merging of the clusters. Note the use of log scale on the vertical axes.

the threshold dependence. This deficiency is removed by the total persistence, which

essentially merges the complete information (for all thresholds) into a single number, as

discussed in Subsection 2.2.4. Figure 2.9 shows the total persistence, TP for β0 (and for

β1 in the inset) structures. The TP for β0 structures (clusters) increases continuously with

the pullout force, showing again that restructuring of the force network takes place (even

when rescaling by the average time-dependent normal force). We could now ask whether

TP increases across the whole range of the interaction forces, or whether the increase is

concentrated in a particular range. Figure 2.9 shows that the latter is correct: the values

of TP for the β0 structures characterized by the force significantly larger than the average

force, Fn,a, increase strongly, while the TP for the structures born at the medium or weak

level remain essentially the same. The inset of Figure 2.9 shows that the trend for β1

structures (loops) is different, since TP decreases as Fp increases; we discuss this behavior

further below.
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One could ask what is the nature of the changes in the force networks that leads

to such a strong increase of TP for the β0 structures born at a large force level: to use a

landscape analogy, one could ask whether the hills become higher, or there are more hills as

Fp increases (recall that TP essentially combines the information about lifespans, L , of the

generators in PD’s, and the number of generators). To answer this question, Figure 2.10

shows the number of generators. Most interestingly, we observe that the number of β0

generators is essentially constant, saying that the reason for the increase of TP for strong

forces is an increased range of the interaction forces: the strong generators are born at

even higher force levels. Regarding the loops, Figure 2.10(b, d, f) show an increase of the

number of loops in the strong region, on the expense of the medium ones, consistently with

the results for TP in Figure 2.9 (inset); however overall number of generators decreases,

leading do a decrease of total TP.

Figure 2.9 Total persistence, TP for β0 structures (clusters) (main figure) and for β1
structures (loops) (inset). The total value (solid blue line) of TP is shown, as well as the
values of TP for the birth coordinate in strong range (dashed orange line) (> 2.5), medium
range (dash-dotted green line) [1.0 − 2.5] and weak range (dotted red line) [0.0 − 1.0].

Another question to ask is to which degree TP captures spatial dependence of the

particle interactions, illustrated for Fp = 50 (so just before failure) in Figure 2.2. To answer
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Figure 2.10 Number of generators (points in the PD’s) using the same line and color
convention as in Figure 2.9: strong (a, b), medium (c, d), and weak (e, f).

this question, we compute TP separately for five different parts of the system, according

to the distance from z = 0 (bottom of the column). Figure 2.11(a) shows the results; for

simplicity, here we consider TP β0 only, and also normalize TP by the number of particles,

Np, in each of the separate regions the size of the regions was chosen so that Np does not

change much between the regions. We see that the changes of TP are concentrated in the

parts of the system that are close to the intruder, with the most pronounced changes in the

layer just above the intruder itself, consistently with the snapshot shown in Figure 2.2.

So far, we have focused on the analysis of system properties at a specified time

instant, without attempting to discuss temporal evolution of the force network. However,

temporal evolution is very much of interest as well, since time dependency of force

networks is far from simple. To gain at least basic insight into this evolution, we use

the concept of distance between PDs, discussed in Subsection 2.2.4, see Equation 2.3,

normalized by the number of particles in each region, Np. Figure 2.11(b) shows the

results, again for the five regions mentioned above. For simplicity, we consider only

dW 2 distance. Figure 2.11(b) shows the localized (both in space and time) changes of

the distance, which are particularly prominent in the region close to the intruder itself. The

inset of Figure 2.11(b) shows expanded view, illustrating sudden changes of the considered

distance measure. These results show clearly that the force network starts evolving while
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Figure 2.11 (a) Total persistence, TP for β0 structures (clusters), computed separately for
the five parts of the system, for 0 < z < 1 (solid blue line), 1 < z < 1.72 (dashed orange
line), 1.72 < z < 2.44 (dash-dotted green line), 2.44 < z < 3.16 (dotted red line), and
3.16 < z < 4.18 (loosely dashed purple line). (b) Distance dW 2 for β0 structures for the
same five regions as in (a), using the same convention for lines patterns and colors. The
inset expands a part of the considered range of the pulling force, Fp.

the particles (and the contact network) are essentially static, and that the changes of the

force network are not continuous, but consist of short bursts of activity, which become

more prominent as the system approaches failure.

As mentioned at the beginning of Subsection 2.3.2, we focus on the normal

forces only in this section. While we found that the tangential forces provided relevant

information about the mechanism of failure as well, the measures obtained by computing

persistence and derived quantities turn out to be qualitatively similar to the ones obtained

based on the normal forces only, so for brevity we do not discuss them further.

2.4 Conclusions

DEM simulations of the pullout of an intruder buried in confined granular media show that

the force required to fail the material varies both with the height of the granular material and

with the column diameter. Frictional effects are found to be important for large material

heights only, showing that in hydrostatic regime (for small filling heights), the frictional

effects are not relevant. While for smaller pullout forces the force exerted by the granular

29



particles on the sidewall remains small, for larger pullout forces, these two forces change

at the same pace, illustrating the role that the sidewalls and particle-wall interactions play

in the failure process.

Analysis of the interparticle forces, using both classical and novel methods based on

persistent homology, uncovers the details of the failure process. While the intruder and the

granular particles are essentially static before failure, and characterized by a (static) contact

network, the (weighted) force network that includes the information about the particle

contacts goes through significant changes. The tangential forces between the particles

increase as the applied force becomes larger, leading to a larger number of sliding contacts.

The normal force between the particles evolves as well, and the force network based on

the normal force becomes more structured, involving larger number of loops and stronger

forces between the particles, even when normalized by the mean. The failure itself occurs

through a culmination of temporally intermittent changes that take place predominantly in

the physical proximity to the intruder. Furthermore, the changes in the force network are

focused in particular on the strong forces when considering clusters of contacts, while the

loops that form in a network are evolving at all considered levels of the interaction strength.

We find that careful analysis of the evolving loops provides particularly useful insight into

the failure process.

By combining classical and newly developed approaches for describing both statics

and dynamics of a granular system, we have discussed in this chapter precise and objective

measures that can be used to describe a failure process in the considered system. It remains

to be seen to which degree the presented findings apply to other systems close to failure. We

hope that both the methods and the results presented in this chapter will provide guidance

for future research in this direction.
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CHAPTER 3

CORRELATING THE FORCE NETWORK EVOLUTION AND DYNAMICS

3.1 Introduction

A wide range of systems exhibit intermittent dynamics as they are slowly loaded, with

different dynamical regimes governing many industrial and natural phenomena. In

these systems, the energy is loaded gradually with a stable configuration and then is

dissipated in fast dynamics with microscopic and macroscopic rearrangements [155].

Examples are fracture [18, 19], magnetization [175], and seismic activities [18, 53]

such as earthquakes, in which the slowly loaded energy relaxes via fast reconfiguration.

This intermittent behavior has been observed in a number of granular experiments and

simulations [4, 56, 118, 134]. In analyzing such behavior, a significant progress has been

reached by studying the dynamics of a slider coupled with the boundary of a granular

system. A slider can exhibit a wide variety of dynamics, including continuous flows and

periodic or intermittent stick-slip behavior [2, 4, 43, 144].

While a significant amount of research on exploring intermittent dynamics of

granular systems has been carried out, not much is known about the connection between

particle-scale response and the global dynamics, in particular for experimental systems.

In slider experiments [2, 4], see also Figure 3.1, it is possible to measure particle scale

response by using photoelastic techniques. These techniques allow for extracting dynamic

information about evolving particle interactions which typically involve meso-scale force

networks (so-called ‘force chains’). Analysis of such time-dependent weighted networks is

not a simple task, and it has evolved through last decades in a variety of different directions,

including force network ensemble [153, 170], statistics-based methods [33, 143], and

network type of analysis [21, 182]. In this research, we will consider application of

persistent homology (PH), which allows for formulating precise and objective measures
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Figure 3.1 (a) Sketch of the experiment. A slider sits on top of a 2D granular system
with photoelastic disks, and is connected to a stage by a spring of constant k, pulled by a
constant speed c. A force gouge measures the force f ; the granular medium is imaged with
fast cameras. (b) Photoelastic response during loading [2].
Source: [2]. Reprinted with permission

of static and dynamic properties of the force networks. This approach has been used

extensively in analysis of the data obtained via discrete element simulations in the context

of dry granular matter [10, 105] and suspensions [67], but its application to experimental

data has so far been rather sparse [58, 165]. We show that this method allows to develop

clear correlations between the static and dynamic properties of the force networks on micro-

and meso-scale and the macro-scale system dynamics.

3.2 Techniques

3.2.1 Experimental Techniques

In our experiments, as shown in Figure 3.1(a), a stage pulls a 2D frictional slider with

toothed bottom, of a fixed length of 25 cm and a mass of M = 85 g. The stage, which

moves at constant speed c, is connected to the slider by a linear spring of stiffness K. The
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slider rests on a vertical bed of fixed depth L = 9.5 cm and length 1.5 m, consisting of

bi-disperse photo-elastic disks with radii of 0.4 cm and 0.5 cm. A camera, recording the

photo-elastic response of the medium at 120 fps, is connected to the stage. We also record

the force f experienced by the spring.

We consider three experiments characterized by different configurations of c and K:

Experiment 1: K = 14 N/m, c = 0.5 mm/s; Experiment 2: K = 70 N/m, c = 0.5 mm/s, and

Experiment 3: K = 70 N/m, c = 1.0 mm/s. The total number of analyzed frames (images)

is 30,000 for each experiment, corresponding to 250 seconds of physical time.

3.2.2 Image Processing

The goal of the image processing in this study is to reveal clear force signal and reduce noise

effects as much as possible. As the fast imaging in our experiments constrains the resolution

of images, we use brightness method to capture force information, which works better that

G2 method for the type of data collected, see [3]; similar approach was used in [165]. We

first remove background noise from the original images by applying a filter that removes

pixels of brightness below chosen threshold value so to remove low light area and particle

textures. Multiple threshold values were investigated, giving no quantitatively difference in

the results of the topological analysis that follow; we typically use threshold value of 90 (the

maximum brightness is 255), which is appropriate for capturing the relevant information.

After thresholding, the image brightness is linearly mapped to 0-255 range. MATLAB

built-in functions imerode and imdilate were applied to slightly dilate the bright regions

so to fill the gaps between neighboring particles where in force chains are connected, and

then to erode away the unwanted excessive dilation to restore the force networks with more

accuracy. Figure 3.2 shows an example of image processing; in our computations discussed

in what follows, we use grey scale version of the figures such as Figure 3.2 for the purpose

of computing considered topological measures.
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Figure 3.2 An example of image processing. (a) An original experimental image. (b) A
processed image; color scheme shows pixel intensity.

3.2.3 Topological Measures

Persistence homology (PH) allows for formulating objective measures describing force

networks in both simulations and experiments. Analysis of experimental data, such as the

ones considered here, presents some challenges which are discussed in some detail in [105].

Each experimental image can be considered as an array of pixel brightness θ ∈

[0,255]. Since the pixels of high brightness correspond to the particles experiencing

large forces, we can apply PH to the pixels to track and quantify their connectivity

to extract (approximate) information about the actual force networks. PH techniques

essentially encode the appearance (birth) and disappearance (death) of force networks by

generating persistence diagrams (PDs) that encode the birth and death brightness levels for

components (loosely speaking, force chains), and loops (cycles). The PDs therefore reduce

the complexity of underlying force networks into point clouds where the coordinates are

(θbirth,θdeath) and each point represents an object that could be either connected component

(chain) or a loop (cycle). The lifespan of an object is defined as θbirth−θdeath, measuring

how long the object lasts as the threshold is varied. Total persistence (TP) of a PD is

defined as the sum of all lifespan of the points, TP(PD)= ∑(θbirth,θdeath)∈PD(θbirth−θdeath),
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which further reduce the complexity of force networks to a single number [101]. Note that

TP is influenced by both how many components there are, and by their lifespans.

Another quantity related to PDs is the distance (or difference) between them. The

distance measures essentially the cost of mapping points in one PD to those in another

PD; in the case of different number of points, the extra ones are mapped to the diagonal.

In particular, the degree-q Wasserstein distance between two persistence diagrams PD and

PD’ is defined as

dWq(PD,PD
′) = inf

γ:PD→PD′

(
∑

p∈PD
‖p− γ(p)‖q

∞

)1/q

,

where γ is a bijection between points from PD to PD’, γ : PD→ PD′. In the present work

we use q = 2 and carry out the calculations using the method discussed in [64, 48].

3.3 Results

3.3.1 Structural Response

Figure 3.3 Sliders’ velocity and spring force for the considered experiments: (a)
Experiment 1, (b) Experiment 2, (c) Experiment 3.

Figure 3.3 shows the calculated velocity of the slider and the measured force, f , on

the spring. This figure illustrates clearly the slider’s dynamics. We note that Experiment 1
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exhibits crackling stick-slip behavior as the driving rate is small. During a stick, the spring

builds up the stress, while the slider is almost fixed, until the spring eventually yields,

leading to a sharp velocity jump and drop of the force. The system behaves more similarly

to a continuous flow for Experiments 2 and 3, as also discussed in [2].

Figure 3.4 W2 distance and total persistence, corresponding to the experiments shown in
Figure 3.3.

Next, we proceed with considering persistence measures. Figure 3.4 shows the

Wassertein q = 2 distance (W2) for the considered experiments, as well as the total

persistence (TP), for the same time interval as shown in Figure 3.3. Direct comparison

with Figure 3.3 shows good agreement between the force network measures, W2 and

TP, from the one side, and the sliders’ velocity and the spring force, on the other.

Figure 3.5 illustrates in more detail the degree of agreement between the force and W2

for Experiment 1. We note that this experiments shows particularly good agreement,

suggesting stronger correlation between the force on the slider and force network properties

for well defined stick-slip dynamics. We note good agreement between W2 and TP,

suggesting the existence of a correlation between the ‘strength’ of the network measured

by TP, and its temporal evolution, measured by W2.

Having established correspondence between the slider dynamics and the force

network, we proceed to discuss whether such correlation could be explored for predictive
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Figure 3.5 Force on the slider and W2 distance (data from Figures 3.3(a) and 3.4(a)).

purposes. To explore this question, we consider the cross-correlation between considered

quantities. More precisely, consider two time series xt , yt , with the data (x1,x2, · · · ,xm),

and (y1,y2, · · · ,ym). The cross-covariance is defined by

cxy(k) =
1
m

m

∑
t=1

(xt− x̄)(yt−k− ȳ) (3.1)

where x̄ = ∑
m
i=1 xi/m, ȳ = ∑

m
i=1 yi/m, and k = 0,±1,±2, · · · is the chosen lag. When m is

outside the range of y, ym = 0. Note that for the positive lag k, xt is correlating with yt−k (at

earlier time), which means that we may be able to use such correlation to predict the future

x from earlier y. Finally, we define the sample standard deviations of the series as

• sx =
√

cxx(0), where cxx(0) =Var(x).

• sy =
√

cyy(0), where cyy(0) =Var(y).

The cross-correlation coefficient is given by

rxy(k) =
cxy(k)
sxsy

,k = 0,±1,±2, · · · (3.2)

Figure 3.6 shows the cross-correlation coefficients for Experiment 1, where r f∗, rv∗

correspond to the cross-correlation coefficient between the f or v and the measure of
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Figure 3.6 Cross correlation coefficient as a function of lag k (in seconds). r f∗ and rv∗ for
Experiment 1, where ∗ stands either for W2 distance (solid line), or for TP (dashed line).

interest *, which can be w for W2 distance or t for TP. Focusing first at the results without

lag, k = 0, we note that the r f∗ correlations are higher than the rv∗ ones; we expect that

this is due to the fact that the velocity data were obtained by taking a discrete derivative

of the slider position data, introducing further noise which may blur the actual signal. The

r f∗ results show that the correlation is higher for the TP data, which is not surprising since

TP is expected to reflect the force on the slider, while W2 distance measures the temporal

difference in PDs.

Considering next the results for non-zero lags, we note a different behavior of r f∗

and rv∗ curves, with rv∗ curves rising from negative to positive as lag is increased. Such

difference results from the fact that the structure of the force and velocity profiles are rather

different. The velocity profile shows sharp transitions, while the force profile slowly builds

up during the stick periods and drop dramatically at the events. More importantly, we note

that within a reasonable range of positive lags, the r f w and r f t are still significant in size,

suggesting a potential for predictability. It should be noted however, that since the main

part of the data is in a ”stick” region, the correlation will naturally weight more on these

data points. A more insightful procedure would involve correlating the measures just before
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a slip event. Such an analysis would however require more data points, and possibly also

more detailed experimental input and therefore we leave if for the future work.

Before closing, we note that for Experiment 2 and 3 we obtain consistent results,

however the correlations are weaker; e.g., the max of r f t goes down from 0.65

(Experiment 1), to 0.45 (Experiment 2), and to 0.3 (Experiment 3). Despite the fact

that all three experiments fall into the same category of stick-slip in the dynamic phase

diagram [2], clearly (see Figure 3.3) the slip events are much stronger and better defined

for Experiment 1, suggesting that in particular for such situation the persistence measures

provide insightful information.

3.4 Conclusion

We find that the tools of persistent homology (PH) allow for correlating the dynamics

of a slider and the photoelastic response of granular particles. In particular stick and slip

regimes of the slider dynamics are well captured by the PH measures. These results suggest

that there is a potential for developing predictive capabilities by analyzing the response of

the force network to an external perturbation. One open question is how precise should

the information about the forces between the granular particles be so to allow for further

development of this potential. We hope that our results set up a stage for this future work.
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CHAPTER 4

ON PREDICTING AVALANCHING

Avalanching is a phenomena that is well known on the geological scales, with a number of

familiar examples, from earthquakes to snow avalanching and landslides [52]. The behavior

that is seen on the large scales is statistically similar to the one observed in many other

systems where the consequences are less spectacular, but are crucial for understanding

material response that may be of significant technological importance. Relevant systems

include dry and wet granular systems, suspensions, colloids, foams, yield-stress fluids,

glass-forming materials, and a number of other soft matter systems relevant to our everyday

life. The response of these systems to external driving is a subject of an active research area,

with a large body of research considering intermittent response, where a considered system

evolves via stick-slip type of dynamics [55, 62]. Developing predictive models that could

inform about the conditions required for an avalanche (slip) is of significant relevance. So

far, however, the progress has been limited mostly to the predictions of statistical nature.

One would like to be able to come up with more precise predictions, or at least to be able

to decide what type of information about the considered system would be needed so that

such predictions are feasible.

4.1 Introduction

Granular systems are often explored in the context of intermittency since they provide a

good testing ground for various theoretical approaches. Experiments provide significant

information, and simulations based on discrete element method (DEM) are relatively

straightforward. In particular (quasi) two dimensional (2D) systems are useful since

observation of the results is simplified significantly.

One important question when considering intermittent dynamics is the connection

between micro (particle scale) and macro (system size) behavior. Here, granular systems
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are again useful since one can see and analyze not only particles, but also how they

interact. In experiments, photoelasticity has been used extensively for this purpose [2,

3, 41, 45, 63, 172, 183]. From computational side, the corresponding information can

be obtained directly from DEM simulations. Either approach identifies force networks that

form spontaneously on mesoscale. By now, it has been widely accepted that these networks

play an important role in determining system wide response. One open question is whether

relevant information about intermittent dynamics can be extracted based on the properties

of these networks.

The focal point of this chapter is the discussion regarding what type of data is

needed to be able to predict an upcoming event. More specifically, the question is whether

there are some characteristics of the force network describing the interaction between

granular particles, or of the global dynamics of the system, that would allow to predict

with a reasonable accuracy that the system is close to an avalanche. In addition to

global measures, we will also discuss the differences between the information that can

be extracted by considering stationary (static) and non-stationary (dynamic) data. To be

able to come up with a precise answer to the postulated question, we will consider a very

simple system of planar Couette shear, where one of the system boundaries is sheared in

intermittent flow regime. We analyze the resulting stick-slip dynamics using a variety

of measures, some of them classical, and some of them based on recently developed

approach [100, 101, 103, 104, 105, 147] based on persistent homology (PH) and applied to

force networks.

4.2 Simulations and Force Networks

The simulations are similar in spirit to the previous works [103, 104]; see Appendices A and

B for more details. The 2D soft frictional bidisperse disks are placed between two rough

walls, with 25% of large particles and 75% small particles, and the ratio of large diameter

to small diameter is approximately 15.9/12.7 [58, 102]; the bottom wall is fixed and top
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wall is exposed to a force by a harmonic spring, as well as to a pressure by applied force

in the −y direction, see Figure 4.1(a). It is well known that for a sufficiently large applied

pressure, and for sufficiently slow shearing, the system enters into a stick-slip regime [144].

The simulation starts by applying pressure to the top wall, and then letting the system

relax until the ratio of kinetic/potential energy drops below 10−5. Then, we start moving

the spring by a constant speed. The wall remains still until the spring force becomes

sufficiently large and then slips. Figure 4.1(b-d) shows a short time window of the wall

speed in the shearing, x, direction, as well as wall positions. in the x and y direction. (Note

that throughout this chapter the results are presented in nondimensional form, using as

scales the smaller particle diameter, d = 1.27 cm, binary collision time, τc = 1.25× 10−3

s, and particle mass, m = 1.32 g, see Appendix B.) We note in passing that each slip is

accompanied by a jump of the wall in the y direction due to Reynolds dilatancy effect, see

Figure 4.1(c). To reach reasonable statistics, we carry out simulations for a long time so

that a large number (400-500) of slip events occurs. We extract the force information every

10 time units, leading to the total of 3×105 data points.

For the future purposes, it is important to carefully define what a slip event is. In

this chapter, we define slip event based on the top wall velocity in the x direction, vx. First,

we apply a relatively coarse velocity threshold of v∗f = 2× 10−3 (note that this threshold

is an order of magnitude smaller than a typical velocity during a slip, see Figure 4.1(b)).

We then calculate the mean, v̄x, and standard deviation, svx , of vx in the ”stick” phase, and

define the new threshold v f = v̄x + svx . Then, we define the beginning of a slip as t0 when

vx > v f . This gives v f ≈ 2.5×10−4, providing a rather stick criteria: essentially even very

slow motion of the wall is considered as a start of a slip.

In what follows, we will discuss utility of various measures for the purpose of

prediction when next slip event will occur. Some of these measures are based on the

concept of force network, that we define first. We define the magnitude of the contact forces

as a continuous scalar field, f : C→ [0,+∞), where C denotes the particles’ contacts. The
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Figure 4.1 (a) Geometry of the simulations and snapshot of the force network. The arrow
shows the direction of shearing (x axis) (y axis is pointing up). The wall particles are not
shown. (b) Speed of the wall, vx, in the shearing direction; (c) y position of the shearing
wall, and (d) x position of the wall. Total of 300,000 outputs were recorded, and only a
fraction of the used data is shown in (b-d). Note that the time (horizontal) axis is given in
units of output time step, which is δ t = 10τc, see Appendix B.

force network at time t can then be defined as FN( f ; t) = {ci(t)| f (ci(t)), where ci(t) are

the particle contacts that make up the force network at time t.
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The force network can be quantified by the tools emerging from persistent homology,

PH, which has been used extensively for the purpose for describing weighted networks

in a variety of settings [83, 84, 106, 168]. While applications to granular systems are

still rather limited, PH has been used for the systems exposed to compression [100, 104],

vibrations [10, 101, 147], or shear [67]. In 2D, there are two independent sets of measures

that could be considered, the ones based on the connected components (one could relate

these to so-called ‘force chains’) and the ones based on loops (also called cycles [173]). The

first set is related to the first topological invariant, zeroth Betti number, β0, and the second

one to the second topological invariant, or β1. PH describes the given force network in

terms of persistent diagrams, PDs, which are essentially point clouds, and then various

measures could be extracted from PDs.

Perhaps the simplest measure that could be used to describe a PD and therefore

underlying force network, is total persistence (TP) which essentially assigns a number

to a force network based on its connectivity properties; one can define TP separately

for β0 (TP0) and for β1 (TP1). We note that while TP is based on the concept of force

thresholding, it includes the information about the connectivity at all threshold levels at

once, and therefore does not require considering separately weak and strong forces.

In addition to considering static measures, derived from a state of the system at a

given time, PH also allows for quantifying dynamics of the considered network. For this

purpose, it is crucial to observe that these diagrams live in a metric space, and therefore the

concept of distance between two diagrams is well defined. For our purposes here, what is

important is that the distance describes in clear and precise terms the difference between

two PDs and therefore by extension, the difference between the underlying networks. In

this chapter, we will focus on the use of Wasserstein W2 distance, which is essentially an

L2 norm quantifying the difference between two PDs, see Subsection 2.2.4. The distance

can be computed separately for the components and loops, therefore we have W2 for β0 and

β1. One should note that the considered dynamical measures depend on the time interval
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Figure 4.2 (a) Top wall velocity in the x direction, vx, of an example slip event, ∆t = 0
indicates the start of the event, (b) W2 β0, (c) ratio of mobile to non-mobile contacts, RMN.

involved in their computation: we have verified that this difference is approximately linear

for the considered time intervals. We note that for the purpose of PH-based analysis, in the

present work we use the normal forces between the particles only.

4.3 Results

4.3.1 Motivation: A Single Slip Event

To motivate the analysis which will be presented in this section, we start by discussing

briefly a single slip event. Here we also introduce another of the measures that we will

consider, and that is the ratio of mobile to non-mobile contacts (RMN). The motivation

for considering this measure is related to the expectation that application of shearing force

will lead to an increase of Ft relative to Fn; ultimately, when the ratio Ft/Fn reaches the

Coulomb threshold, sliding occurs, making a contact mobile. Therefore one could expect

that RMN increases as a slip event occurs. Figure 4.2(a-c) shows velocity of top wall vx,
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W2 β0, and RMN. Here, ∆t measures the difference between t and t0, in units of δ t, where

t0 indicates the beginning of the slip event and δ t is output time step. The velocity is very

small before slip event starts, as expected based on our definition of t0. W2 β0, however,

shows a significant change some time before beginning of the slip. On the other hand, RMN

does not seem to provide any useful information, at least for the considered slip event. As

we will see in what follows, this difference between the insight that can be reached from

W2 β0 and RMN appears to be generic, and reflects that difference in the information that

can be obtained based on dynamic measures (such as W2) and static ones, such as RMN.

To illustrate more clearly the behavior of the system close to a start of a slip event,

Figure 4.3 shows the heatmaps of the top wall position (a) and of W2 β0 (b). These

heatmaps show the difference in a value of a considered quantity between time ∆t =−100

and ∆t + iδ t (i = 1, 150 in Figure 4.3). From Figure 4.3(a) we conclude, as expected, that

there is no observable motivation of the top wall (note that the slip event is identified to

start at time t0 = 0). However, Figure 4.3(b) shows significant changes of W2 β0 before

time zero: already 20-30 δ t before the slip event starts W2 β0 changes. This finding

motivates more careful analysis of a large number of slip events to explore whether the

described finding is general, and whether there are other measures that could be used for

slip prediction.

4.3.2 Static Measures

We start by discussing some of the measures describing static properties of the system,

obtained from observing the state of the system at a given time point. To obtain reasonably

accurate representation of the data, we use the following approach: we record the starting

time of each slip event, and then compute the relevant quantities for a certain time interval

preceding a slip event. The question is whether, based on the behavior of the considered

quantities before slip event starts, we could predict that a slip is imminent.
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Figure 4.3 (a) Heat map (a symmetric matrix) of top wall position of the event shown
in Figure 4.2, where the color of element (i, j) illustrates the difference of top wall’s x
position between time ∆t = i and ∆t = j, (b) heat map of W2 β0, where the color of element
measures the distance between PDs at ∆t = i and ∆t = j. Slip event starts at ∆t = 0.
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Figure 4.4 The mean of vx and its derivative before slip events, averaged over slips events.
Here ∆t = 0 corresponds to the time the slip starts, t0.

Figure 4.4 shows the mean of wall velocity, vx and its derivative (acceleration)

averaged over all slip events. We could see that vx and acceleration remain flat and close to

zero until t0 is reached.

Figure 4.5 shows the measures that we have considered. We start with the most

obvious measures that could be expected to have a potential to predict an upcoming slip

event: (a) spring force, and (b) the y position of the top wall. We see that these measures

increase only very slowly before en event, and therefore do not seem to have useful

predictive abilities. Then, we consider (c) the ratio of tangential, Ft , and normal, Fn,

forces between the particles, averaged over all contacts, (d) RMN, (e) total persistence

for components, TP0, and (f) total persistence for loops, TP1. Note that the oscillations

seen in Figure 4.5(f) are due to very small oscillations of the top wall, barely visible in

Figure 4.5(b), illustrating how sensitive measure TP1 is.

Figure 4.5(c-f) shows that the considered measures, all based on static information,

do not provide information that could be useful from the point of view of predicting

upcoming slip event. They mostly slowly grow as a slip event approaches, however this

growth is very gradual and difficult to use for predictive purposes. We conclude that at least
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Figure 4.5 (a) spring force, fs, (b) y position of the top wall, (c) the ratio of Ft/Fn, (d) the
ratio of mobile to non-mobile contacts, RMN, (e) TP0, (f) TP1.

for the present system, developing prediction based on the considered (static) measures is

not feasible. See additional discussions of static measures in Appendix D.

4.3.3 Dynamic Measures

We proceed by discussing the results that could be obtained by considering dynamic

information, and by this we mean the information which can be extracted by considering

system evolution, and therefore based on more than a single state of the system. Figure 4.6

shows the results for the dynamic measures that we have considered, averaged over all slip

events. One set of measures that is rather natural to consider is based on broken contacts.

One could expect that even before slip actually starts, there could be local rearrangements

of the particles taking place, leading to breaking up of the contacts. Note that this measures

involves dynamics of the particles: the particles need to move in order for contacts to break.

We consider two measures: the average broken normal force, and the number of broken

contacts. The broken contacts can be defined as the difference between the contact network
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C between time t and t + δ t, BC(t + δ t) = C(t)−C(t + δ t). The broken contact number,

bc, and total contact number, tc, at time t are bc = ∑c∈BC(t) 1, tc = ∑c∈C(t) 1. Hence, the

broken contact ratio is defined as rbc = bc/tc. The broken normal contact force at time t is

fbc = ∑c∈BC(t) ‖ f (c)‖/bc, where f (c) is the normal component of the broken contact force.

Another two sets of measures are based on the (dynamic) properties of the normal

or tangential force network itself and do not involve particle dynamics. The first set is

rather intuitive and it emerges from observing the ‘differential force network’, which is the

difference between the network at the times t and t+δ t. The animations of such differential

force networks show that just before a slip event, this network appears to percolate across

the domain (in either x or y directions, or both) for nonzero level of force, and snapshots

of the animations are shown in Figures D.2 and D.3 in Appendix D. One obvious question

is whether such percolation can be used to suggest that a slip is imminent. We define the

differential normal force network between time t and t +δ t given a threshold f̂ :

DFNk( f̂ ) = |FN( f ; t +δ t)−FN( f ; t)| f̂

= {ci(t +δ t)|| f (ci(t +δ t))− f (ci(t))| ≥ f̂}.
(4.1)

The maximum percolating differential normal force is the threshold of differential normal

force f ∗ at which DFN( f ∗) percolates through the whole system via system particles.

The f ∗ is calculated in both directions from left to right, notated as fplr, and top to

bottom, as fptb. Similarly, we could define the differential tangential force network and

its corresponding percolating threshold, see Appendix D for more detail.

We also consider the mean of system particles’ speed, v̄p , and its standard deviation,

svp , as dynamic measures, which can be calculated from the magnitude of system particle

velocity, where v̄p = ∑
N
i=1 vi/N, svp =

√
∑

N
i=1(vi− v̄p)2/N, and vi is the speed of system

particle i, N is the total number of system particles.

Figure 4.7 shows all described dynamic measures in the format similar to Figure 4.6.

We observe no different behaviors of the measures considered in this figure: they all change
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Figure 4.6 (a) W2 β0 distance, (b) W2 β1 distance, (c) the horizontal percolating
differential normal force, fplr, (d) the vertical percolating differential normal force, fptb,
(e) the ratio of broken contacts to total contacts, rbc, (f) the average normal force of broken
contacts, fbc, (g) the mean of system particle speed, vp, (e) the standard deviation of system
particle speed, svp .
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Figure 4.7 Derivatives of dynamic measures, presented with different colors as W2 β0
(blue), W2 β1 (red), maximum percolating differential normal force from left to right fplr
(green), maximum percolating differential force from top to bottom fptb (orange), ratio
of broken contacts to total contact number rbc (gray), average broken contact force fbc
(purple), average system particles velocity (salmon), standard deviation of system particle
velocity (turquoise). The inset zooms into the range of [-30, 0].

dramatically before a slip actually takes place. In addition, we note that the considered

measures start evolving earlier and earlier, with the earliest changes observed for the

persistence distances, in particular the W2 β0. These results suggest that it should be

possible to anticipate upcoming slip event by considering evolution of underlying force

network.

4.4 Conclusion

In this chapter, we introduced two ways to measure a granular system, either dynamically

or statically. We further discussed the insights into the precursors to slip events of a 2D

dense granular system from these two measures. As a dynamic measure, we introduced

the concept of differential force network and the percolation of these differential force

networks before slips. Thus, we have identified a set of dynamic measures that show

promise to be able to predict avalanching type of behavior in the considered system. The
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general pattern of the results (both for the measures discussed here and for other ones

not discussed for brevity) is that dynamic information needs to be included in order for

a considered measure to have predictive power. The discussion of slip statistics and its

relations between static and dynamic measures is presented in Appendix D. While our

findings are based on the computational results, we hope that they will inspire future

experiments that will be positioned to verify our findings in an experimental setup as well.
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CHAPTER 5

UNDERSTANDING SLOW (DE)COMPRESSION OF GRANULAR MATTER

5.1 Introduction

In non-Newtonian systems, complex fluids [77], colloidal suspensions, [136], and especially

granular matter in its flowing states [88], the transport coefficients depend on various state-

variables such as the density and the granular temperature [145]. This interdependence

and the presence of energy dissipation is at the origin of many interesting phenomena

like clustering [121], shear-band formation [113], jamming/un-jamming [32, 75], dilatancy

[149], shear-thickening [129, 136, 163] or shear-jamming [32, 111, 187]. While granular

gases are very well described by kinetic theory [145], dense granular fluids and granular

solids are much harder to understand, in particular since they can transit from fluid-like

flowing states to static, reversibly elastic ones. How and why they achieve this is still under

debate, e.g., by irreversible plastic deformations [61, 119, 128, 186, 197], related also to

creep/relaxation [8, 36, 87, 149], and many other studies.

In order to describe solid-like granular matter on the macroscopic scale, concepts

from elasto- and visco-plastic theories were used [6, 7, 59, 61, 71, 72, 94, 112, 178, 185,

186] including instabilities, yield and failure [50, 51, 76, 137, 159, 160, 185, 189, 193, 202].

Recently, statistical mechanics/physics concepts [80], helped to better understand the

probabilities for plastic deformations [34, 72, 90, 91, 111, 119, 128, 197], force network

change/growth [146, 151], stress-based meso ensembles [31], or stress-relaxation [36, 37,

87, 149]. A traditional subject of research are stress-fluctuations [26, 109, 132, 177],

and the quest for the “effective temperature” [81, 90, 91, 139] of thermal or a-thermal

granular packings [31, 91, 194]. Most recently, universal scaling laws [16] were reported,

and compression and shear in particularly small systems [192] could be understood.

Considering granular solids, their stiffness, and the elastic moduli [24, 46, 112] have to

54



be considered in the presence of non-affine deformations [46]. For this, over-compression

and shear [16, 24, 111, 188, 198] cyclic loading [13] or even thermal cyclic loading [86]

were applied.

When sheared granular matter starts to flow and (for large enough strain) reaches a

steady state, or critical state [123, 163, 200], the nowadays widely accepted “classical”

µ(I)-rheology [131] holds. It was recently extended to include friction, softness and

cohesion [27, 28, 123, 129, 150, 200], but it does not have a fully tensorial form [162, 190],

and issues regarding its wellposedness are still discussed [20, 73, 154].

Modern experimental techniques [8, 15, 191], also with focus on low confining stress

[42], shed new light on classical works on the response to local perturbations [68], jamming

and un-jamming [36, 49, 68, 127, 138], in particular by shear [16, 32, 111, 122, 156, 179,

188], and transients, fabric/micro-structure evolution [26, 112, 111, 125, 142, 181, 183].

One of the classical experimental techniques involves photoelastic materials that allow to

visualize stress [3, 17, 35], as complemented by a huge amount of particle simulations, e.g.,

see [38, 113] and references therein.

One important success of granular research was to bring solid-like and flowing

behavior of granular matter together, e.g., in a continuum theory with fluidity [79,

90, 91, 197], and to understand anisotropy [125, 142, 181, 200], also shape induced

[63, 135], as well as involving the rotational degrees of freedom and micro-polar models

[27, 78, 108, 130, 152, 184], not to forget wet particle systems [136, 167], for which

a thermodynamically consistent theory [60] and numerical solutions [23] were recently

proposed.

Dynamics of dense granular matter is necessarily related to the evolution of the force

networks describing the interparticle interactions. By now it is well accepted that the static

and dynamic properties of these networks are closely related to the mechanical properties

of a whole granular sample. It is therefore important to be able to describe the properties of

these networks in a way which is simple but also precise, and that could be applied in three
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spatial dimensions (3D). This is not an easy task since the force networks are built on top

of contact networks, which for a dynamic system evolve as well. While there is a number

of various approaches that could be used to describe the considered networks, they often

do not satisfy some of the requirements specified above. In the present work, we focus on

application of persistent homology, which is a technique based on computational topology

allowing for a concise description of weighted networks, and is therefore appropriate for

description of force networks, where the role of weight is played by the magnitude of the

force (normal or tangential) between granular particles. Persistent homology allows for a

significant data reduction, since it describes a complicated weighted network in terms of a

point clouds, known as persistent diagrams, that contain the information about connectivity

of the force networks, and how such connectivity depends on the force magnitude. One

strength of this approach is that all force magnitudes can be considered at once, that is,

it is not necessary to, e.g., separate the network into weak or strong network. This being

said, the concept of force threshold is inherent in persistent homology calculations and the

information about the connectivity for different thresholds is readily available.

Persistent homology has been extensively for a number of systems involving

weighted networks, ranging from social [168] to fluid dynamics [106] and material

science context [83, 84]. While applications to granular systems are still rather limited,

the approach based on persistent homology has been used for the systems exposed to

compression [100, 104], vibrations [10, 101, 147], or shear [67]. In the present work,

we will illustrate some of the strengths of this approach, including ability to easily carry

out computations in 3D, as well as to consider evolving networks, including computing

their differences. The computations are carried out using Gudhi library [1].

The remainder of this chapter is structured as follows. After discussing discrete

element and persistent homology methods in Section 5.2, we proceed to discuss the

results. Section 5.3 focuses on the preliminary discussion of the transitions, which are

essentially irreversible events frequently occurring both during compression (loading) and
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decompression (unloading) of the considered granular system. Then, in Section 5.4 we

follow by discussing the results obtained by applying persistent homology analysis to the

considered system, as well as by developing the relation of the quantities derived based

on persistent homology to classical measures, such as pressure or kinetic energy. The

discussion in Sections 5.3 and 5.4 focuses on frictionless particles. Then, in Section 5.5

we follow up by describing the results of simulations of frictional particles, focusing on

the differences between frictionless and frictional results. Section 5.6 is devoted to the

summary and conclusions.

5.2 Methods

5.2.1 Introduction to Discrete Element Method

The approach towards the microscopic understanding of macroscopic particulate material

behaviour is the modelling of particles using the so-called discrete element method (DEM),

a numerical scheme originally formulated and developed by Cundall et al [47].

DEM is a straightforward implementation to solve the transitional and rotational

equations of motion for a system of many interacting particles:

miäi = fi +mig Iiω̇ i = τ i (5.1)

where mi is the mass of the i-th particle with position xi. It is subjected to two kinds of

forces, one due to contacts with other particles (fi = ∑c fc
i ) and one due to volume forces

(i.e., gravity acceleration, g which are neglected in this study. Ii is the spherical particles

moment of inertia, ω̇ i is the angular velocity and τ i = ∑c(lci × fc
i + qr

i + qt
i) is the total

torque, where lci is the branch vector and qr
i , qt

i are torques due to rolling and torsion.

The basis of DEM consists of the force laws that relate the interaction force to the overlap of

two particles. This force can be decomposed into a normal and tangential component fc
i =

fn + ft . With the normal and tangential forces acting on all particles, one can numerically
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integrate the equations of motion and obtain the next position of particles. Below, we will

describe a force law used in this research.

Normal Contact Law The elementary units of granular material are mesoscopic grains

which deform under contact forces, induced by an externally applied stress. For realistic

modeling of the deformation of particles we relate the interaction force to the overlap δ of

two particles. Note that the evaluation of the inter-particle forces based on the overlap may

not be sufficient to account for the inhomogeneous stress distribution inside the particles.

Two particles only interact if they are in contact, resulting in an overlap:

δ
n = (ri + r j)− (xi−x j) ·n > 0, (5.2)

where n = (xi−x j)/|xi−x j| is the unit vector pointing from particle j to particle i.

From the equations of motion, Equation 5.1, it is apparent that the contact force is needed

to determine particles trajectory. This force is calculated through a contact force law, which

is a simplification of the contact between two particles. Linear contact model is the most

simplified contact model in DEM which is a linear model based on the spring-dashpot

theory of elastic contact [92, 120, 169, 195]:

f n = f n
el + f n

visc = knδ
n +ηnδ̇ n (5.3)

with kn as the spring stiffness between two particles. In reality, particles collisions are

inelastic, i.e., energy loss occurs during collisions. Here, the dissipation is related to relative

velocity (vn
rel = −(vi− v j) ·n = δ̇ n) of interacting particles with the viscoelastic damping

constant for normal contact viscosity ηn which is an intrinsic material parameter.

This model assumes that the particles are spherical and do not deform during the simulation.

In addition, this model considers binary contacts between two particles which means

particles are in contact through a single point during their collisions.
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Tangential Contact Law Modeling the tangential forces that arise from oblique particle

impacts has elicited a considerably wider range of force models than those of normal

interactions [5, 107, 114, 169]. Here, the tangential force is modeled by the theory of

Mindlin [133]. When two contacting surfaces are subjected to an increasing tangential

displacement, δ t , then relative slip is initiated at the perimeter and progresses inward over

an annular area of the contact surface. The incremental tangential force ∆ f t due to the

incremental tangential displacement ∆δ t depends not only on the loading history but also

on the variation of the normal force. Therefore, the incremental tangential force is obtained

from the following equation:

∆ f t = f t
i+1− f t

i (5.4)

where f t
i+1 is the new and f t

i is the old tangential force.

An approach based on the constant normal force solution of Mindlin was proposed

by Tsuji et al. [174]. This approach is based on a linear tangential spring, kt , with a stiffness

coupled non-linearly to the normal displacement and was applied to a study on plug flow.

Although strictly speaking, the proposed tangential model is only valid in case of a fully

elastic material, it was combined with the non-linear viscoelastic model without adjusting

any parameter [69]. Hence, the incremental tangential force is calculated as:

∆ f t = ∆ f t
el +∆ f t

visc = kt∆δ
t +ηt∆vt (5.5)

where kt is the tangential stiffness. Likewise the normal direction, we consider a dissipation

term along the tangential direction using of viscosity term ηt [169] which is combined with

the change of velocity along the tangential direction ∆vt .

The elastic tangential displacement, ∆δ t , between spheres, obtained by integrating surface

relative tangential velocities during elastic deformation of the contact and given as [157,

161]:

δ
t =

∫ ti+1

ti
vtdt −→ ∆δ

t = vt
∆t (5.6)
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where vt is the component velocity tangent to the contact surface and ∆t is the time-step.

For the tangential degrees of freedom, we only consider sliding resistance between

particles, rolling and torsion resistance are neglected for the sake of simplicity.

The tangential force as calculated in Equation 5.5 is subjected to the Coulomb’s law

attrition. Tangential force is calculated based on Equation 5.5 in the case of static friction,

i.e., no slip. Dynamic friction happens when the tangential component of force, f t , which

was calculated from Equation 5.5, exceeds the maximum value of static force (µ f n), hence

two particles start to slide against each other. In this case, the tangential force becomes

f t = µ f n where f n is the updated value and µ is the friction coefficient.

Input Parameters The N = 4913 particles, with particle diameters drawn from a random

homogeneous size distribution with maximum to minimum width, dmax
p /dmin

p = 3, are the

same as used in [111]. The parameters given in the following with a prime, e.g., ρ
′
p = 2000

or d
′
p = 2, are used in the simulations shown in this chapter. For working with units,

there are two alternatives: Either one can read the numbers in chosen units or the units

are chosen based on physical properties to achieve non-dimensional quantities. The latter

option is adopted here, i.e., the unit of length is chosen as the mean particle diameter,

x
′
u = 〈d ′p〉 = 2, so that 〈dp〉 = 1 is the dimensionless diameter. The second unit is the

material density, ρ
′
u = ρ

′
p = 2000, so that one has the dimensionless density, ρ = φ , and

thus the unit of mass, m
′
u = ρ

′
u(x

′
u)

3, i.e., the particle mass, mp = (π/6). For the third

unit one has several choices, where we adopt here the units of elastic stress, σ
′
u = k

′
n/d

′
p,

with the linear normal contact stiffness, k
′
n = 105, which yields the dimensionless stress

σ = σ
′
d
′
p/k

′
n, and results in the unit of time t

′
u = (m

′
u/k

′
n)

1/2 = 0.4 1. In the chosen units,

the dimensionless linear stiffness is kn = k
′
n(t
′
u)

2/m
′
u = 1, and the linear contact viscosity,

γ
′
n = 103, becomes γn = γ

′
nt
′
u/m

′
u = γ

′
n/[k

′
nt
′
u] = 4× 10−3, with background viscosity,

1The alternative dimensionless stress: σγ = σ
′
/[ρ

′
p(d

′
pγ̇
′
)2], with the unit of time set by the shear

rate, t
′
u = γ̇

′
, is more useful for collisional shear flows, see [180], and is thus not adopted here fore

the sake of brevity.
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γ
′
b = 102, or γb = γ

′
bt
′
u/m

′
u = 4× 10−4. Following the parameters used for normal contact

law, input parameters of tangential contact law are chosen to be k
′
t = 2×104, γ

′
t = 2×102

(kt = 0.2 and γt = 8× 10−4) with a friction coefficient µ = 0.1. In this study, rolling and

torsion resistance are not considered.

The consequent physically relevant properties are the restitution coefficient r =

exp(−ηntc) ≈ 0.855, with damping factor ηn = γn/(2m12), reduced mass, m12 = 0.063,

and contact duration, tc = π/
√

kn/m12−η2
n = 0.79, or t

′
c = tct

′
u = 0.316, all considered

for a contact between the largest and the smallest particle, with the larger viscous

damping time-scale, tv = 2m12/γn ≈ 5, and the even larger background damping time-scale

tb = 2m12/γb ≈ 50. Note that this choice of units corresponds to setting t
′
u ∝ t

′
c, which

corresponds to collapsing different stiffness simulations in the elastic regime [162, 180].

To prepare samples, first particles are randomly placed in a 3D simulation box with a

periodic boundary condition at a low volume fraction, well below jamming point (transition

point from liquid- to solid-like behavior). Then, the simulation box is compressed to

homogeneously from all direction up to volume fraction φ = 0.9 and then decompressed.

Simulations carried out using isotropic strain-rate, ε̇
′
v = 1.05×10−6 s−1 (ε̇v = 4.2×10−7),

for both loading and un-loading.

In the following sections, we will present a few typical particle simulations from

loading-unloading cycles with the goal to zoom in to the slow rate data to display dynamics

of what is going on during plastic, irreversible re-arrangement events.

5.2.2 Persistent Homology

For the present purposes, we could think of persistent homology (PH) as a tool for

describing a complicated weighted network (such as the one describing interaction forces

between the particles) in a form of diagrams, so called persistence diagrams (PDs). These

diagrams are obtained by filtration, or thresholding, the strength of the interactions between

the particles. As an example, let us assume that this strength is quantified by the normal
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interaction force between the particles in the system. Then, the simplest persistence

diagrams, which we refer to as β0 PD essentially traces how ‘structures’ (could be thought

of as ‘force chains’, without attempting to define them) appear as a filtration level is

decreased, or disappear as two structures merge. Such a PD contains rather complete

information about how connectivity between the contacts depends on their strength.

Figure 5.1 shows examples of the PDs computed at a given time for the system

considered in the chapter (both for β0 discussed above, and for β1, that describes loops

or cycles, and discussed further below). Each point (generator) in this diagram has two

coordinates, ‘birth’ - specifying when (at which filtration level) it appeared, and ‘death’

- specifying when it disappeared, due to merging with another structure (as an example,

consider two force chains: this chains will merge once the considered force threshold

is decreased to the level of the force experienced by the particle contacts in between

thee chains). Note that the term ‘persistence’ in this context refers to the force range

over which a certain structure ‘persists’, or survives, as a considered filtration level is

changed. We note that the number of PDs for a given network corresponds to the

number of physical dimensions; therefore for 3D (three dimensional) system, there are

three potentially relevant PDs: β0, corresponding to components, β1, corresponding to

loops, also known as cycles [173], and β2, corresponding to closed surfaces. The reader

is referred to [158] for a more detailed overview of application of PH to dense granular

matter from a physics point of view, and to [105] for a more in depth presentation. To

facilitate understanding of the insight that can be reached by analysis of PDs, we briefly

outline some of their properties:

• Persistence diagrams live in a metric space and therefore can be compared. This
means that one can compare the weighted force network at different points in time,
which is a crucial feature if one wants to understand an evolving system; we follow
up on this by defining distances between PDs below.
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Figure 5.1 Examples of persistence diagrams, PDs, for (a) components (clusters), β0, and
(b) for loops (cycles), β1. The axes show the force level at which a structure appears (B)
and disappears (D) The lifespan L = B - D illustrates the force threshold range over which
a structure persists.

• Since the description of a weighted force network in terms of persistence diagrams
provides a significant data reduction, there is an associated loss of information,
and therefore PDs do not provide full information about the underlying network.
However, the information contained in PDs still provides for all practical purposes
a reasonably precise insight into topological properties of the considered weighted
networks.

• A PD provides information about a weighted network that is threshold independent;
a PD provides information about all threshold levels at once. This is a major
difference compared to other measures describing force networks, which often
require separation of a force network into a ‘strong’ or a ‘weak’ network.
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• The PDs are essentially point clouds, and an appropriate measure needs to be
developed for their quantification. One possibility is based on the idea that both
the number of points (generators) in a diagram, and for how long (that is, for how
many thresholds levels) a point persists, are appropriate measures describing the
force network between particles. Using landscape as an analogy, the number of
points in β0 PD specifies the number of (mountain) peaks, and their lifespan (see
below) describes how well developed these peaks are, or, to push the landscape
analogy further, how high they are compared to the ‘valleys’ that surround them.
The lifespan, L is introduced as the difference between birth (B) and death, D,
coordinates, so L =B−D (note that birth occurs on high threshold level than death).
Both measures could be combined into one by defining total persistence, TP, as a
sum of all lifespans. We will be using TP in discussing some properties of the force
networks in the considered system.

• To further facilitate the information which can be extracted using PH based measures,
let us connect them to some of the other concepts and quantities used in describing
force networks. As mentioned above, the number of generators is related to the
common (even if undefined) concept of force chains, and lifespan corresponds to
how strong these force chains are. Then, β1 measures can be related to the concept of
cycles, properties of which are expected to be connected to the mechanical response
of the system [173]. One important aspect of PH measures is that all these quantities
are defined in a clear and precise manner which facilitates an objective description
of static and dynamic weighted networks and of their evolution.

• As pointed out above, the number of PDs corresponds to the number of physical
dimensions. For the system considered here, it turns out that the structures
corresponding to β2 do not form, and therefore our focus will be on β0 and β1 PDs.
An interpretation of the lack of β2 generators is that force networks in the considered
system do not form closed three dimensional structures for the contacts with non-zero
force. We are not aware that the consequences of this observation have been explored
in the literature so far.

• The reader should note the enormity of the data reduction described so far: first a
weighted force network is reduced to a point cloud (PD) and then this point cloud to
a single number (TP). Such a reduction clearly leads to huge data loss, but as we will
see, still provides an insightful information about the underlying weighted network.

PDs provide information about the state of the system at a given time, and do not include

any information about the dynamics. As pointed out, however, PDs can be compared,

and in particular the concept of distance between PDs is well defined [105]. The distance

between two PDs could be thought as a minimum (Euclidean) distance by which the points

64



in one diagram need to be adjusted to map them exactly to the other one; if the number of

points in two PDs is different, then extra points are mapped to the diagonal. Stated formally

Wq(PD,PD′) = inf
γ : PD→PD′

(
∑

p∈PD
‖p− γ(p)‖q

∞

)1/q

. (5.7)

Here, Wq stands for the degree q Wasserstein distance, and PD, PD′ are the two considered

PDs. Computing the distance is a computationally expensive process in particular for

complex diagrams with many points. In the present work, we focus on q = 2 for simplicity,

and perform calculations using the Gudhi library [1].

5.3 Frictionless Particles: Analysis of DEM Results Based on Classical Measures

In this section, we compare the loading and unloading branches at the full range of volume

fractions during the strong loading, overcompression, and unloading. Here, we focus on

DEM particle simulation output/information, whereas in the next section, we will discuss

in more detail the properties of force networks and their relation to the classical measures.

Figure 5.2 shows the results for the dimensionless pressure, p = p′dp/kn. Comparing

to the results obtained using slower deformation, it is confirmed that already the simulation

is in the quasi-static, rate-independent regime.

Figure 5.3 shows the energy ratio (kinetic to potential), Ek/Ep. It is a known fact

that the energy ratio drops rapidly below unity at jamming [75], it sharply increases at

unjamming, at a significantly different, larger value of φ . There are strong peaks whenever

the system structure re-arranges during loading (blue) or unloading (red). A few of

strong rearrangements are marked with 4 and © from loading and unloading branches,

respectively, which are used for further study in the next section.

Next, we consider the coordination number C∗ which is related to the contact number

per particle C = 2M/N (given the total number of contacts M) by C∗ =C/(1− fr) in which

fr is the fraction of rattlers. Figure 5.4 shows that the coordination numbers, C∗, are very

similar for the loading and unloading branches, i.e., on this scale, like for pressure, the
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Figure 5.2 Pressure plotted against volume fraction, φ , for loading (L) (red) and unloading
(UL) (blue). The symbols indicate the location of three selected simulation event windows,
respectively, for both L and UL.
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Figure 5.3 Kinetic to potential energy ratio, Ek/Ep, plotted against φ for the same
simulations as in Figure 5.2, with the same colors/symbols.

tiny differences can be seen only when zooming in to the data, as we will do in the later

sections.

5.3.1 Loading and Unloading Events

We proceed by comparing the loading and unloading branches at a few different selected

values of φ so to be able to zoom into the rearrangement events marked in Figures 5.2-5.4.

When zooming into a small window of ∆φ = ±0.0025 around the value of φ at

which an event takes place, the pressure, p, in Figure 5.5, differs significantly between

loading (L) and unloading (UL). Only the last event on the loading branch is followed by

an elastic regime that is exactly, reversible, elastically traced back during unloading from

the maximum density φmax = 0.9013, confirming reversibility for small enough strain rates

and small enough strains.
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Figure 5.4 Coordination number, C∗, plotted against volume fraction, from the same
simulations as in Figure 5.2, with same colors/symbols.

Figure 5.5 Pressure versus volume fraction, φ , from the same data as in Figure 5.2 (red
and blue lines), but here zooming into three events on each branch, for loading (L) (red)
and unloading (UL) (blue). The same color/symbols are applied to Figures 5.6 and 5.7.
(a) L1, (b) L2, (c) L3, (d) UL1, (e) UL2, (f) UL3.
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All the events are characterized by (sometimes tiny, sometimes large) changes in

pressure: For L we observe pressure drops, while for UL, we also observe considerable

increases in pressure (note that the UL figures need to be viewed from right to left since φ

is decreasing).

Evidently, the energy ratio, Ek/Ep, changes frequently while looking at a zoomed

window in Figure 5.6. It is not surprising to see the energy ratio during loading and

unloading does not follow the same trend since the sample configuration has changed

even though the overall φ is the same. What can be found is that before the start of

rearrangements, the configuration tends to reach an equilibrium, i.e., decrease in energy

ratio. To be more specific, one needs to look at the compression plots (red line) left to right

and decompression plots (blue line) right to left, in which after every rearrangement the

energy ratio decays before the start of the next local rearrangement.

To obtain the data at higher temporal resolution, we run the simulations at an arbitrary

density before the start of an event until the next equilibrium state is reached. Even though

the coordinate data available for the restart were only stored with 12 digits accuracy, the

re-runs match perfectly.

Figure 5.6 Kinetic to potential energy ratio, Ek/Ep, plotted against volume fraction, from
the same events as in Figure 5.5.
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Figure 5.7 Coordination number, C∗, plotted against volume fraction, from the same
events as in Figure 5.5.

Finally, the coordination number, C∗, in Figure 5.7, is plotted for the same data as

in Figure 5.6. Similarly to the energy ratio shown in Figure 5.6, the coordination number

plot reveals clearly the irreversible rearrangements before and after events. The path of

the coordination number result remains in elastic regime before events taking place. Right

after the start of an event, the coordination number drops. The drops show up when one of

the two configurations has considerable energy ratio, Ek/Ep, which leads to opening and

closing of contacts, i.e., local rearrangements. After the events, the coordination number

recovers its original elastic path almost in all cases unless many local events take place

simultaneously, restructuring the network configuration.

5.3.2 Events Contact Networks

In Figure 5.8, contact networks are plotted during events, for the loading branch only, with

a threshold set such that the plots have similar density, even with a few holes/gaps that

indicate extended islands of weak contacts only. The intensity of forces is color coded

the same way in all plots, where blue, green, red range from low to high densities and,

equivalently, forces.
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The four snapshots shown in Figure 5.8 for each of the events L1 (φ = 0.6735),

L2 (φ = 0.742), and L3 (φ = 0.899), are equally spaced within the event window, ∆φ ≈

0.00023, so that biggest changes are expected between the two middle panels. However,

given the rather small relative changes in pressure during events, also the force intensity

change is practically invisible, and only a few changes in lines are visible. This observation

brings us to the conclusion that the visualisation of the force network is not very helpful

to understand the evolution during events; further analysis of these networks based on

persistent homology method will be discussed in Section 5.4.

Figure 5.8 Force network during the three loading events L1, L2, and L3 (each event
represented by a row of four snapshots), where the forces are plotted only above a threshold
for the overlap of δ/(2R) > 0.006, 0.04, and 0.11, respectively, while all lines are color
coded the same way, from small (blue), moderate (green) to large (orange). Forces across
the periodic boundaries are omitted.
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5.4 Frictionless Particles: Force Network Analysis Based on Persistent Homology

Figure 5.9 Loading (solid line) and unloading (dashed line) branches of pressure (black),
TP β0 (TP0) (red), TP β1 (TP1) (blue).

Global view Figure 5.9 shows total persistence, TP, for components (β0) and for loops

(β1), together with the pressure for both loading and unloading branches. There is a number

of features to be noted. First, as expected, the pressure between loading and unloading

measures differ, with loading pressure being always higher than the unloading one, for the

same φ . Careful inspection of the pressure curves show also that the process of unloading

is smoother than loading. Further comparison reveals also that TP for β1 (TP1) closely

follows the pressure, while TP for β0 (TP0) is much more noisy. In particular, while the

loading pressure is always larger than the unloading one, the same does not apply to TP0.

We note that the evolution of TP0 is particularly nonuniform for large φ ’s, suggesting

significant rearrangements of the force network.

We will discuss the fine features of the pressure and TP in what follows. Before that,

we discuss the correlation between pressure and TP in more quantitative terms. For this

purpose, we compute their correlation function. Since the functions that are correlated are

rather noisy, we will consider the data averaged over a moving window, as described next.
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The moving correlation between the two time series x(t) and y(t) is calculated by

first finding the covariance between the subseries xi and yi in the moving window centered

at time = t0,

ct0
w,s(x,y) =

1
w ∑

xi,yi∈W
t0
w,s

(xi− x̄t0)(yi− ȳt0) (5.8)

where W t0
w,s is a selected window which centers at t0, w is the total number of samples

selected in Wt0 , and s is the sampling frequency. Also, x̄t0 , ȳt0 is the mean of xi, yi.

The standard deviation, st0
w,s(x), of xi at time t0 is given by

st0
w,s(x) =

√√√√ 1
w ∑

xi∈W
t0
w,s

(xi− x̄t0)
2 , (5.9)

with corresponding expression for st0
w,s(y). Then, the corresponding correlation function is

rt0
w,s(x,y) =

ct0
w,s(x,y)

st0
w,s(x)s

t0
w,s(y)

. (5.10)

Figure 5.10 Correlation Coefficient between pressure and TP0 (red) and TP1 (blue) for
loading (solid line) and unloading (dashed line) with s = 1,w = 15.
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Figure 5.10 shows that the correlations between the pressure and total persistence

TP (separately for TP0 and for TP1). We immediately observe that the correlation between

pressure and TP1 is very high, in particular for the large values of φ . The correlation

decreases only for few isolated events, which we discuss further below, but even for these

events the correlation is still very strong. This result suggests that the properties of the loops

in the force network are strongly related to the pressure. On the other hand, the correlation

between TP0 and pressure is much more noisy, in particular during the rapid isolated events

showing as peaks in the correlation curve. Therefore, the topological properties of the

components are much less representative of the pressure in the system.

As already discussed above, the analysis of the considered quantities (pressure, TP)

at the system is compressed suggests that the evolution is not smooth, but that it may

include isolated events during which the structure of the system changes. We proceed by

more detailed discussion of these events.

Analysis of the events Figure 5.10 suggests that a large number of events or transitions

(tens or hundreds, depending on how an ‘event’ is defined) occur in particular during

loading. In what follows, we consider few of these events, so to understand more clearly

what kind of transitions they involve. We start with loading stage and consider first (on

a much finer scale now) the pressure and total persistence, TP. Figure 5.11 shows the

results, where all shown quantities are normalized by their value at the center of the event;

for example, pressure is plotted as ∆p = (p− p∗)/p∗, where p∗ is the reference value

shown by the arrow tip. We see that even on this very fine scale, and during a transition,

TP1 closely follows the pressure. TP0 changes much more dramatically, showing that the

topology of the weighted network changes during an event, but not all of these changes

lead to pressure modification.

Figure 5.12 shows the same event from Figure 5.11 from the different perspective.

Here we plot the distance between the persistence diagrams, defined by Equation 5.7,
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Figure 5.11 Normalized values for the pressure change ∆p (red solid), ∆TP0 (blue solid)
and ∆TP1 (blue dashed) for Event L1, all shown quantities are normalized by their value at
the center of the event; for example, pressure is plotted as ∆p = (p− p∗)/p∗, where p∗ is
the reference value shown by the arrow tip. The meaning of colors and line patterns is the
same in the figures that follow.

together with the relative change of the kinetic energy of the particles. We see that the

changes in W2 distances follow the changes in kinetic energy, although not too closely.

The fact that the W2 distances before and after an event are similar in Figure 5.12

inspires another question: is the topology of the force network before and after an event

similar? To answer this question, we compute heat maps, which show the distances

between all the persistence diagrams. Figure 5.13 shows the heat maps (both for W2 β0 and

W2 β1 distances). This figure shows the heat maps as a (symmetric) square matrix, where

the color of element (i, j) illustrates the distance between this element and the (i, i) one.

By definition, the elements on the diagonal are zero. We see that the distances between

the elements progressively increase as we move away from the diagonal, meaning that the

topological properties of the system after and before an event are significantly different.

The blue square regions (top left and bottom right) show that before and after an event, the

distances between the PDs are very small (compared to the changes during an event).
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Figure 5.12 ∆W2 distances both for β0 (blue solid) and β1 (blue dashed) as well as relative
change of kinetic energy ∆Ek/Ep (red solid) for Event L1, and the arrow is pointing to the
reference value used for normalization. The meaning of colors and line patterns is the same
in the figures that follow.

Figure 5.13 (a) Heat map (a symmetric matrix) of ∆W2 for β0 of the event L1, where the
color of element (i, j) illustrates the normalized distance of PDs for β0 between φ = φi and
φ = φ j, normalized by the same reference value used in Figure 5.12, (b) normalized ∆W2
β1 distance.
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To complete the discussion of the loading phase, Figure 5.14 shows two more events

that occur for much larger φ . We see that the general features of the results are similar as

already discussed. While TP1 closely follows the pressure, TP0 could increase or decrease

during an event. Therefore, a general pattern of the results emerges: properties of the loops

that form in the force networks are closely related to the material response, quantified by

the pressure.

Figure 5.14 (a) L2, ∆TP0, ∆TP1 and ∆p, (b) L2, ∆W2 of β0 and β1 and ∆Ek/Ep; (c) L3,
∆TP0, ∆TP1 and ∆p, (d) L3, ∆W2 of β0 and β1 and ∆Ek/Ep, following the same format as
in Figures 5.11 and 5.12.

Next, we proceed with discussing unloading. Figure 5.9 already suggests that

this phase is smoother than the loading one, at least on the big scale. More careful

analysis uncovers that there are still discrete elements during which rapid changes in the

force network take place. Figure 5.15 shows three examples; we remind the reader that

during unloading stage the system evolves from larger values of φ to smaller ones. The

general features of the results are similar to the ones found for loading stage, with TP1

closely following the pressure, while TP0 evolves in a much more dramatic fashion, either

increasing or decreasing during an event. Figure 5.15(c) shows an interesting feature for
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φ ≈ 0.7049, where the distances between PDs show changes in the topology of force

networks, although kinetic energy is unchanged - this example shows that the changes

in the topology occur even without any motion of the particles.

Figure 5.15 (a) UL1, ∆TP0, ∆TP1, and ∆p, (b) UL1, ∆W2 of β0 and β1, and ∆Ek/Ep;
(c) UL2, ∆TP0, ∆TP1, and ∆p, (d) UL2, ∆W2 of β0 and β1, and ∆Ek/Ep; (e) UL3, ∆TP0,
∆TP1, and ∆p, (f) UL3, ∆W2 of β0 and β1, and ∆Ek/Ep, following the same format as in
Figures 5.11 and 5.12.

Comparing loading and unloading phases, we note one perhaps unexpected feature

of the results: all the events for the loading stage show pressure decrease; for unloading

however, the pressure could either increase or decrease. This observation illustrates clearly

the significant differences between loading and unloading phases.

Further discussion of some additional results that could be used to quantify the

changes occurring during events could be obtained by considering in more detail the
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ingredients that define TP: average lifespan of generators and their number. The

corresponding results are given in Appendix E.

To conclude presentation of the frictionless results, we use the fact that a significant

amount of information can be condensed in a visually simple-to-digest form using heat

maps, and show in Figures 5.16 and 5.17 the heat maps for a set of ten loading and

unloading events. Figure 5.16 shows that the distances are becoming larger as the system

progresses to larger φ ’s. Generic features of the results do not appear to change significantly

between loading and unloading.

Figure 5.16 W2 β0 (top) and W2 β1 (bottom ) heat maps for the selected ten events during
loading; left to right, φ = 0.674, 0.700, 0.715, 0.742, 0.760, 0.798, 0.820, 0.840, 0.882,
0.899. For this figure, the distances are computed only every eight outputs so to reduce
computational cost.

Figure 5.17 W2 β0 (top) and W2 β1 (bottom ) heat maps in log-scale for the selected ten
events during unloading; left to right, φ = 0.886, 0.866, 0.842, 0.798, 0.773, 0.761, 0.751,
0.729, 0.697, 0.694.

5.5 Frictional Particles: Overview of the Results

In this section, we provide a brief description of the influence of friction between particles

on the process of loading and unloading. Figure 5.18 shows the results for pressure, TP0
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and TP1 for three values of the friction coefficient µ = 0.001, 0.1 and 1. Total persistence

is computed for both normal, Fn, and tangential, Ft, forces. The most obvious observation

is that the transitions become increasingly smooth as µ increases, both for the pressure,

and for the total persistence. For µ = 0.001, the tangential forces are very noisy, however

we should remember that these forces are very small in magnitude, since they are limited

by the Coulomb threshold.

Figure 5.18 The pressure, TP0, and TP1 for µ=0.001: (a) Fn, (b) Ft; µ=0.1, (c) Fn, (d)
Ft; µ=1, (e) Fn, (f) Ft. Loading branches are plotted by solid lines, and unloading ones by
dashed lines. Note different vertical axes scales.

Next, we consider one of the transition events, so to illustrate the differences

compared to the frictional results. For brevity, we focus here on µ = 0.1 only, for both

loading and unloading. Figure 5.19 shows the loading results for the similar range of

volume fractions as in the corresponding figures showing frictionless results. Comparing
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frictional and frictionless results, we note that if friction is present, the events are

characterized by much smaller jumps in the corresponding quantities (such as pressure),

and also they occur on a much faster time scales. The interpretation of this finding is that

friction acts to quickly dissipate the energy associated with any of the transitions. Both

normal and tangential forces show similar behavior.

Figure 5.19 Zoom into the loading branch of µ=0.1, (a)TPs of Fn, (b) TPs of Ft.

Figure 5.20 shows the changes of Ek/Ep and of the PDs (measured by W2 distance)

for the same range of volume fractions as in Figure 5.19. We note that any change of Ek/Ep

is captured by W2 distance matrices; however, W2 β1 distances also show changes that are

not associated with any obvious change of Ek/Ep; this finding shows that in addition to the

events that are characterized by particle rearrangements, there also ones that involve the

change of force networks only, in particular of the structure of loops/cycles, without any

rearrangment of the particles.

Figures 5.21 and 5.22 show the results for the unloading phase, with the main features

of the results similar to the ones already discussed for loading.

5.6 Summary and Conclusion

In this chapter, we discuss the process of slow compression (loading) and decompression

(unloading) for a three dimensional granular system. The main finding is that both loading

and unloading proceed via a combination of reversible and irreversible processes, with the

latter ones being associated with rapid and significant transitions. These transitions may be
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Figure 5.20 Loading branch of µ=0.1, (a) W2 of Fn, (b) W2 of Ft. Solid for β0, dashed
for β1.

Figure 5.21 Unloading branch of µ=0.1, (a)TPs of Fn, (b) TPs of Ft.

Figure 5.22 Unloading branch of µ=0.1, (a) W2 of Fn, (b) W2 of Ft. Solid for β0, dashed
for β1.
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associated with rearrangements of the particle contacts and associated particle dynamics,

however we also find transitions that are associated with the changes in force networks

only, without any obvious dynamics of the particles.

The analysis of the force networks is carried out using persistent homology, the

technique that allows to quantify the evolution both during reversible and irreversible

processes discussed above. While persistent homology allows for extraction of a number

of features of the underlying force networks, in present work we focus mostly on the most

condensed measure, total persistence, TP. This measure encodes the information about

complex weighted three dimensional (3D) network into a single number. Even under such

extreme information reduction, we find that TP provides insightful information about the

underlying force network. In particular, we find that during the irreversible transitions, the

changes of the total pressure are strongly correlated with the TP computed for the loops

that spontaneously form in evolving force networks. This finding suggests that the force

network loops play a significant role in determining the mechanical system properties.

Further insight regarding the evolving force networks can be obtained by comparing

consecutive system configurations. Such a comparison is made meaningful by computing

the differences between the persistence diagrams that describe the main features of the

underlying network. The difference, known as Wasserstein distances, shows that the

force network experience a significant change during the transitions discussed above, with

the force networks differing before and after a transition. It should be emphasized that

for obtaining such simple but insightful result, the data reduction provided by persistent

homology method is crucial. This data reduction leads inevitably to an information

loss, however we find that even under the most dramatic data compression, the emerging

information still allows for reaching a relevant insight.

While the main part of this chapter focuses on loading and unloading of frictionless

particles, we also discuss briefly frictional particles, characterized by a large range of

friction coefficients. In the considered system, the main role of friction is to smooth
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transitions observed for the frictionless case, leading to significantly smaller changes of

system pressure, or of total persistence. In addition, transition events are much faster for

frictional particles, compared to frictionless ones. The transitions are still followed by the

changes of Wassestein distance, and in particular we observe transitions characterized only

by changes in structure of the loops formed by the force network, without any underlying

particle dynamics.
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CHAPTER 6

SUMMARY AND CONCLUSION

In this work, we focus on the analysis and numerical simulations of intermittent dynamics

of dense particulate systems, ranging from 2D stick-slip types of granular systems to 3D

systems with intruders, and under compression and decompression.

In Chapter 2, we discussed the dynamics of the pullout of a spherical intruder initially

buried at the bottom of a granular column. Analysis of the interparticle forces, using both

classical and persistent homology, reveals the details of the failure process. The intruder

and the granular particles are basically static before failure, but the force network goes

through significant changes. The tangential forces between the particles increase as the

applied force becomes larger, leading to a larger number of sliding contacts. The normal

force between the particles evolves as well, and the force network based on the normal force

becomes more structured, involving more loops and stronger forces between the particles,

even when normalized by the mean. The changes in the force network are focused in

particular on the strong forces when considering clusters of contacts, while the loops that

form in a network are evolving at all considered levels of the interaction strength. By

combining classical approaches and persistence homology for describing both statics and

dynamics of a granular system, we have identified in this chapter precise and objective

measures that can be used to describe a failure process in the considered system. We hope

that both the methods and the results presented in this chapter will provide guidance for

future research in this direction.

In Chapter 3, we focused on the experiments involving a slider moving on top

of granular media of photo-elastic particles in two dimensions, which may vary from

continuous motion to crackling, periodic motion, and stick-slip type of behavior. Using

the tools of persistent homology, a clear correlation between the slider dynamics and
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the response of the force network that spontaneously develop in the granular system. In

particular, stick and slip regimes of the slider dynamics are well captured by the persistent

homology measures. These results suggest that there is a potential for developing predictive

capabilities by analyzing the response of the force network to an external perturbation. One

open question is how precise should the information about the forces between the granular

particles be so to allow for further development of this potential. We hope that our results

set stage for this future work.

In Chapter 4, we discussed the stick-slip dynamics of dense granular system in 2D

via discrete element simulations. We focused on the question of what type of information,

static or dynamic, is needed to be able to predict an upcoming slip event. Static measures

describe static properties of the system which are obtained from observing the state of the

system at a given time, and dynamic measures which can be obtained by considering the

system evolution information. We identified a set of dynamic measures that show promise

in predicting avalanching type of behavior in the considered system. While our findings

are based on the 2D simulation results, we hope that they will inspire future study that will

be positioned to verify our findings in both three dimensions, and in experimental setups.

In Chapter 5, we investigated the process of slow compression and decompression

for a three dimensional granular system. The evolution of the granular system is nontrivial,

with smooth, continuous (de)compression periods interrupted by fast, irreversible transitions.

These transitions may be associated with rearrangements of the particle contacts and

associated particle dynamics.However, the transitions may be associated with the changes

in force networks only, without any obvious dynamics of the particles. The analysis of the

force network is carried out using persistence homology methods, that allow for extracting

a number of features from the underlying force networks. The analysis shows that the

evolution of pressure is strongly correlated with the evolution of the topological measures

quantifying loops in the force networks. This finding suggests that the force network loops

play a significant role in determining the mechanical system properties. We also briefly
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considered frictional granular systems which are characterized by a large range of friction

coefficients. In the considered systems, frictional effects are found to lead to smoother

system evolution, decreasing the amplitude of the transition events, and their duration. In

particular, we observed transitions characterized only by changes in the structure of the

loops formed by the force network, without any underlying particle dynamics.

The overall conclusion of the presented work is that force networks in granular

systems provide significant and important information about overall system properties,

including macroscopic variables such as pressure, as well as regarding intermittency of the

system response. To reach this conclusion, we have considered relatively coarse measures,

such as total persistence, emerging from the analysis based on persistent homology. Still,

a number of relevant insights has been obtained. We hope that the results presented in this

work will serve as a basis for more elaborate and detailed analysis of force networks in

particulate systems.
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APPENDIX A

FORCE MODEL

Particles in simulations are either inelastic spheres in 3D or disks in 2D. The particles

interact via normal and tangential forces including static friction. The particle-particle and

particle-wall interactions include both normal and tangential components. In simulations,

the linear force model is applied in 2D, and Hertzian force model is applied in 3D. This

section applies to the simulations discussed in Chapter 4. In that chapter, only 2D systems

and linear force model are considered; for completeness here we present the model for both

2D and 3D.

A.1 Linear Model

Let Fn
L,i j and Ft

L,i j be the force exerted on particle i from particle j in the normal and

tangential directions in the linear force model. Therefore,

Fn
L,i j = knxn− γnm̄vn

i j, (A.1)

where vn
i j is relative normal velocity, m̄ is reduced mass, m̄ = mim j/(mi +m j), n is the

normal direction pointing towards particle i from particle j, kn is the spring constant in

the normal direction, γn is the damping coefficient in the normal direction. Here, x is the

overlap between the two contact particles, where

x =
1
2
(di +d j)− ri j. (A.2)

Here, d is the particle diameter, ri j is the distance between the centers of the two particles,

where ri j = |ri− r j|. The relative normal velocity vn
i j between particle i and particle j can

be calculated as
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vi j = vi−v j−
1
2
(ωi +ω j)× ri j, (A.3)

vn
i j = (vi j ·n)n. (A.4)

For the tangential forces, we implement the commonly used Cundall-Strack model

for static friction [47], where a tangential spring is introduced between particles for each

new contact that forms at given time t = t0 and is used to determine the tangential force

during the contact of any two particles. Due to the relative motion of the particles, the

tangential spring, ξ , evolves as

ξ =
∫ t

t0
vt

i j(s)ds, (A.5)

where the relative tangential velocity vt
i j is calculated by

vt
i j = vi j−vn

i j. (A.6)

The tangential direction is defined through the tangential velocity

t =
vt

i j

|vt
i j|
. (A.7)

The contacts of particles can last for a few steps in Discrete Element Method (DEM)

simulations. Therefore, we have to correct the direction of tangential spring which may

be not remaining parallel to the current tangential direction.

ξ
′ = ξ −n(n ·ξ ). (A.8)

Hence, the test tangential force is obtained

Ft∗
L,i j =−ktξ

′− γtm̄vt
i j, (A.9)
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where kt and γt are the spring constant and damping constant in the tangential direction.

We compare the test force Ft∗
i j with the Coulomb friction force, with the smaller one being

the actual tangential force, that is

Ft
L,i j = min

(
µ|Fn

L,i j|, |Ft∗
L,i j|
) Ft∗

L,i j

|Ft∗
L,i j|

. (A.10)

A.2 Hertzian Model

In Hertzian force model [58, 174], the normal force is

Fn
H =

√
did j

di +d j

√
x[knxn− γnm̄vn

i j]. (A.11)

The test tangential force is

Ft∗
H =

√
did j

di +d j

√
x[−ktξ

′− γtm̄vt
i j]. (A.12)

Hence, the tangential force is

Ft
H = min

(
µ|Fn

H |, |Ft∗
H |
) Ft∗

H
|Ft∗

H |.
(A.13)
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APPENDIX B

NON-DIMENSIONALIZATION

This section applies to the scaling of simulations discussed in Chapter 4. In DEM

simulations, we use 2500 bidisperse system particles, with 25% of large particles and

75% small particles. The small particle’s diameter is d = 1.27 cm, and the large particle

diameter is approximately 1.59d/1.27 [58, 102]. In the following discussion, the small

particle is referred as the basic particle upon which all the scaling parameters are based.

The top wall is made of 40 basic particles which are spaced 1.5d away from each other so

to decrease the slip of system particles relative to the wall, and the bottom wall is made of

60 basic particles that are closely arranged. Discrete element simulations are carried out

using non-dimensional version of the model, formulated by using the scales as in Table

B.1. After non-dimensionalization, the physical units are converted into real units, in terms

of the diameter, collision time, and mass of the basic particle.

Table B.1 Basic Non-dimensionalization Units

Scaling Symbol

Length basic particle diameter, d

Time basic particles collision time, τc

Mass basic particle mass, m

The definition of particle diameter and particle mass is straightforward. However, the

definition of collision time τc of two particles is defined differently under different force

models. τc [124] is defined as :

τc = I(β )× (1+0.5β )
1

2+β

(
m̄

3(1−σ2)

Y d1−β

) 1
2+β

v
−β

2+β

0 , (B.1)
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where

I(β ) =

√
πΓ( 1

2+β
)

(1+β/2)Γ( 4+β

4+2β
)
, (B.2)

m̄ = mim j/mi +m j is the reduced particle mass, mi and m j is the mass of the two colliding

particles, Y is the Young’s modulus, σ is the Possion coefficient, and v0 is the particle’s

relative velocity.

Under the linear force model assumption, β = 0, I(β ) = π , hence Equation B.1 for

linear collision time τ l
c of two basic particles in 2D can be simplified as the following

τ
l
c = π×

√
m

3(1−σ2)

2Y d
. (B.3)

where σ = 0.5, Y = 0.7 MPa, d = 1.27 cm, m= 1.32 g (the thickness of disks is assumed to

be 1 cm). These material properties are used in [102]. Hence, the resulting binary collision

time for the time scale is τ l
c = 1.25×10−3 s.

The Hertzian force model is applied in 3D simulations only. We find the collision

time of two identical spherical particles by setting the velocity of a particle to be v0 = 1.5

cm/s, which is the same as the speed of the pulling spring, and the other one with zero

velocity. Hence, the resulting collision time τh
c = 5.55× 10−3 s, which can be derived

using β = 0.5, I(β ) = 2.94, σ = 0.5, Y = 0.7 MPa, m = 1.15 g, d = 1.27 cm [102], and

the relatively velocity v0 = 1.5 cm/s in Equation B.1.

The normal spring constant kn is related to the material properties, and in the linear

model is defined as [58]

kl
n =

m
2

(
π

τ l
c

)2

=
Y d

3(1−σ2)
. (B.4)

In Hertzian model,

kh
n =

2Y
3(1−σ2).

(B.5)

In both models, the tangential spring constant is given by kt = 6kn/7 [74].
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The linear damping coefficient γ l
n is obtained using the coefficient of restitution, e =

0.5, which is defined as the ratio of the speed of a particle after a collision v f to its speed

before the collision v0, i.e.,

e =
v f

v0
.

Therefore, in linear damping coefficient [99],

γ
l
n =−

2lne
τ l

c
(B.6)

In Hertzian model, we derive the normal damping coefficient γh
n which corresponds to the

coefficient of restitution e = 0.5 by carrying out a numerical experiment. We initialize

head-on collisions of two identical particles with the same initial relative velocity v0 = 1.5

cm/s, but with various damping coefficients, and then use the value which gives the desired

value of e. For both linear and Hertzian force, the tangential damping coefficient is set

γt = γn[58].

The interaction between system particles and walls are handled differently for the

top and bottom wall. Considering a basic particle colliding with the bottom wall, since the

bottom wall is fixed, and therefore we consider that it has infinite mass. The top wall, on

the other hand, is treated as having a mass equal to 40m.

Table B.2 shows the scaling factors used to convert the discussed parameters into

dimensionless units. In the following discussion, all parameters are in dimensionless units,

which are scaled by the basic units in Table B.1.

In 2D simulations, spring constant of the pulling spring is 1/400 of the normal spring

constant of the particles, the speed of the spring vs = 1.5×10−3, and the pressure applied

on the top wall is p = 0.02, which is assumed here to be force/length. The value of pressure

and the spring velocity are selected so that the system can exhibit stick-slip behavior. In 3D

simulations, spring constant of the pulling spring is 1/400 of the normal spring constant

of the particles, the vs = 6.55×10−3 under Hertzian model, whose corresponding physical
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Table B.2 Scaling Parameters

Parameter Scaling factor

Y m
d·τ2

c

kl
n,k

l
t (linear) m

(τ l
c)

2

γ l
n,γ

l
t (linear) 1

τ l
c

kh
n,k

h
t (Hertz) m

d·(τh
c )

2

γh
n ,γ

h
t (Hertz) 1

d·τh
c

value is 1.5 cm/s as well. The external pressure, p = 2.0 (force/area) is applied to ensure

that the system exhibits stick-slip behaviors.

The frictional coefficient between system particles is µs = 0.7, and the coefficient

between system particles and wall particles is µw = 2.0, which resembles a sticky wall and

reduces the relative velocity difference between the wall and the system particles.
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APPENDIX C

DEM SIMULATION TECHNIQUES

The code for the Discrete Element Method (DEM) simulations of stick-slip behavior

discussed in Chapter 4, based on a predictor-corrector algorithm, is written in FORTRAN

90 and it is implemented in a way that resembles object-oriented programming style. The

DEM code is set up into several modules and functions. *.F90 denotes any FORTRAN 90

subroutine or function code used in the simulation.

makefile.config: Simulation specification parameters are set here, including the

status of simulation whether it restarted from an earlier condition, the dimension of the

simulation (in 2D or 3D), and force model selection ( linear force model or Hertzian force

model).

Parameters.F90: Particle physical parameters and scaling parameters are defined

and assigned.

Initialization.F90: Initialize the geometry setting of the stick-slip system, particles’

translational and angular velocities.

UpdateBounary.F90: Update the spring position, and apply the constant pressure

on the top wall. Since the area of the top wall and its mass is constant, it is equivalent to

applying a constant acceleration on top wall, which will be added later to wall particle in

MakeForce.F90.

Predictor.F90: Particle’s position x0, translational velocity x1, translational accelerration

x2, angular related quantities x1rot, and x2rot are updated by using the current values of

these quantities based on Taylor expansion. Note, for computation efficiency, x1rot is

defined as d ·dθ/dt, where d is particle’s diameter, dθ/dt is particle’s angular velocity.

Verlet.F90: Track and update the list of neighboring particles of each particle,

reducing the computation cost for searching contacts in simulation. Verlet.F90 builds on
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top of CellRoutines.F90 which divides the whole system into smaller subdomains based

on the particle positions. Since the simulation time step is small, when searching possible

contacts, only the particles in neighboring cells need to be searched.

MakeForce.F90: Calculation of the contact force and torque between particles,

using the predicted value after Predictor.F90, and add all the forces and torques on every

particle.

Corrector.F90: Correct particle’s translational and angular quantities based on the

forces and torques calculated from MakeForce.F90.
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APPENDIX D

SUPPLEMENTARY MATERIAL FOR STICK-SLIP RESULTS

D.1 Additional Dynamic Measure Analysis

Here we present some additional results related to the material presented in Chapter 4.

Figure D.1 shows the evolution of system particles’ velocity profile by showing the

heat maps (a) and the average particle velocity (b) for the event shown in Figure 4.2. In

Figure D.1, we divide the system particles into 10×10 blocks based on the x, y coordinates

(approximately 25 particles in each block), and the magnitude of average velocity of

particles in each blocks is calculated, as indicated by color. In part a, the x-axis and y-axis

indicate the x and y coordinates of the system, and the color in each block indicates the

value of the average velocity. In part b, the mean of the velocity of the blocks that have

the same y coordinate is plotted against the y coordinate. ∆t = 0 is when the slip begins.

The dynamics of the heat maps in Figure D.1 shows that the velocity profile of the system

particles remains constant most of the time. Only a small change in the velocity profile

occurs at ∆t = −18, which suggests there may be some particle motion relative to the

others in the system, highlighted by the bright green color in part a. However, the event is

transient.

Figures D.2 and D.3 show snapshots of the animation of the evolution of differential

normal or tangential force networks (defined by Equation 4.1) for the event shown in Figure

4.2, with a cutoff value 5×10−4 to show only relatively large values. In Figure D.2 , a clear

structure starts to form around ∆t = −18, and we are able to see some relatively strong

differential normal force at ∆t = −15, and the network continues to percolate through the

system at ∆t = −12. As pointed out in Figure D.1, although at ∆t = −15 and ∆t = −12

there existed no relative particle movements, we could still see the percolating differential

normal force. Similarly, Figure D.3 shows the differential tangential force networks with
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Figure D.1 (a): the evolution of system particle velocity heat map from ∆t =−21 to ∆t =
−12 for the event in Figure 4.2, where the color indicates the mean of system particle speed
in each block (The domain is divided into 10× 10 blocks based on the x, y coordinates).
(b): the average velocity of the blocks that have the same y coordinates plotted against y
coordinates.
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Figure D.2 The evolution of differential normal force networks for the event in Figure
4.2, with the cutoff value 5×10−4 to focus on the strong forces.

the same cutoff value, where the formation of differential tangential force networks is

coupled with differential normal force networks, but it is much smaller in magnitude.

In Chapter 4, we only focus on the percolating differential normal contact force.

In Figure D.4, the pre-slip percolating normal, tangential, and total contact force are

investigated, for both horizontally and vertically; Figure D.5 shows the derivative of the

percolating forces before slips. Figures D.4 and D.5 show that there is no much difference

in using differential normal and total contact force for percolation, and the information

carried by the horizontal percolation seems to provide more predictive power than the

vertical one.
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Figure D.3 The evolution of differential tangential force networks for the event in Figure
4.2, with the cutoff value 5×10−4.
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Figure D.4 The pre-slip percolating forces: normal (blue), tangential (red), and total
(green). The solid lines show left-right percolation and dashed top-bottom.

Figure D.5 The derivatives of pre-slip percolating forces, following the same color/style
format as in Figure D.4.
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D.2 Slip Events Statistics

Figures D.6 and D.7 shows the statistics of slip size and slip duration. Here the slip size is

measured in the basic particle diameter d, and the slip duration is in δ t, where δ t = 10τc.

Figure D.6 shows that there exist two peaks, one peak from small slip sizes and one from

relatively larger sizes. Such finding is also presented in [54]. In Figure D.7, the slip duration

is plotted against slip size.

Figure D.6 Histogram of slip size, where the slip size is defined as the distance of the top
wall traveled after the slip.

Figure D.7 The y-axis is the slip duration, which is measured in units of δ t, the x-axis
indicates the corresponding slip size.
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Figure D.8 The difference of the static measures between the start and the end of slip
events (end - start) is plotted against the corresponding slip size. (a) spring force, fs, (b) y
position of the top wall, (c) the ratio of Ft/Fn, (d) the ratio of mobile to nonmobile contacts,
RMN, (e) TP0, (f) TP1.

In Figure D.8, we measure the difference of static measures between the end and

the start of the slip events, for example ∆ fx = fx(end)− fx(start). Some measures show

relatively clear relations between the difference and slip size, such as spring force ∆ fs,

∆Ft/Fn, and ∆TP0, while some do not.

Furthermore, we investigate the relation between pre-slip static measures and the slip

size. In Figure D.9, we categorize all the slip events into 4 categories based on the slip

size, i.e., 0-2, 2-6, 6-14, and above 14. The pre-slip static measures are averaged over the

events in each category. Figure D.8 indicates the slip events are well-separated in some
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Figure D.9 The average value of static measures before slips averaged over different slip
sizes, the solid lines are for slip size between 0 and 2, the dotted lines for slip size between
2 and 6, the dashed lines for between 6 and 14, and the dash-dotted for slip sizes greater
than 14. (a) spring force, fs, (b) y position of the top wall, (c) the ratio of Ft/Fn, (d) the
ratio of mobile to non-mobile contacts, RMN, (e) TP0, (f) TP1. The time axis is in units of
δ t.

static measures, except RMN. However, the difference in the separation is not significant,

as we could see that the difference is approximately 1%-3% of its value.

Similarly, we apply the same investigation to pre-slip dynamic measures as well.

Figure D.10 indicates a similar finding as in Figure D.9 that the dynamic measures are not

separated by the slip size.
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Figure D.10 The average value of dynamic measures before slips averaged over different
slip sizes, with the line patterns as in Figure D.9. (a) W2B0, (b) W2B1, (c) the percolating
differential normal force horizontally, fplr, (d) the percolating differential normal force
vertically, fptb, (e) the ratio of broken contacts to total contacts, rbc, (f) the average broken
normal force, fbc, (g) the mean of system particle speed, v̄p, (h) the standard deviation of
system particle speed, svp .
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APPENDIX E

SUPPLEMENTARY RESULTS FOR COMPRESSION STUDY

This section provides additional persistence analysis of frictionless events in Chapter 5.

E.1 Generators and Lifespans

The number of generators (G) of PD is defined as the number of data points in a PD, and

the average lifespan of PD is the mean of lifespans of the generators. Figures E.1 - E.6

show G and LS for the three loading events and three unloading events in Chapter 5. For

β0, G decreases and LS increases after the event during loading, which suggests the force

networks are forming into stronger force networks; G increases and LS decreases during

unloading (from high volume fraction to low volume fraction), which suggests the force

networks become weaker. For β1, G can increase or decrease, and LS tends to move in

the opposite direction of G during loading; for unloading, G and LS behave similarly as in

loading.

The presented results do not seem show a clear trend, and it is at this point not

clear what are the common features describing the changes in force networks during the

events. Further research, perhaps including more detailed analysis of persistence diagrams

is needed for this purpose.
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Figure E.1 Number of generators, G, and their corresponding lifespan, LS, of Event L1
for (a) β0, (b) β1.

Figure E.2 Number of generators, G, and their corresponding lifespan, LS, of Event L2
for (a) β0, (b) β1.

Figure E.3 Number of generators, G, and their corresponding lifespan, LS, of Event L3
for (a) β0, (b) β1.
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Figure E.4 Number of generators, G, and their corresponding lifespan, LS, of Event UL1
for (a) β0, (b) β1.

Figure E.5 Number of generators, G, and their corresponding lifespan, LS, of Event UL2
for (a) β0, (b) β1.

Figure E.6 Number of generators, G, and their corresponding lifespan, LS, of Event UL3
for (a) β0, (b) β1.
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[145] T. Pöschel and S. Luding. Granular Gases, volume 564. Berlin, Germany: Springer, 2001.

[146] M. Pouragha, J. Duriez, A. Wautier, R. Wan, F. Nicot, and F. Darve. Preferential growth of
force network in granular media. Granular Matter, 21(3):67, 2019.

[147] L. A. Pugnaloni, C. M. Carlevaro, M. Kramár, K. Mischaikow, and L. Kondic. Structure of
force networks in tapped particulate systems of disks and pentagons. i. clusters and
loops. Physical Review E, 93:062902, 2016.

[148] F. Radjai, D. E. Wolf, M. Jean, and J. J. Moreau. Bimodal character of stress transmission
in granular packings. Physical Review Letters, 80:61–64, 1998.

[149] J. Ren, J. A. Dijksman, and R. P. Behringer. Reynolds pressure and relaxation in a sheared
granular system. Physical Review Letters, 110:18302, 2013.

[150] S. Roy, S. Luding, and T. Weinhart. A general(ized) local rheology for wet granular
materials. New Journal of Physics, 19:043014, 2017.

[151] K. Saitoh, N. Oyama, F. Ogushi, and S. Luding. Transition rates for slip-avalanches in soft
athermal disks under quasi-static simple shear deformations. Soft Matter, 15:3487–
3492, 2019.

[152] K. Saitoh, R. K. Shrivastava, and S. Luding. Rotational sound in disordered granular
materials. Physical Review E, 99(1):012906, 2019.

[153] S. Sarkar, D. Bi, J. Zhang, R. P. Behringer, and B. Chakraborty. Origin of rigidity in dry
granular solids. Physical Review Letters, 111:068301, Aug 2013.

[154] D. Schaeffer, T. Barker, D. Tsuji, P. Gremaud, M. Shearer, and J. M. N. T. Gray.
Constitutive relations for compressible granular flow in the inertial regime. Journal
of Fluid Mechanics, 874:926–951, 2019.

[155] J. P. Sethna, K. A. Dahmen, and C. R. Myers. Crackling noise. Nature, 410(6825):242–250,
2001.

[156] R. Seto, A. Singh, B. Chakraborty, M. M. Denn, and J. F. Morris. Shear jamming and
fragility in dense suspensions. Granular Matter, 21(3):82, 2019.
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