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ABSTRACT

INSTABILITIES IN NEWTONIAN FILMS AND NEMATIC LIQUID
CRYSTAL DROPLETS

by
Te-Sheng Lin

The instabilities of Newtonian films and nematic liquid crystal droplets within the

framework of the long wave (lubrication) approximation are studied. For Newtonian

films, it is found that, under destabilizing gravitational force, a contact line, modeled

by a commonly used precursor film model, leads to free surface instabilities without

any additional natural or imposed perturbations. In addition, there is a coupling

between the surface instabilities and the transverse (fingering) instabilities which

leads to complex behavior. All the observed phenomena are characterized by a

single parameter D = (3Ca)1/3 cotα where Ca is the capillary number and α is the

inclination angle. Variation of D leads to changes in the wavelike properties of the

instabilities, allowing us to observe traveling wave behavior, mixed waves, and waves

resembling solitary ones. The study is also extended to explore partially wetting fluids

by introducing the disjoining pressure in the thin film equation. It is found that there

exists an additional regime where the film breaks up into a series of droplets.

For nematic liquid crystal droplets, a model is derived based on the long wave

approach available in the literatures. In particular, the surface anchoring energy is

chosen such that very thin films admit the isotropic phase while thick ones remain

nematic. The model permits fully nonlinear time-dependent simulations. These

simulations, for the appropriate choice of parameter values, exhibit most of the

phenomena appearing in the series of experiments. Finally, the influence of elastic

distortion energy and the effect of anchoring variations at the substrate are explored

through simple linear stability analysis, serving as a good indicator of the behavior

of more complicated spreading drops.
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CHAPTER 1

INTRODUCTION

The field of thin liquid films has surprisingly wide application in our daily life. From

industrial coating and painting processes to printing, many technologies nowadays

require the study of fluid flow in which one spatial dimension (the film thickness)

is significantly smaller than the others (typically, the scales on which film thickness

changes). Under such circumstances one can use systematic asymptotic methods

based on a small parameter (usually the film aspect ratio) to simplify the full Navier-

Stokes governing equations. Expanding the dependent variables of interest (fluid

velocity, pressure, etc.) in terms of this small parameter, once can obtain a much

simpler system of reduced equations for the leading-order quantities. Despite its

simplicity, this approach has been used and experimentally tested many times, and

has been found to be very successful in describing the real physics in a wide range of

flows.

In particular, this asymptotic approach, so-called lubrication theory, has been

widely used in exploring the dynamics of films under gravity or other body and surface

forces in a variety of settings. For then Newtonian fluid films, research activities have

evolved in a few rather disjoint directions. One of these is flow down an incline of

films characterized by the presence of fronts (contact lines). These flows are known to

be unstable with respect to transverse instability, leading to formation of finger-like

or saw-tooth patterns [8, 12, 23, 33, 65]. One may also consider flow of a continuous

stream of fluid down an incline. Experimentally, this configuration was analyzed first

by Kapitsa and Kapitsa [35] and more recently in much more detail in a number

of works, in particular by Gollub and collaborators [43, 44, 45]. We also refer the

reader to [4, 16] for relatively recent reviews. There has also been some works on

1
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the related problem of fluid flow down an inverted substrates. These works involve

either the mathematical/computational analysis of the situation leading to finite

time singularity, i.e., detachment of the fluid from the surface under gravity [64],

or experimental works involving the so-called ”tea-pot effect” [36, 55], that includes

the development of streams and drops that occur as a liquid film (or parts of it)

detach from an inverted surface [34]. These considerations typically do not include

contact line treatment; the fluid film is assumed to completely cover the considered

domain.

On the other hand, while plenty of work has been done with Newtonian fluids,

this kind of systematic asymptotic treatment of flowing thin non-Newtonian fluids, in

particular liquid crystals, is still in its infancy. Liquid crystals are anisotropic liquids

consisting of rod-like molecules. In a nematic phase, the rod-like molecules have no

positional order, but they self-align to reach long range directional order. Therefore,

to have a complete description of a nematic liquid crystal (NLC) flow, one needs to

consider not only the velocity field, but also the orientational director field. In the

direction of asymptotic modeling of such flows, based on the long wave approach, Ben

Amar & Cummings [6] and Cummings [20] derived a model to describe the surface

evolution of NLCs, while Carou et al. [11] studied two-dimensional flow of NLC in

a slowly varying channel. In the experimental direction, Poulard & Cazabat [54]

found that a spreading NLC droplet exhibits surprisingly rich instabilities (on the

contrary, a Newtonian droplet will only spread stably). The results of [6, 20] go some

way towards explaining the occurrence of such instabilities, but the full details of

the driving mechanism, as well as a mathematical model that correctly describes the

contact line motion of the NLC flow are still to be explored.

In this Dissertation, we take advantage of the long wave (lubrication) theory to

model Newtonian film flow as well as the flow of nematic liquid crystals, with special

emphasis on understanding the role of the contact line on the formation of surface
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waves and fingering patterns. For the first part, Newtonian film flow, we investigate

the dynamics of films under destabilizing gravitational forces. We find that the

presence of a contact line leads to surface instabilities without any other perturbation.

The coupling between such surface instabilities and transverse (fingering) instabilities

gives rise to complex behavior. We have found that the instabilities can be categorized

into three regimes, with different wavelike properties. For the second part, nematic

liquid crystal flow, we derive the evolution equation of a spreading NLC droplet based

on long wave theory. The present model shows satisfactory behavior in the vicinity of

the contact line. We further study the influence of anchoring energy on a spreading

NLC droplet and explain the mechanism of instabilities found in the experiments [54].

This Dissertation is organized as follows. In Chapter 2 we investigate the

flow of thin films down an inclined or inverted inclined plane. We reviewed related

existing literature in Section 2.1. We consider two-dimensional flow in Section 2.2 to

investigate the influence of a contact line on surface instabilities. Three-dimensional

flow is studied in Section 2.3 with emphasis on the coupling between the surface

instabilities and transverse (fingering) instabilities. In Section 2.3.4, we also study the

case that is perhaps most relevant to applications, the flow of thin films with variable

viscosity. Finally, the flow of a partially wetting fluid is studied in Section 2.4. The

influence of contact angle on the instabilities described above is explored.

In Chapter 3 we study the flow of nematic liquid crystal. We derive a model

that is capable of describing the motion of a contact line. The derivations are shown

in Section 3.2. We investigate the influence of surface anchoring in Section 3.3 and

the influence of the prescribed director orientation at the substrate in Section 3.4. In

Section 3.5, we compare the instabilities found in our model with those found in the

experiments by Poulard & Cazabat [54]. We find qualitative agreement.

Finally, in Chapter 4 we make some concluding remarks with comments on

possible directions of further investigations. Also, certain technical details were left



4

out of the main chapters to preserve the flow of ideas; these details are included in

the appendices. In Appendix A, we present the analysis on the evolution of small

perturbations of the thin film equation. In Appendix B, we present the numerical

method used to simulate the evolution equations considered in this Dissertation.

The research results presented in this Dissertation has so far led to four refereed

journal publications. Two-dimensional flow down an incline (material in Section 2.2)

was published in Physics of Fluids, 2010 [40], and the three-dimensional problem in

Physics of Fluids, 2012 [42]. The flow of nematic liquid crystals without presence

of defects was considered in the paper published in Physics of Fluids, 2011 [21],

while two-dimensional flow with defects was discussed in Physical Review E, 2012

article [41]. Furthermore, the research presented here inspired an undergraduate

student project in the Capstone laboratory in the Department of Mathematical

Sciences, where downslope flow of nematic liquid crystals was considered using

analytical, computational, and experimental techniques. This project has led to

undergraduate publication in SIAM Undergraduate Research Online [48].



CHAPTER 2

THIN HANGING FILM WITH A FRONT

2.1 Introduction

The problem of spreading of thin films on a solid surface is of interest in a variety of

applications, many of which were discussed and elaborated upon in excellent review

articles [16, 19, 50, 58, 66]. Perhaps the largest amount of work has been done in

the direction of analyzing properties of the flow of a uniform film spreading down an

incline. Starting from a pioneering work by Kapitsa and Kapitsa [35] and progressing

to more contemporary contributions [4, 16, 43], a rich mathematical structure of the

solutions of governing evolution equations, usually obtained within the framework of

long wave (lubrication) approach has been uncovered. The models developed have led

to evolution equations nowadays known as Kuramoto-Sivashinksy [14, 59], Benney [50]

and Kapitsa-Shkadov [18, 69]. A variety of nonlinear waves have been found; such

waves, together with the conditions leading to their formation, are briefly discussed

in the Introduction to our work [40]. For the purpose of the present work, it is worth

emphasizing that the linear and nonlinear waves discussed in the cited literature

resulted from either natural or forced perturbations of the film surface, in the setup

where inertial effects were relevant: flow of uniform film (no contact line) down an

inclined plane (with inclination angle α ≤ π/2, shown in Figure 2.1) is stable in the

limit of zero Reynolds number.

In another direction, there has also been a significant amount of work analyzing

a different type of instabilities due to the presence of fluid fronts, bounded by contact

lines where the three phases (gas, liquid, solid) meet. The fluid fronts are unstable,

leading to the formation of finger-like structures [70] whose properties depend on the

relative balance of the in-plane and out-of-plane components of gravity [25, 38], as

5
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Figure 2.1 Definition sketch of the inclination angle α, film thickness h and
coordinates x and z. The coordinate y (not shown in the figure) is the direction
pointing out of the plane.

well as on wetting properties of the fluid [23, 33, 65]. The analysis of the contact-line

induced instabilities has so far concentrated on films flowing down an incline, so with

α ≤ π/2. In this configuration, as opposed to the case of a fluid front, the fluid

surface itself is stable - typically, the only structure visible on the main body of the

film is the capillary ridge which forms just behind the contact line.

It is also of interest to consider situations where body forces (such as gravity)

are destabilizing, as is the case during spreading down an inverted surface, with

α > π/2. Such a flow is expected to be unstable, even if inertial effects are neglected.

Examples of related instabilities are wave and drop structures seen in experimental

studies of a pendant rivulet [2, 34]. Furthermore, if contact lines are present, one may

expect coupling of different types of instabilities discussed above. In this context

of front/contact line induced instabilities, two incompressible viscous fluids in an

inclined channel were considered [63], while more recently the configuration where

the top layer is denser than the bottom one was studied [46]. Such configurations

were found to be unstable, and give rise to large amplitude interfacial waves.

In addition to mathematical complexity, this setting is of significant

technological relevance, in particular in problems where there is also a temperature
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gradient present, which may lead to a significant variation of viscosity of the film.

Despite significant progress in the study of isoviscous thin film flows, surprisingly few

studies have been devoted to analyses of fluid dynamics of thin films with variable

viscosity. Meanwhile, such flows are rather common in various industrial applications.

Well-known examples include layers of liquid plastics and paints used for coatings, as

well as other materials, whose viscosities are strong functions of temperature. Very

often, the temperature variations are difficult to detect and prevent. Corresponding

variations of viscosity affect the processes and, as we will discuss in this work, can be

included in the model in a relatively straightforward manner.

The present chapter consists of three related parts with slightly different focus.

In the first part, Section 2.2, we consider the 2D flow of a completely wetting film

spreading on an inverted surface. The problem is formulated in Section 2.2.1, followed

by results of numerical simulations and analysis. Particularly, in Section 2.2.5, we

discuss the relation between the nondimensional parameter D in our model and

physical quantities. We conclude this part by showing the experimental conditions

for which the results we show can be observed in Section 2.2.6.

Section 2.3 considers in general terms the 3D flow of a film spreading on an

inverted surface. In Section 2.3.1, we consider instabilities occurring in the flow of

a single rivulet, as the simplest example of a 3D flow. Fully 3D flow is considered

in Section 2.3.2, where we discuss in particular the interaction between the surface

instabilities considered previously in the 2D setting, and the transverse fingering

instabilities at the front. We also briefly comment on the connection of the instability

considered here and the Rayleigh-Taylor instability mechanism in Section 2.3.3.

Section 2.3.4 discusses a setting which is perhaps more closely related to applications:

dynamics of a finite width fluid film characterized by a nonuniform viscosity which

varies in the transverse direction. Such a setting may be relevant, for example, to

fluid exposed to a temperature gradient, leading to nonuniform viscosity.
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Section 2.4 considers the influence of partially wetting on a spreading film.

In particular, we are interested in the regime where the van der Waals forces and

gravitational force are both relevant. We choose an appropriate scaling and formulate

the problem in Section 2.4.1. In Section 2.4.2, we perform linear stability analysis of a

flat film to gain some insight into the problem. We then show the results of numerical

simulations for a film on a horizontal surface as well as on an inclined plane.

2.2 Two-Dimensional Flow

2.2.1 Problem Formulation

We consider completely wetting fluid flowing down a planar surface enclosing an angle

α with the horizontal. The flow is considered within the framework of the lubrication

approximation and inertial effects are neglected, see e.g., [50]. In particular, the

spatial and velocity scalings, denoted by xc and U , respectively, are chosen as

xc =

(
a2 hc
sinα

)1/3

, U =
ρg h2c
3µ

sinα, (2.1)

where a =
√
γ/ρg is the capillary length, γ is the surface tension, ρ is the fluid density,

g is the gravitational acceleration, µ is the viscosity and hc � xc is the scaling of the

film thickness. Assuming that nondimensional slopes are O(1), strict validity of the

lubrication approximation requires that [(hc/a)
√
sinα]2/3 � 1. Within this approach,

one obtains the dimensionless depth averaged velocity v

v = h2∇∇2h−Dh2∇h+ h2i, (2.2)

where h = h(x, y, t) is the fluid thickness (illustrated in Figure 2.1), ∇ = (∂x, ∂y),

x, y are spatial variables, t is time and i = (1,0) is the unit vector pointing in the x

direction. The parameter D = (3Ca)1/3 cotα measures the size of the gravitational

component perpendicular to the fluid film, where Ca = µU/γ is the capillary number.

Using this expression and mass conservation ht+∇·(hv) = 0, we obtain the following
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PDE discussed extensively in the literature, see e.g., [37, 51, 61]:

∂h

∂t
+∇ ·

[
h3
(
∇∇2h−D∇h+ i

)]
= 0. (2.3)

To avoid the well-known issue of the singularity at a moving contact line, we

implement a precursor film approach, assuming that the surface is pre-wetted by

a thin film of thickness b. This approach has been used extensively in the literature;

see e.g., [40] for a recent review of this and other methods used in modeling thin film

flows.

2.2.2 Initial and Boundary Conditions

We consider two-dimensional flow first, in which h is y-independent. Equation (2.3)

can be rewritten as

∂h

∂t
+
[
h3 (hxxx −Dhx + 1)

]
x
= 0 . (2.4)

The boundary conditions are such that constant flux at the inlet is maintained. The

choice implemented here is

h(0, t) = 1, hxxx(0, t)−Dhx(0, t) = 0. (2.5)

At x = L, we assume that the film thickness is equal to the precursor, so that

h(L, t) = b, hx(L, t) = 0, (2.6)

where L is the domain size and b � 1 is the precursor film thickness. Typically, we

set b = 0.01. It is also possible to set b even smaller. However, we have found that

this change has only minor influence on the results. The initial condition is chosen

as a hyperbolic tangent to connect smoothly h = 1 and h = b at x = xf . It has been

verified that the long term results are independent of the details of these procedures.
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2.2.3 Computational Results

It is known that for flow down a vertical plane, α = π/2, a capillary ridge forms

immediately behind the fluid front [37]. This capillary ridge can be thought of as a

strongly damped wave in the streamwise direction. As we will see below, this wave

is crucial for understanding the instability that develops for a flow down an inverted

surface. Here, we first outline the results obtained numerically for various values of

the coefficient D, and then discuss the main features in more detail in the following

section. We use xf = 5 for all the simulations presented in this section.

Type 1: −1.1 ≤ D < 0. For these values of D, we still observe existence of a

dominant capillary ridge; this ridge becomes more pronounced as the magnitude of

D is increased. In addition, we also observe secondary, strongly damped oscillations

behind the main ridge. Figure 2.2 shows an example of an evolution profile. For longer

times, a traveling wave solution is reached, and the wave speed reaches a constant

value equal to U = 1 + b + b2, as discussed, e.g., in [8]. Appendix A.1 gives more

details regarding this traveling wave solution.
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V10
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x0 40 80 120 160 2000

3

Figure 2.2 The flow down an inverted substrate (D = −1.0). From top to bottom,
t = 0, 40, 80, 120, 160.

Type 2: −1.9 ≤ D < −1.1. The capillary ridge is still observed; however, here

it is followed by a wave train. Figure 2.3 shows an example of the evolution for
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D = −1.5. Waves keep forming behind the front, and, furthermore, they move faster

than the front itself. Therefore, the first wave behind the front catches up with the

ridge, interacts and merges with it. The other important feature of the results is that

there are three different states observed behind the capillary ridge: two types of waves

and a constant state. These states can be clearly seen in the last frame of Figure 2.3.

Immediately behind the front, there is a range characterized by waves resembling

solitary ones [16] discussed in some more detail below. This range is followed by

another one with sinusoidal shape waves. Finally, there is a constant state behind.

Such mixed-wave features remain present even for very long times. To illustrate this,

Figure 2.4 shows the result at much later time, t = 340, using an increased domain

size.
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Figure 2.3 The flow down an inverted substrate (D = −1.5). From top to bottom,
t = 0, 40, 80, 120, 160.

Also, Figure 2.5, which includes typical results from the Type 3 regime discussed

below, implies that Type 2 corresponds to a transitional regime between the Types 1

and 3. Additional simulations (not shown here) suggest that the regions where the

waves are present within the Type 2 regime become more and more extended as the

magnitude of D is increased. Future insight regarding the nature of wave formation

in the Type 2 regime is discussed in the following Section. Here we note that the
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Figure 2.4 The flow down an inverted substrate (D = −1.5) at t = 340.

available animations of wave evolution are very helpful to illustrate the complexity of

the wave interactions in Type 2 and Type 3 regimes discussed next.

x0 50 100 150 200

D=-3.0

D=-2.0

D=-1.7

D=-1.5

D=-1.3

D=-1.1

Figure 2.5 Comparison of the results for different Ds at t = 150.

Type 3: −3.0 ≤ D < −1.9. This is a nonlinear steady traveling wave regime.

There is no damping of surface oscillations that we observed e.g., in Figure 2.3.

Figure 2.6 shows an example obtained using D = −2.0. Here, a wave train forms

behind the first (still dominant) capillary ridge. Similarly as before, since this wave

train travels faster than the fluid front, there is an interaction between the first of

these waves and the capillary ridge. On the other end of the domain, these waves

also interact with the inlet at x = 0; the role of this interaction is discussed in more

detail later in Section 2.2.4.3.



13

0

3

0

3

0

3
h

V10

3

x0 40 80 120 160 2000

3

Figure 2.6 The flow down an inverted substrate (D = −2.0). From top to bottom,
t = 0, 40, 80, 120, 160. Note that there is a continuous interaction of the surface
waves and the front, since the surface waves travel faster than the front itself.

We find that the Type 3 includes two sub-types. For smaller absolute values

of D, such as D = −2.0, one finds sinusoidal waves as shown in Figure 2.6. For

larger magnitudes of D, we find solitary type waves, the structures sometimes referred

to as ‘solitary humps’, such that the characteristic dimension of a hump is much

smaller than the distance between humps [16]. Both types of waves are illustrated in

Figure 2.5, which shows the results for D = −2.0 and D = −3.0, and in Figure 2.7,

showing the typical wave profiles for D = −2.0, D = −2.5 and D = −3.0. The wave

profiles that we find are very similar to those observed for continuous films exposed

to periodic forcing [17, 44, 49]. For the flow considered here, the governing parameter

is D, in contrast to the forcing frequency in the works referenced above.

In the next section, we will discuss in more detail some features of the results

presented here. Here, we only note that it may be surprising that we have found

waves in the numerical simulations, remembering that we do not impose forcing on

the inlet region, and furthermore, we do not include inertial effects in our formulation.

Instead, we have a hanging film with a contact line in the front. Therefore, it appears

that the presence of fronts and corresponding contact lines plays an important role

in instability development.
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Figure 2.7 Wave profile for different Ds. (a): D = −2.0; (b): D = −2.5; (c):
D = −3.0. The wave profiles have been shifted to illustrate the difference in wave
number, i.e., xr = x− x0 where x0 is an arbitrary shift.

We note that it is possible in principle to carry out the computations also for

larger negative values of D. We find that, as the absolute value of D is increased,

the amplitude of the waves, including the capillary ridge, increases, and furthermore,

the periodicity of the wave train following the capillary ridge is lost. However, since

the observed structures are characterized by relatively large spatial gradients which

at least locally are not consistent with the lubrication approximation, we do not show

them here. It would be of interest to consider this flow configuration beyond the

lubrication approximation and analyze in more detail the waves in this regime. In

addition, this regime should also include the transition from flow to detachment, the

configuration related to the so call ‘tea-pot’ effect [34, 36, 55].

2.2.4 Discussion of the Results

In this Section, we discuss in some more detail the main features of the numerical

results and compare them to those found in the literature. We consider in particular

the difference between the various regimes discussed above. In Section 2.2.4.1, we

give the main results for the velocities of the film front and the propagating waves.

In Section 2.2.4.2, we discuss the main features of the instability that forms and show
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that the presence of the contact line is important in determining the properties of

the waves, including their typical wavelength. Then, we finally discuss one question

that was not considered explicitly so far: What is the source of the instability? As

we already suggested, the contact line appears to play a role here. However, it is

appropriate to also discuss the influence of numerical noise on instability development,

shown in Section 2.2.4.3. As we will see, both aspects are important to gain better

understanding of the problem.

2.2.4.1 Front Speed and Wave Speed. Figure 2.8 compares the velocity

of the leading capillary ridge, V , for different Ds. The speed of the traveling wave

solution, U , is 1+ b+ b2, and is exactly the front speed for D = −1.0, as discussed in

Appendix A.1. For all other cases shown, the velocity of the leading capillary ridge

oscillates around U , due to the interaction between the leading capillary ridge and

the waves coming from behind.

time0 40 80 1200

1

2

3

V

Figure 2.8 Velocity profile of the leading capillary ridge for different Ds. D = −1.0
(solid), D = −2.0 (dashed), D = −3.0 (dotted).

Table 2.1 shows the speed of waves in Type 3 regime. As we can see, the wave

speed in all cases is greater than U (≈ 1). A simple explanation of why the waves

move faster than the fluid front itself is that the motion of the front is resisted by the
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precursor film (recall that in the limit b → 0, there is infinite resistance to the fluid

motion within the formalism implemented here). The surface waves, however, travel

with a different, larger speed. Therefore, the upcoming waves eventually catch up

with the front, interact, and merge into a new capillary ridge. Figure 2.9 illustrates

this process. As the leading capillary ridge moves forward, its height decreases until

the next wave arrives. That is the reason why we see such pulse-like velocity profiles

in Figure 2.8; each pulse is a sign of a wave reaching the front. In the Type 2 regime,

the velocity of the front shows similar oscillatory behavior, although the approximate

periodicity of the oscillations is lost due to more irregular structure of the surface

waves. Going back to Type 3 waves and Table 2.1, we see that wave amplitude and

speed are both increasing withD, consistent with the behavior of continuous vertically

falling films [3, 17].

Table 2.1 Wave Amplitude and Wave Speed for Different D in Type 3 Regime

D wave amplitude wave speed

-2.0 1.53 1.88

-2.5 1.88 2.20

-3.0 2.38 2.65

2.2.4.2 Absolute Versus Convective Instability. Here we analyze some

features of the results from the Type 1 and Type 2 regimes using linear stability

analysis. Let us ignore, for a moment, the contact line and analyze stability of

a flat film. The basic framework is given in the Appendix A.2. We realize that

Equation (A.4) can be reduced to a linear Kuramoto-Sivashinsky equation in the

reference frame moving with the nondimensional speed equal to 3. Consider then the

evolution of a localized disturbance imposed on the flat film at t = 0. This disturbance

will transform into an expanding wave packet with two boundaries moving with the
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Figure 2.9 Wave interaction with the capillary ridge. Time evolution is from the
bottom to the top, D = −2.0.

velocities (x/t)− and (x/t)+ [32]. In the laboratory frame, as shown in Appendix A.3,

these velocities are given by [15]

(x
t

)
±
≈ 3± 1.62 (−D)3/2. (2.7)

The right-going boundary, (x/t)+, moves faster than the capillary ridge and can be

ignored. Considering now the left boundary, (x/t)−, we see that there is a range

Dc1 > D > Dc2 such that the speed of this boundary is positive and smaller than

U . Alternatively, one can use the approach from [30], which is based on studying the

behavior of the curve ωi = 0 in the complex k plane, with the same result. Using

either approach, one finds Dc1 ≈ −1.15 and Dc2 ≈ −1.51. This result explains the

boundary between the Type 1 and Type 2 regimes since for Type 1, D > Dc1 and the

left boundary moves faster than the front itself. For D > Dc2, the speed of the left

boundary is positive, and therefore the instability is of convective type. This can be

seen from Figure 2.5 and is illustrated in detail in Table 2.2. In this table, we show

the value of Dlin, predicted by Equation (2.7), using the position of the left boundary

x− taken from Figure 2.5 (t = 150). While the agreement between Dnum and Dlin
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is generally very good, we notice some discrepancy for Dnum = −1.7; this can be

explained by the fact that for this Dnum there is already some interaction with the

boundary at x = 0.

Table 2.2 Numerical Results on Speed of Left Boundaries, (x/t)−

Dnum x− (x/t)− Dlin

-1.1 150 1.00 -1.15

-1.3 100 0.66 -1.28

-1.5 30 0.20 -1.44

-1.7 0 0.00 -1.51

These results suggest that we should split our Type 2 regime into two parts:

Type 2a, for which the speed of the left boundary is positive (D > Dc2), and Type 2b,

for which the speed of the boundary is negative and the instability is of absolute type.

In Type 2a regime, a flat film always exists and expands to the right with time. In

Type 2b regime, the flat film disappears after sufficiently long time. As an illustration,

we note that D = −1.5 shown in Figure 2.3, lies approximately at the boundary of

these two regimes, since here the length of the flat film is almost time-independent.

We also note that in Type 2b regime, we always observe two types of waves, in contrast

to Type 3; that is, the structure shown, e.g., in Figure 2.5 for D = −1.7, persists for

a long time.

To allow for better understanding of the properties of the waves that form, in

the results that follow we have modified our initial condition (put xf = 50) to allow

for longer wave evolution without interaction of the wave structure with the domain

boundary (x = 0). Figure 2.10 shows that for D = −2.0, the waves form immediately

behind the leading capillary ridge; see also the animation attached to this figure. For

longer time (t > 40 in Figure 2.10), the disturbed region covers the whole domain

as expected based on the material discussed in Section 2.2.4.2. Note that even for
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t = 100, we still see transient behavior: the long time solution for this D consists of

a uniform stream of waves and is shown in Figure 2.7(a). This long time solution is

independent of the initial condition. However, the time period needed for this uniform

stream of waves to be reached depends on the initial film length and is much longer

for the larger xf used here.
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Figure 2.10 D = −2.0. From top to bottom, t = 0, 10, 20, 40, 100. For early
times, the contact line induced instability propagates to the left. For longer times,
sine-like and solitary-like waves are observed, covering the whole domain by t = 40.

Figure 2.10 suggests that the contact line plays a role in wave formation (the

other candidate, numerical noise, is discussed below). One may think of the contact

line as a local disturbance. It generates an expanding wave packet as we have just

shown, and the velocities of the two boundaries are given by Equation (2.7). In

particular, for D < Dc1, the left boundary moves slower than the capillary ridge. The

wave number, kl, along this boundary is defined by(
∂ω

∂k

)∣∣∣∣
k=kl

=
(x
t

)
−
, (2.8)

and it should be compared to the sine-like waves that form due to the presence of

the contact line. Table 2.3 gives this comparison: the values of kl for a given D are

shown in the second column, followed by the numerical results for the wave number,

qn. We find close agreement, suggesting that kl captures very well the basic features
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of the waves that form due to the contact line’s presence. Furthermore, both qn and

kl are much larger than km, the most unstable wave number expected from the linear

stability analysis (LSA) described below (vis. the last column in Table 2.3). This

difference allows one to clearly distinguish between the contact line induced waves

and the noise induced ones, discussed in what follows.

Table 2.3 Comparison between Simulations and Linear Analysis for Wavenumbers
of Induced Waves

D kl qn km

-1.3 1.10 1.10 0.81

-1.5 1.18 1.14 0.87

-1.7 1.25 1.23 0.92

-2.0 1.36 1.35 1.00

-2.5 1.52 1.48 1.12

2.2.4.3 Noise Induced Waves. The results of the LSA of a flat film (see

Section A.2) for the most unstable wave number shown in Table 2.3, confirm that

a flat film is unstable to long wave perturbations for negative Ds. Although our

base state is not a flat film, there is clearly a possibility that numerical noise, which

includes long wave components, could grow in time and influence the results. As an

example, we consider again D = −2.0. Similar results and conclusions can be reached

for other values of D.

Let us first discuss the expected influence of numerical noise. For D = −2.0,

the LSA shows that it takes 30 time units for the noise with an initial amplitude

of 10−16 (typical for double precision computer arithmetic) to grow to 10−2. LSA

also shows that waves with small amplitude should move with the speed 3. That

is, natural (numerical) noise, which is initially at x = 0, should arrive to x = 90
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after 30 time units. Figure 2.11 (a) illustrates this phenomenon. As t approaches

30, we see that the noise appears at about x = 90. Noise manifests itself through

the formation of waves behind the contact line induced waves; which were already

present for earlier times. To further confirm that this new type of waves is indeed

due to numerical noise, we have also performed simulations using quadruple precision

computer arithmetic. Figure 2.11 (b) shows the outcome: with higher precision, the

noise induced waves are absent, as expected. We note that in order to be able to

clearly identify various regimes, we take xf = 150 in Figure 2.11 (a) and (b), so that

no influence of the boundary condition at x = 0 is expected.
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(b) Quadruple precision

Figure 2.11 D = −2.0. From top to bottom, t = 25, 27, 29, 31. The initial
condition for this simulation is chosen to be a hyperbolic tangent with contact line
located at x = 150. The error-induced waves appear at (a) (50 < x < 120).

In Figure 2.11 (a) (t = 31), we can clearly distinguish between the waves induced

by the contact line (120 < x < 190), and the ‘natural waves’ induced by numerical

noise (50 < x < 120). The main difference is the wavelength. The contact line

induced waves have a specific wavelength, 2π/kl, while the noise induced ones are

characterized by a wavelength, λ, corresponding very closely to the mode of maximum

growth, λ ≈ 2π/km, obtained using LSA. This can be clearly seen by comparing the
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numerical results shown in Figure 2.11 (a) (t = 31) with the LSA results given in

Table 2.3.

To summarize, the evolution of the wave structure in the Type 2 and Type 3

regimes proceeds as follows. First, one sees formation of contact line induced waves,

characterized by relatively short wavelengths (compared to what would be expected

based on the LSA of a flat film). Depending on the value of D, one may also see

formation of solitary-looking waves immediately following the capillary ridge. At

some later time, these waves are followed by noise-induced ones. These three types of

waves are all presented in Figure 2.11 (a). Then, at even later times, when the waves

cover the whole domain and interact with the x = 0 boundary, the final wave pattern

forms, as illustrated for D = −2.0 by Figure 2.5. In the conclusions, Section 2.2.6,

we discuss briefly under which conditions these waves may be expected to be seen in

physical experiments.

Remark I. One may wonder why the traveling wave solution for D = −1.0

shown in Figure 2.2 remains stable for such a long time. Recall that the LSA predicts

that natural noise with amplitude 10−16 should grow to 10−2 in 130 time units, while

our numerical result shows that the flat film is preserved even for t = 160. The reason

is the domain size. It takes approximately 66 time units for noise to travel across the

domain (moving with the speed equal to 3), and the noise can only grow from 10−16

to 10−9 during this time period for D = −1. This is why we do not see the effect of

noise for small Ds.

Remark II. We have used LSA of a flat film (therefore, ignoring contact line

presence) to predict the evolution of the size of the region covered by waves in

Section 2.2.4.2. However, in order to understand the properties of the waves that

form in this region, one has to account for the presence of a front. In our simulations,

we are able to tune the influence of noise on the results (visualize Figure 2.11 (a)
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versus (b)). In physical experiments, these two effects will quite possibly appear

together.

2.2.5 Physical Interpretation of Nondimensional Parameter D

It is useful to discuss the relationship between the nondimensional parameter D in our

model, Equation (2.4), and physical quantities. In particular, we recall that there are

two quantities, h0 (film thickness) and α (inclination angle) which can be adjusted

in an experiment, and here we discuss how variation of each of these modifies our

governing parameter and the results. We also relate D to the fluid flux and the

Reynolds number.

The velocity scaling in Equation (2.4) can be expressed as

U =
ρg

3µ
h20 sinα.

Therefore, the parameter D can be written as

D =

(
ρg

γ

)1/3

h
2/3
0

cosα

(sinα)2/3
. (2.9)

In our simulations, the flux Q in the x-direction is kept constant and equal to 1. The

dimensional flux is

Q = 1 · h0 · U =
ρg

3µ
h30 sinα. (2.10)

The Reynolds number can be expressed as

Re =
ρU`

µ
=

(ρ5g2γ2)1/3

3µ2
h
7/3
0 (sinα)2/3. (2.11)

We note that there is no contradiction in considering Re, although inertial effects

were neglected in deriving the formulation that we use. The present formulation is

valid for Re = O(1/ε) or smaller, where ε � 1 is the ratio of the length scales in
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the out-of-plane and in-plane directions [1]. Considering the influence of Re for this

range is permissible.

Table 2.4 Physical Interpretation of Nondimensional Parameter D

α fixed h0 fixed

D > 0 D < 0 D > 0 D < 0

|D| ↑ ↑ |D| ↑ ↑

h0 ↑ ↑ α ↓ ↑

Q ↑ ↑ Q ↓ ↓

Re ↑ ↑ Re ↓ ↓

U ↑ ↑ U ↓ ↓

The relation between D and relevant physical quantities is shown in Table 2.4.

For fixed inclination angle, an increase of the magnitude of D is equivalent to an

increase of the film thickness, flux and Reynolds number. On the other hand, for

fixed film thickness, i.e., h0 =constant, raising the magnitude of D leads to lower flux

and Reynolds number, and the inclination angle approaches horizontal. We can use

this connection to relate to the experimental results of Alekseenko et al. (see Figure 11

in [2]). They performed experiments with fixed inclination angle and increasing flux,

which corresponds to an increase of the magnitude of D in our case. Figure 2.5 shows

that the trend of our results is the same as in the above experiments. In addition, the

results in [34] suggest that further increasing of the flux leads to pinch-off, consistent

with our results, since forD < −3.0, numerics suggest that the lubrication assumption

is not valid.
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Finally, one should recall that the lubrication approximation is derived under

the condition of small slopes (of the free surface), which translates to(
h0
√
sinα

a

)2/3

� 1, (2.12)

if nondimensional slopes (of the free surface) are O(1), see e.g., [37]; here a =
√
γ/ρg

is the capillary length. In addition, by combining the above lubrication limit with

Equation (2.9), one gets the following condition (see also [31]):

|D| < | cotα|. (2.13)

Therefore, for a given D, there exists a range of inclination angle for which the thin

film model, Equation (2.4), is strictly valid. Table 2.5 shows this range for some

values of D.

Table 2.5 Inclination Angle, αc, at which Long Wave Theory Ceases to be Formally
Valid

D αc (deg)

-1.0 135o

-1.5 147o

-2.0 154o

-3.0 162o

2.2.6 Conclusions

In this section, we report numerical simulation of the thin film equation,

Equation (2.4), governing the height of fluid flowing down an inverted substrate. It is

found that by changing a single parameter D, one can find three different regimes of

instability. Each regime is characterized by a different type of waves. Some of these
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waves show similar properties to those observed in thin liquid films with periodic

forcing. In contrast to those waves produced by perturbations at the inlet region, our

instability comes from the front. We find that the presence of a contact line leads

to free surface instability without any additional perturbation. According to linear

stability analysis, we know that for negative D, the model problem, Equation (2.4),

is unstable in the sense that any numerical disturbance grows exponentially in time.

However, we can also take advantage of the stability analysis to separate the instability

caused by noise and any other sources.

Finally, we may ask about experimental conditions for which the waves discussed

here can be observed. As an example, consider polydimethylsiloxane (PDMS), also

known as silicon oil (surface tension: 21 dyn/cm; density: 0.96 g/cm3), and discuss the

experimental parameters for which the condition |D| < 3.0 is satisfied. For α = 170o

(the value used in [2]), the thickness should be less than 1.4mm. Table 2.6 gives

the values for this, as well as for some other Ds. However, one should recall that

Equation (2.13) shows that our model is formally valid only up to a certain D for a

given inclination angle α. In addition, one should be aware that the use of lubrication

approximation is easier to justify for inclination angles further away from the vertical.

Table 2.6 The Values of α, D, and h0 for Experimental Parameters as in [2]

α (deg) D h0 (mm)

150o -1.0 0.93

-1.5 1.7

170o -1.0 0.27

-2.0 0.75

-3.0 1.40
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2.3 Three-Dimensional Flow

In Section 2.2, we found that for a film flowing down an inverted plane in 2D, the

fluid front bounded by the contact line (contact point in 2D) played the role of a

local disturbance that induces instabilities. As the inclination angle approaches 180◦

(that is, the parameter D = (3Ca)1/3 cotα becomes smaller), the fluid front influences

strongly the flow behind it and induces waves. In particular, the governing equation,

obtained under the lubrication approximation, is found to allow for three types of

solutions. We note that solutions could not be found for flows characterized by even

smaller (more negative) values of D. We presume that this is due to the fact that,

in this case, the gravitational force is so strongly destabilizing that detachment is

to be expected. Mathematically, this may be related to the singular behavior of

Benney-type equations [57]. It should be pointed out, however, that in the present

context, singular behavior is physical, although not well described due to limitations

inherent in the long-wave approach.

In the following, we consider, in general terms, the 3D flow of a film spreading

on an inverted surface. In Section 2.3.1, we consider instabilities occurring in the flow

of a single rivulet, as the simplest example of a 3D flow. Fully 3D flow is considered

in Section 2.3.2, where we discuss in particular the interaction between the surface

instabilities considered previously in the 2D setting (Section 2.2), and the transverse

fingering instabilities at the front. We also briefly comment on the connection of the

instability considered here and the Rayleigh-Taylor instability mechanism.

2.3.1 Inverted Rivulet

In this section, we consider a single rivulet with a front, following on the underside

of a solid surface. The related problem of an infinite rivulet was studied in a number

of works. For example, the exact solution of the Navier-Stokes equation for a steady

infinite rivulet has been obtained [68], and under the lubrication assumption the
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stability of such settings were studied for completely and partially wetting fluids [7,

67]. However, the influence of fluid front on the stability has not been studied. In

the following, we will first extend the steady infinite rivulet solution [28] to include

the presence of a precursor film. Then we will examine the effect of a fluid front on

the stability of an inverted rivulet.

2.3.1.1 Inverted Infinite Rivulet. Consider a rivulet with infinite length

flowing down an inverted planar surface. A steady state shape of the rivulet,

independent of the downstream coordinate x can be found by solving Equation (2.3),

which in this special case reduces to

(
h3hyyy

)
y
−D

(
h3hy

)
y
= 0. (2.14)

Integrating this equation and applying the boundary conditions hy = hyyy = 0 and

integrating again yields

hyy −Dh = c1, (2.15)

where c1 is a constant. Concentrating on the inverted case, D < 0, the general

solution can be written as

hr(y) = c2 cos(
√
−Dy) + c3 sin(

√
−Dy)− c1

D
, (2.16)

where c2 and c3 are constants. Without loss of generality, we impose the symmetry

condition at y = 0 to find c3 = 0, and the complete wetting assumption

further determines the rivulet’s width as
[
−π/

√
−D, π/

√
−D

]
. At the boundaries

h
(
±π/

√
−D

)
= b, so we obtain

hr(y) =
Ar − b

2
cos
(√

−Dy
)
+
Ar + b

2
, (2.17)

where Ar = hr(0) is a constant.
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According to the above analysis, we find a family of exact rivulet solutions for a

given D. The unique solution can be obtained by specifying flux or average thickness

at the inlet.

2.3.1.2 Inverted Rivulet with A Front.

2.3.1.2.1 Initial and Boundary Conditions. To analyze the effect of the

front bounded by a contact line (regularized by the precursor) on the rivulet flow,

we perform numerical simulations of the 3D thin film equation via the ADI method.

The details of the implementation of the ADI method are discussed in Appendix B.

The boundary conditions are such that constant flux at the inlet is maintained with

the additional assumption that the shape at the inlet corresponds to a steady rivulet.

The choice implemented here is

h(0, y, t) = hr(y), hxxx(0, y, t)−Dhx(0, y, t) = 0. (2.18)

In addition, we choose Ar = 2 in the steady rivulet solution so that the average

thickness at the inlet is 1. At the outlet, x = L, as well as at the y boundaries, ±M ,

we assume zero-slope and a precursor film

h(L, y, t) = h(x,±M, t) = b, hx(L, y, t) = hy(x,±M, t) = 0, (2.19)

where [0, L] is the domain size in the x direction, [−M,M ] is the domain in the y

direction. The initial shape of the rivulet is chosen as a hyperbolic tangent to connect

smoothly the steady solution and the precursor film at x = xf as follows:

h(x, y, 0) =
hr(y)− b

2
tanh (−5(x− xf )) +

hr(y) + b

2
, (2.20)

here we choose xf = 5.

Due to heavy computational costs involved in resolving behavior on the

precursor scale in 3D simulations (∆x should be O(b)), the precursor thickness is
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typically set to 0.1 instead of the smaller value b = 0.01 used in Section 2.2. This

change has only a minor influence on the boundaries of the instability regimes (the

change of critical values of D is less than 10−2). We have also carried out additional

3D simulations for selected cases with smaller values of b to verify that there is only

a very weak influence of the exact value of b on the presented results.

2.3.1.2.2 Results. The presence of the contact line modifies the steady solution

discussed in Section 2.3.1.1. Without going into the details of this modification, for

the present purposes it is sufficient to realize that the speed of the traveling rivulet,

Vr, can be easily computed by comparing the net flux with the average film thickness

as

Vr =

∫
(h3r − b3) dy∫
(hr − b) dy

=
5

8
A2

r + Ar b+O(b2). (2.21)

Vr is useful to facilitate understanding of the computational results in the context of

2D instabilities discussed previously. For this purpose, we use Vr instead of U as a

velocity scale and to avoid confusion, we denote such a D by Dn.

Figure 2.12 shows the computational results at t = 25. For Dn = −1.0, we still

observe traveling-wave type solutions. We have examined the speed of the capillary

ridge and found that it equals Vr, as predicted. For Dn larger in absolute value, the

traveling wave solution becomes unstable and waves keep forming right behind the

capillary ridge. For Dn > −1.5, simulations suggest that the instability is convective,

since it is carried by the flow and moves downstream from the initial contact line

position, xf . For Dn < −1.5, the instability is absolute. At the time shown, the

whole rivulet is covered by waves which in cross section resemble solitary ones.

The rivulet simulations show a qualitative similarity to our 2D simulations (vis.

the right hand side of Figure 2.12 and Figure 2.5). Therefore, on one hand this result

validates the accuracy of our 3D simulations. On the other hand, it also suggests that

the instability regimes, (types 1, 2, and 3) can be extended to 3D rivulet geometry.
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Figure 2.12 Rivulet flow for different Dn’s at t = 25. The domain size is specified
by L = 90 and M = 5. Left-hand side shows the contour plot and the right-hand
side shows the cross section (y = const.) at the middle of a rivulet. We will use a
similar way of presenting results, and the same color map in the other figures given
in Section 2.3.

Clearly, it was necessary to use a renormalized value of D, Dn, to be able to carry

out this comparison.

It is also of interest to relate the present results to stability properties of an

inverted infinite length rivulet without a front. In this case, it is known that there

exists a critical angle between π/2 and π such that the inverted infinite rivulet is

unstable if the inclination angle is larger than the critical one [7]. In order to be able

to directly compare the two problems (with and without a front), we have carried

out simulations of an inverted infinite rivulet. The steady state is fixed by choosing

the height in the middle of a rivulet Ar = 2. We perturb the rivulet at t = 0 by a

single perturbation defined by h(x, y, 0) = hr(y)(1 + Apsech(x − xp)) with Ap = 0.2

and xp = 5.0. In this work, we consider only this type of perturbation and do

not discuss in more detail the influence of its properties on the results. For this
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case, we find that an inverted infinite rivulet is unstable for Dn ≤ −0.74, which is

consistent with the fact that there exists a critical angle for stability [7]. An obvious

question to ask is: Which instability is dominant for sufficiently small Dn’s, such that

both front-induced and surface-perturbation induced instabilities are present? This

question will also appear later in the context of thin film flow - to avoid repetition

we consider it for that problem, in Section 2.3.3.

2.3.2 Inverted Film with a Front

We proceed with analyzing stability of an inverted film with a front flowing down

a plane. In Section 2.3.2.1 we extend the results of the linear stability analysis in

the transverse direction to the inverted case. Then, we proceed with fully nonlinear

time dependent simulations in Section 2.3.2.2. We start with addressing a simple case

where we perturb the fluid front by a single wavelength only – this case allows us to

correlate the results with the 2D surface instabilities discussed previously, with the

instabilities of a single inverted rivulet discussed in Section 2.3.1, and also with the

well-known results for transverse instability of a film front flowing down an inclined

plane, see e.g. [25]. We proceed with more realistic simulations of a front perturbed

by a number of modes with random amplitudes, where all discussed instability

mechanisms come into play. We conclude the section by discussing in Section 2.3.3

the connection between the instabilities considered here and the Rayleigh-Taylor type

of instability of an infinite film flowing down an inverted plane.

2.3.2.1 Linear Stability Analysis in the Transverse Direction. In order

to analyze the stability of the flow in the transverse, y, direction, we perform a linear

stability analysis (LSA). The results of similar analysis were reported in previous

works, see, e.g., [37], but they typically concentrated on downhill flows, with D ≥ 0.

Here we extend the analysis to also consider films on an inverted surface, with D < 0.
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Consider a moving frame defined by s = x − V t, and assume a solution of the

form

h(s, y, t) = H(s) + εh1(s, y, t), (2.22)

where ε � 1, and H(s) is the traveling wave solution with speed V . Then, plug this

ansatz into Equation (2.3). The leading order term (O(ε0)) gives the 2D equation

−V H ′ + [H3(H ′′′ −DH ′ + 1)]′ = 0 (2.23)

while the first order term (O(ε1)) yields

∂h1
∂t

= −∇ ·
[
H3∇∇2h1 + 3H2h1∇∇2H

]
+D∇ ·

[
H3∇h1 + 3H2h1∇H

]
−
(
3H2h1

)
s
+ V h1s, (2.24)

where ∇ = (∂s, ∂y). The next step is to express the solution, h1, as a continuous

superposition of Fourier modes,

h1(s, y, t) =

∫ 0

−∞
φ(s, q)eσteiqydq, (2.25)

where q is the wavenumber and σ is the growth rate that determines the temporal

evolution of h1. For a given q, there is an associated eigenvalue problem, see e.g., [37].

The largest eigenvalue corresponds to the growth rate, which is the quantity of

interest.

Figure 2.13 shows the LSA results. Each curve represents the corresponding

largest eigenvalue for a given wavenumber and for fixed D. One can see that

sufficiently long wavelengths are unstable. Consequently, there is a critical

wavenumber, qc(D), which determines the range of unstable wavenumbers to be [0, qc].

Concentrating now on negative Ds, we find that qc increases with |D|, suggesting

shorter unstable wavelengths for larger |D|s, which are furthermore expected to grow

faster. Therefore, for D < 0, as |D| is increased (for example by increasing the angle
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α, or by making the film thicker), LSA predicts formation of more unstable fingers

spaced more densely.

Figure 2.13 Wavenumber, q, and corresponding growth rate σ for different Ds.

One may note that Figure 2.13 only shows the results for D down to −1.0. The

reason is that a base state could be found only for D ≥ −1.1, and therefore LSA could

not be carried out for smaller Ds. This issue was discussed in Section 2.2, where we

were able to find traveling wave solutions only for Ds in the type 1 regime, and could

not find such solutions in the type 2 and 3 regimes.

2.3.2.2 Fully 3D Simulations. Here we discuss the results of fully 3D

simulations of the thin film equation, Equation (2.3). We choose the initial condition

as for the 2D simulations - that is, two flat regions of thickness h = 1 and h = b

connected at x = xf by a smooth transition zone described by a hyperbolic tangent,

perturbed as follows

h(x, y, 0) =
1− b

2
tanh (−5(x− xf (y))) +

1 + b

2
, xf (y) = xf0 − A0 cos(2πy/λ),

(2.26)

where λ = 2π/q is the wavelength of the perturbation and xf0 is the unperturbed

position. Here we choose xf0 = 5. The boundary conditions in the flow direction are

such that constant flux at the inlet is maintained, while at x = L, we assume that
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the film thickness is equal to the precursor. The boundary conditions implemented

here are

h(0, y, t) = 1, hxxx(0, y, t)−Dhx(0, y, t) = 0,

h(L, y, t) = b, hx(L, y, t) = 0.

For the y boundaries, we use symmetry boundary conditions,

hy(x, 0, t) = hy(x,M, t) = 0, hyyy(x, 0, t) = hyyy(x,M, t) = 0, (2.27)

where M is the width of the domain in the y direction.

Figure 2.14 shows the results of simulations for D = −1.0 perturbed by specified

single mode perturbations. For λ = 8 and λ = 10, the perturbation evolves into a

single finger, whereas for λ = 20, which corresponds to the wavelength larger than

the most unstable one (visualizing Figure 2.13), we observe a secondary instability:

in addition to the finger that corresponds to the initial perturbation, there is another

one (which appears as half fingers at y = 0,M), developing at later time (in this case

after t = 10). This is due to the fact that the mode λ = 20 is very weakly unstable.

It grows slowly and leaves enough space in the domain for other unstable modes to

develop.

Figure 2.14 Time evolution for perturbations of different wavelengths (λ) and
D = −1.0. Here the domain is specified by L = 50 and M = λ.

Next, we compare the growth rate of a finger from our 3D simulations with the

LSA results. This comparison is shown in Figure 2.15 for D = −0.5 and D = −1.0.
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The initial condition for these simulations is chosen as a single mode perturbation,

λ = M = 10. The growth rate is extracted by considering the finger’s length, A,

defined as the distance between tip and root. As shown in Figure 2.15, for early

times, the finger grows exponentially with the same growth rate as predicted by

the LSA. For later times, the finger length exhibits a linear growth. This late time

behavior can be simply explained by the fact that the finger evolves into the rivulet

solution discussed in Section 2.3.1.

Figure 2.15 Length of a finger, A, divided by the initial length, A0. Here λ =M =
10. Red (curved) lines show the computational results while the black (straight) lines
show the LSA prediction for two different D’s.

Figure 2.16 shows the numerical results for D = −1.5 with three single mode

perturbations in a fixed domain, [0, 90] × [0, 20]. Both contour plots and the cross

sections at the center of the computational domain (y = 10) are presented. In this

case, in addition to the secondary instability already observed for the perturbation

λ = 20, we also see a secondary instability developing for λ = 10, suggesting that

as the absolute value of (negative) D grows, shorter and shorter wavelengths become

unstable. For this D, even λ = 5 is unstable. This result is consistent with the trend

of the LSA results shown in Figure 2.13; note however that LSA cannot be carried

out for such small Ds due to the fact that a traveling wave solution could not be
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found. Instead of traveling waves, we find surface instabilities on the film. As shown

in the contour plot at t = 50, several red(dark) dots, which represent waves, appear

on the fingers, as it can be seen in the cross section plots as well. The red(dark) dots

keep forming, moving forward and interact with the capillary ridge in the fronts.

Figure 2.16 Time evolution for perturbations of different wavelengths (λ) at D =
−1.5. The domain is chosen as L = 90 and M = 20. In each sub-block, the upper
figure shows the contour plot, and the lower figure shows the cross section at y = 10.

The cross-sectional plots in Figure 2.16 show formation of solitary-like waves.

Behind these solitary-like waves, there exists a second region where waves appear as

‘stripes’ (vis. the straight stripes in the middle part of the contour plot at t = 50).

These stripe-waves move forward for a short distance and then break into several

waves localized on the surface of the finger-like rivulets. In the cross-section plots,

these strip-like waves appear as sinusoidal waves. Finally, a flat film is observed in

the region far behind the contact line. The appearance of such a flat film indicates

that the flow instability is of convective type. Therefore, for such D, the contact line

induced waves are carried by the fluid and they eventually move away from any fixed

position.

Figure 2.17 shows the numerical results for D = −2.0 with the same set of

initial perturbations as in Figure 2.16. Both contour plots and the cross sections at
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the middle of the y domain are presented. As mentioned in Section 2.2, D = −2.0

corresponds to the Type 2 regime and is of absolute instability type. This is exactly

what we see in the contour plot. Localized waves shown as red (dark) dots appear

all over the surface and see neither strip waves nor flat film appearing. In the cross

section plots, we only see solitary-like waves.

Figure 2.17 Time evolution for perturbations of different wavelengths (λ) at D =
−2.0. tend = 50 for λ = 6.67, tend = 40 for λ = 10, tend = 30 for λ = 20. The domain
is chosen as L = 90 and M = 20. In each sub-block, the upper figure shows the
contour plot, and the lower figure shows the cross section at y = 10.

Next, we proceed to analyze the behavior in the case where initially multiple

perturbations are present. The imposed perturbation consists of 50 sinusoidal modes

with amplitudes randomly selected from [−0.2, 0.2]

xf (y) = xf0 −
50∑
i=1

Ai cos((i− 1)π y), −0.2 ≤ Ai ≤ 0.2 .

Figure 2.18 shows the simulations for different Ds with the same random initial

perturbations, so that the nondimensional parameter D is the only difference between

the four panels. The initial profile is also shown in Figure 2.18 (t = 0).

The first obvious observation is that the number of fingers increases as the

absolute value of (negative) D becomes larger. This is due to the fact that the

most unstable wavelength decreases as |D| becomes larger. Therefore, more fingers
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Figure 2.18 Time evolution of perturbations for different Ds with the same random
initial perturbations. Here tend = 50 for D = −1.0, tend = 40 for D = −1.5, tend = 30
for D = −2.0, tend = 20 for D = −3.0. The domain is chosen as L = 90 and M = 50.

can fit into the flow domain. Secondly, the fingers become more narrow for these

Ds, consistent with the predictions for rivulet flow. Thirdly, the absolute/convective

instability argument is a good explanation for these contact line induced instabilities:

there is no surface instability seen for D = −1.0; we see convective instability, shown

as localized waves/stripes/flat film for D = −1.5; and absolute instability for D =

−2.0 and D = −3.0.

Remark.

Here we comment on two additional sets of simulations - corresponding figures

are omitted for brevity. One set involves the case when the initial condition is chosen

as y-independent. Mathematically such an initial condition reduces the problem to

2D, and the solution should remain y-independent for all times. However, this is

not the case in numerical simulations. Numerical errors are present and grow with

time. To estimate this effect, one can calculate the largest growth rate in the x and

y direction based on the LSA results, and estimate the time for which the numerical

noise becomes significant. For example, for D = −1.0, the largest growth rate for
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instability of a flat film in the x direction is 0.25 and the largest growth rate in the

y direction is 0.46. That is, it takes 70 time units for noise of initial amplitude 10−16

(typical for double precision computer arithmetic) to grow to 10−2. So as long as the

final time is less than 70, the numerical noise is still not visible. By carrying out such

an analysis, we are able to distinguish between the numerical noise induced instability

and the contact line induced one, and further separate the effect of numerical noise.

The other set of simulations has to do with the case when the initial single mode

perturbation is chosen as a stable one. In such a case, the amplitude of perturbation

decays exponentially and the surface profile soon becomes y-independent. Again,

after sufficiently long time, numerical noise will become relevant and break the y-

independence.

2.3.2.3 The width of a finger. It is of interest to discuss how fingers’ widths

depend on D. As a reminder, the LSA shows that there exists a most unstable

wavenumber, qm(D), and the distance between two neighboring fingers in physical

experiments, in the presence of natural or other noise, is expected to center around

the most unstable wavelength, λm = 2π/qm(D). On the other hand, the width of

the rivulet part of a single finger is not known to the best of our knowledge. In the

following we define this width and discuss how it relates to the LSA results.

We check whether there is a difference between the fingers for different single

mode perturbations. Figure 2.19 shows the y-orientation cross section of the fingers’

rivulet part for D = −0.5 and D = −1.0. As shown in this figure, for a given D,

the fingers are very similar in the cross section, with their shape almost independent

of the initial perturbation. Note that this result still holds even for the λ’s that are

very close to the critical value, λc = 2π/qc(D) - e.g., see λ = 6.3 in Figure 2.19(b)

(here λc ≈ 6.25). By direct comparison of the parts (a) and (b) of this figure, we

immediately observe that the fingers are more narrow for more negative Ds.
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(a) D = −0.5. (b) D = −1.0.

Figure 2.19 Cross sections of film thickness as a function of the transverse
coordinate, y, for different wavelengths of initial perturbation, λ. The cross sections
are taken from the rivulet part of a finger, at x = 35, t = 30; some of results from
which the cross sections are extracted can be seen in Figure 2.14. The centers of the
cross sections are shifted to y = 10 for the purpose of comparison. For D = −0.5,
λ = 6.3 is stable (not shown).

To make this discussion more precise, we define the width of a rivulet, w, as the

distance between two dips on each side of a finger (the two dips are shown at y ≈ 7

and y ≈ 13 in Figure 2.19). The main finding is that w ≈ λc. This finding applies

for all Ds and all perturbation wavelengths that we considered. In particular note

that Figure 2.19 shows that w becomes smaller as the absolute value of (negative) D

increases, consistently with the decrease of λc, see Figure 2.13.

While it is clear that w cannot be larger than λc (since w is independent of

the initial perturbation, and for λ > λc it must be that λ > w), at this point we do

not have a precise argument why w is so close to λc for all considered perturbations

and the values of D. Of course, one could argue that w ≈ λc is also consistent

with stability of any perturbation characterized by λ < λc, since such a perturbation

cannot support a finger of width w ≈ λc.

It should be pointed out that the fingers that we discuss in this Section differ

from the analytical infinite rivulet solution derived in Section 2.3.1. For example,
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as shown in Figure 2.19, the cross section of a finger with a front includes two dips

on each side, that do not appear in the analytical solution of an infinite rivulet.

Furthermore, the width of an infinite rivulet diverges as D → 0, but we still observe

fingers of finite width for D = 0. Such differences suggest that one should include

nonlinear effects when considering properties of finger-like solutions.

2.3.3 Rayleigh-Taylor Instability of Inverted Film

The instabilities we have discussed so far arise in flow configurations where a contact

line is present, and an obvious question is what happens if there is no contact line, that

is, if we have an infinite film spreading down an (inverted) surface. This configuration

is expected to be susceptible to Rayleigh-Taylor (R-T) type of instabilities, since we

effectively have a heavier fluid (liquid) above a lighter one (air). The question is: What

are the properties of this instability for a film flowing down an inverted surface, and

how does this instability relate to the contact line induced one, discussed so far?

Figure 2.20 shows the results of 3D simulation of an infinite film (no

contact line). The initial condition at t = 0 is chosen as a flat film with a

localized hemispherical perturbation of amplitude 0.1 (marked by the black circle

in Figure 2.20). As an example, we use D = −1.0. At time t = 20, the perturbation

had been amplified, as expected. The properties of this instability are, however, very

different from that observed in thin film flow where a contact line is present. For

this D, if a contact line is present, we see only a capillary wave behind the front (vis.

Figure 2.18), and we do not find upstream propagating waves as we do for the infinite

film shown in Figure 2.20. Therefore, the instability discussed so far is not of R-T

type - instead, it is induced by the presence of a contact line.

One obvious question is why we do not observe (additional) R-T instability in

the flow with fronts. The answer is that the speed with which a perturbation on

a main body of a film (such as the infinite film shown in Figure 2.20) propagates
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Figure 2.20 Simulation of Rayleigh-Taylor instability for hanging film on inclined
plane at D = −1.0. The black circle indicates the initial profile. The surface shown
in the downstream is the surface profile at t = 20. The computational domain is
[0, 90]× [0, 50].

downstream is faster than the speed of the contact line itself. Therefore, in the

simulations of films with fronts presented so far, flat film instabilities do not have

time to develop since they reach the contact line before having a chance to grow. We

note that in Figure 2.20 we used large scale perturbation to illustrate the point; in

a physical problem, one would expect surface perturbations to be characterized by

much smaller amplitudes and would therefore, require much longer time to grow to

the scale comparable to the film thickness. As a consequence, R-T instability could

be expected to become relevant only for films of spatially extend much larger than

that considered here. A similar conclusion extends to stability of infinite rivulets,

discussed briefly in Section 2.3.1.

2.3.4 Inverted Film of Variable Viscosity with a Front

Consider now a situation in which the film is of finite width and the fluid viscosity

is variable in the transverse direction. We have the governing equation for the film
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height

∂h

∂t
+∇ ·

[
h3

µ̄(y)

(
∇∇2h−D∇h+ i

)]
= 0. (2.28)

We have to substitute the symmetry boundary conditions, Equation (2.27), at the

borders of the computational domain with the following ones

h(x, 0, t) = h(x,M, t) = b,

hx(x, 0, t) = hx(x,M, t) = 0.

The flow starts at the top of the domain according to the condition

h(0, y, t) = b+ F0

( y
M

) (βt)2

1 + (βt)2
, (2.29)

where the value of parameter β is 0.775 and the bell shape of the entrance thickness

profile determined by the function F0 is shown in Figure 2.21. Equation (2.29) mimics

the growth of the flow rate and the film thickness at the entrance boundary as

the liquid starts being delivered to the substrate during the ramp-up in industrial

processes or experiments. Characteristic patterns of flow depend on the value of the

parameter D, the width of the film and the distribution of viscosity, and are establish

when the product βt in Equation (2.29) reaches a value of several units.

y/M
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4
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0.8

1

Fo

Figure 2.21 Entrance profile of film thickness in Equation (2.29).
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In many practical situations, the variation of viscosity is a result of its

dependence on temperature, which is usually nonlinear. For example, assume that the

film temperature T decreases linearly with the lateral coordinate y and the viscosity

is given by a generic equation

log10(µ̄) = −A1 +
A2

T − A3

, T = T0 − A4y, (2.30)

where A1 = −4.5, A2 = 7000K and A3 = 520K are the material constants, and T is

the liquid temperature. The viscosity function is normalized by its value at y = 0,

and the constant value T0 is taken as 1530K. The lateral temperature drop across

the computational domain, A4M , is 115K in all cases discussed hereafter, resulting

in 7.5 fold viscosity growth from bottom to top of the domain.

Similar to the isoviscous cases discussed earlier, the film front is always

unstable, producing finger-like rivulets. The morphology of the non-isoviscous film

(as compared to an isoviscous case) stems from the fact that similar structures

such as fingers at different parts of the film move with different speeds. As an

example, Figures 2.22 (a) and (b) show distributions of film thickness at t = 9.4,

16.5, with parameter D = −0.88 and the dimensionless domain width M equal to

133. Morphology of individual fingers is similar to that of fingers in the isoviscous

cases shown in Figure 2.18, but there is obvious mass redistribution along the front

line because of its inclination, resulting in coalescence of some of the fingers and

variation of the finger-to-finger distance. A finger produced by coalescence of two

parent fingers, such as finger 5 in Figure 2.22(b) (circled), has a higher flow rate and

moves faster than its neighbors.

These specific properties of non-isoviscous film are common for flows in the

whole spectrum of parameter D, but morphology of individual fingers strongly

depends on the type of the flow, similar to the isoviscous case considered already.

Figure 2.23 shows the distribution of film thickness for parameter D = −1.5,
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(a) t = 9.4. (b) t = 16.5.

Figure 2.22 Film thickness for D = −0.88. The circles in the part (a) and (b)
indicates two coalescing fingers.

corresponding to type 2, with film widthM = 72.2, at t = 25.4. The leading capillary

ridges are followed by a rivulet with followup smaller waves moving faster than the

leader. The pattern is common for all fingers, but the speed of propagation increases

with temperature. Each of the fingers has a faster-moving neighbor on the higher

temperature side, causing slight increase of the background film thickness on that

side compared to the colder side. As a result, the fingers may have a tendency to

divert and coalesce with warmer neighbors resulting in mass transport from colder

areas to warmer areas of the flow, despite the fact that the film velocity does not

explicitly depend on the temperature gradient.

In type 3 film flow, the height of follow-up drops is already close to that of

finger head drops, as shown in Figure 2.24, which shows the thickness distribution

in the film at time t = 44.4, with parameter D = −2.54 and film width M = 52.2.

In type 3 flows, there is no propagation front and the flow itself consists of a series

of propagating fingers. Another peculiarity of this type of flow is the existence of

small drops, separating from the leading drops to be immediately consumed by the

following drop in the train, as indicated by circles in Figure 2.24. These features are

also observed in isoviscous flows for similar values of D; see, e.g., the cross-sectional
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Figure 2.23 Film thickness for D = −1.5 at t = 25.4.

profile in Figure 2.17. The viscosity effect in the developed type 3 flows shows mainly

as the difference in speeds for droplets in low and high viscosity regions.

Figure 2.24 Film thickness for D = −2.54 at t = 44.4.

2.3.5 Conclusions

In Section 2.2, we carried out extensive computational and stability analysis of the

two-dimensional flow of a completely wetting fluid down an inverted surface. Complex

behavior was uncovered with different families of waves evolving in configurations

characterized by different values of the governing parameter D. In the present work,

we have considered the fully three-dimensional problem of spreading down an inverted

surface. We find that there is an elaborate interaction of surface instabilities and

contact line instabilities. For values of D that are not too small (approximately D ≥
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−1.1) we find behavior similar to that already known for flow down an inclined surface,

with the main difference that the finger-like patterns that form are spaced more closely

and the fingers themselves are more narrow for negative Ds. As D decreased through

negative values, we still find instabilities of the contact line leading to formation of

fingers, but in addition we observe the formation of surface waves, which propagate

down the fingers with speed larger than that of the fingers themselves: therefore,

these propagation waves (which may appear as drops on top of the base film) travel

down a finger, reach the front and merge with the leading capillary ridge. Behind

the fingers, in this regime we find strip-like waves (whose fronts are independent of

the transverse direction). These waves are convective in nature and leave behind a

portion of a flat film whose length increases with time. For even smaller Ds (less than

approximately −2.0), these transverse strip-like waves disappear, and the whole film

is covered by localized waves. These localized waves travel faster than the film itself,

and converge towards the fingers which form at the front.

It is worth emphasizing that the properties of the surface waves which form

due to the presence of fronts are different from those that would be expected if the

fronts were not present. To illustrate this effect, we consider an infinite film with a

localized perturbation which is expected to be unstable by a Rayleigh-Taylor type

of instability. We find that this instability leads to a different type of surface waves,

which may or may not be observable in physical experiments, depending on the size

of the fluid domain.

In the second part of the section, we consider flow where fluid viscosity is not

constant, but varies in the transverse direction. The most important difference is the

loss of flow periodicity in the lateral direction. The fingers in the warmer parts of

the flow move faster than those in the colder areas, yielding a slight increase of the

background film thickness on the warmer side of each finger compared to the colder

side. This results in mass redistribution from colder areas to warmer areas of the
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flow, more pronounced for lower values of |D|, despite explicit independence of the

film velocity on the temperature gradient.

2.4 Partially Wetting Fluid

In this section, we study the spreading and dewetting process of films that partially

wet a solid surface. In particular, we are interested in the regime where the van

der Waals forces and gravitational forces are both relevant. We present the model

and appropriate scalings in Section 2.4.1. We then perform analysis of a flat film

in Section 2.4.2 to characterize linearly stable and unstable regimes. Numerical

simulations of a film on a horizontal surface are shown in Section 2.4.3 as well as

on an (inverted) inclined plane in what follows.

2.4.1 Thin Film Equation with Disjoining Pressure

We model partially wetting fluid by introducing the disjoining pressure in the thin

film equation [27]. The model is written as (in dimensional form)

3µ
∂h̄

∂t̄
+ ∇̄ ·

(
γh̄3∇̄∇̄2h̄+ h̄3∇̄Π(h̄)− ρgh̄3∇̄h̄ cosα+ ρgh̄3 sinαi

)
= 0, (2.31)

where µ is the viscosity, γ is the surface tension, ρ is the fluid density, g is the gravity

and α is the inclination angle. The disjoining pressure model that we use,

Π(h̄) = κf(h̄) = κ

[(
h̄∗
h̄

)n

−
(
h̄∗
h̄

)m]
, (2.32)

introduces κ (proportional to the Hamaker constant) and the exponents n > m > 1.

The first term represents liquid-solid repulsion, while the second term is attractive,

leading to a stable film thickness h̄ = h̄∗. Within this model, κ = S/(Mh̄∗), where

S is the spreading parameter and M = (n − m)/[(m − 1)(n − 1)]. The spreading

parameter can be related to the apparent contact angle θ via the Laplace-Young

condition S = γ(1− cos θ).
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2.4.1.1 Nondimensionalization. We define the scalings as

h =
h̄

hc
, (x, y, t) =

(
x̄

xc
,
ȳ

yc
,
t̄

tc

)
, tc =

3µ

γ

x4c
h3c
, (2.33)

where the choices of scalings will be discussed in Section 2.4.1.2. The nondimensional

equation is then given by

∂h

∂t
+∇ · [h3∇∇2h] +K∇ · [h3F (h)∇h]−Dc∇ · [h3∇h] +Ds

∂h3

∂x
= 0, (2.34)

where

F (h) =
−nhn−m

∗
hn+1

+
m

hm+1
, h∗ =

h̄∗
hc
, (2.35)

and

K =
κh̄m∗ x

2
c

γhm+1
c

, Dc =
x2c
a2

cosα, Ds =
x3c
a2 hc

sinα, (2.36)

with a =
√
γ/ρg being the capillary length.

2.4.1.2 Choice of Scalings. We want to consider the case where the

contributions of van der Waals and gravitational forces are comparable. To have

a balance between these two forces, we choose

hc = a2/m h̄(m−1)/m
∗ x−1/m

c , xc = a(2m+2)/(3m+1) h̄(m−1)/(3m+1)
∗ . (2.37)

Under such scaling, the parameters that measure the relative importance of disjoining

pressure, normal gravity and tangential gravity are:

K =
1− cos θ

M
, Dc =

x2c
a2

cosα, Ds = sinα. (2.38)

As an example, assuming m = 2, for fluids with capillary length a ≈ 10−3m and

precursor thickness h̄∗ ≈ 10−9m, we have xc ≈ 10−4m, hc ≈ 3 × 10−6m, giving the

characteristic scaling on film thickness as about 3µm.
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In the following, for convenience, we fix the parameters n = 3, m = 2, so that

F (h) =
2h− 3h∗

h4
. (2.39)

2.4.2 Linear Stability Analysis of a Flat Surface

Here we consider the two-dimensional planar case, and study the effect of small

perturbations of the free surface. (Also, from this point onwards, only 2D films

will be considered.) Equation (2.34) reduces to

∂h

∂t
+

∂

∂x

[
h3
(
∂3h

∂x3
+K F (h)

∂h

∂x
−Dc

∂h

∂x
+Ds

)]
= 0. (2.40)

Setting h = h0 + ξ where ξ � 1, we have

ξt = −h30ξxxxx −Kh30F (h0)ξxx +Dch
3
0ξxx − 3Dsh

2
0ξx. (2.41)

Assuming further that ξ = exp(i(kx− ωt)) with ω = ωr + iωi, we find

ωr = 3Dsh
2
ok, ωi = −h30(k4 + (Dc −KF (h0))k

2). (2.42)

These two expressions tell us that the regime of instability is determined by the sign

of (Dc −KF (h0)). As an example, for h0 � h∗, we have F (h0) ≈ 2/h30. Therefore, a

flat film of thickness h0 is unstable if Dc < 2K/h30. On the other hand, the precursor

film, h0 = h∗, is unstable if Dc < −K/h3∗.

2.4.2.1 Absolute and Convective Stability Analysis. For an unstable film,

Dc−KF (h0) < 0, we can perform the absolute and convective stability analysis. The

change of variables

η =
√
−Dc +KF (h0)

(
x− 3Ds h

2
0 t
)
, τ = h30 (−Dc +KF (h0))

2 t

in Equation (2.41) leads to

ξτ + ξηηηη + ξηη = 0.
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The front velocities (velocity of the boundary of local disturbance, as mentioned in

Section 2.2.4.2) of this equation have been determined by Chang et al. [15] to be

±1.62. Therefore, the front velocities of perturbed partially wetting films, governed

by Equation (2.41), are

3Ds h
2
0 ± 1.62h30 (−Dc +K F (h0))

3/2. (2.43)

Finally, if 3Ds h
2
0 − 1.62h30 (−Dc + K F (h0))

3/2 ≤ 0, the range of influence of any

perturbation will eventually cover the whole film, and the film exhibits absolute

instability.

2.4.3 Thin Films on a Horizontal Surface

2.4.3.1 Infinite Film. For films on a horizontal surface, α = 0, we have Ds = 0

and Dc = (xc/a)
2. The criterion for a flat film of thickness h = h0 to be unstable is

that (xc
a

)2
< K

2h0 − 3h∗
h40

. (2.44)

So very thin and very thick films are stable. In particular, films with thickness

h0 ≤ 3h∗/2 are always stable. On the other hand, there exists a range of thicknesses

where instabilities are possible. Figure 2.25 shows the stability diagram for film

thickness versus contact angle. For a completely wetting fluid, films of infinite widths

are stable for any thickness. However, for a partially wetting film, there exists a range

of unstable film thicknesses.

2.4.3.2 Finite Film. Figure 2.26 shows the evolution of a finite 2D film

on a horizontal surface. As discussed in [27], there are two types of dewetting

mechanisms in the linearly unstable regime: surface instability dominated [Figure 2.26

(a)] and nucleation instability dominated [Figure 2.26 (b)]. In general, thick
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Figure 2.25 Stability diagram for an infinite film at horizontal surface, α = 0. The
parameters are chosen as xc/a = 0.1 and h∗ = 0.001. Note also that the precursor
film is always stable.

films experience nucleation dewetting while thin films experience spinodal dewetting

(surface instability dominated).

2.4.4 Falling Film with a Front

In this section, we consider a film of partially wetting fluid flowing down an inclined

plane enclosing an angle α with the horizontal, as a natural extension to those

discussed in Section 2.2. We first consider the constant volume films in Section 2.4.4.1.

We further consider the films with constant flux configuration in Section 2.4.4.2.

2.4.4.1 Constant Volume. We consider the evolution of films of finite width

on an inclined plane. Figure 2.27 shows the evolution of a finite film on a vertical

surface, α = 90◦. The parameters are chosen to be the same as in Figure 2.26 (b)

except for the inclination angle. We see that in this example the time scale for

the film to break up is faster than the time scale for the film to move downward

(positive x direction). Therefore, the number of droplets observed after the process

of breaking up is the same as for the horizontal surface (vis. Figure 2.26 (b)). The
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Figure 2.26 Numerical simulations of dewetting finite films on a horizontal surface.
Dashed line shows the initial condition and the solid line shows the film thickness at
t = 10. Parameters are chosen as: K = 0.1, h∗ = 0.01, Dc = 0.01 and Ds = 0. The
most unstable wavelength corresponding to the film h0 = 0.05 is 0.27, while the most
unstable wavelength is 0.68 for h0 = 0.1.

other observation is that a drop with larger volume moves faster. Once a drop catches

another one they merge, forming a bigger drop. Finally, by time t = 30 all drops have

merged into one, which moves forward with a constant speed.

One should note that the instabilities considered here are different from the

“pearling” instabilities observed in the tail of a sliding droplet [53], where the trailing

edge of the droplet could be a rounded, smooth contact line, a corner, or a cusped

tail that emits smaller drops. Such phenomena are apparently three-dimensional and

will be explored in the future.

2.4.4.2 Constant Flux. Here we consider a film flowing down an inclined

surface with constant flux at the inlet, x = 0. The boundary condition is imposed by

specifying

h(0)3Ds = 1, hxxx(0) +KF (h(0))hx(0)−Dchx(0) = 0. (2.45)
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(b) t = 10 (dashed); t = 30 (solid)

Figure 2.27 Numerical simulations of falling finite films. Parameters are chosen
as: K = 0.1, h∗ = 0.01, Dc = 0 and Ds = 1.

Based on such settings, the film thickness at the inlet is not the same for simulations

with different substrate inclination angle, α. It changes with respect to the inclination

angle to ensure a constant flux. At the outlet, we assume that the film thickness is

equal to the precursor, so that

h(L, t) = h∗, hx(L, t) = 0, (2.46)

where L is the domain size.

2.4.4.2.1 Traveling Wave Solution. Setting s = x − Ut in Equation (2.40),

a traveling wave H(s) = h(x, s) must satisfy

−UH + [H3(H ′′′ +KFH ′ −DcH
′ +Ds)] = c.

Imposing the boundary conditions at infinity asH(x = −∞) = h0 and H(x = ∞) = b

we obtain c = −Ds(h
2
0 b+ h0 b

2) and U = Ds(h
2
0 + h0 b+ b2) ≈ (Ds)

1/3.
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According to the above analysis and based on the discussion in Section 2.2.4.2,

the contact line may influence the film behind it if Dc −KF (h0) < 0 and if

2Ds h
2
0 < 1.62h30(−Dc +KF (h0))

3/2.

2.4.4.2.2 Stability Diagram. Figure 2.28 shows the stability diagram for a

film of partially wetting fluid flowing down an inclined plane, based on the results

in Section 2.4.2 and in Section 2.4.4.2.1. Note that the line K = 0 corresponds to

the completely wetting fluid. The region between the curve K = 0 and the red solid

curve is the linearly stable regime (Dc −KF (h0) > 0 ). The region between the red

solid curve and the green dashed curve (for 0 ≤ α ≤ 90◦) and the region between the

curve K = 0 and the green dashed curve (for 90◦ < α ≤ 180◦) are the nonlinearly

stable regime. In this regime, the contact line is not able to influence the film behind

it. The profile of the film will either be a traveling wave solution or take the form

of a train of periodic droplets. For the region between the green dashed curve and

dotted blue curve is the convective instability regime. The traveling wave will not

exist in this regime. Finally, the region outside the dotted blue curve is the absolute

instability regime. Any kind of local disturbance will grow and expand to cover the

whole film.

As we can see in Figure 2.28, the curves change dramatically when the

inclination angle approaches horizontal (0◦ or 180◦). In Figure 2.29, we have shown

the zoom in of these two regions (0◦ < θ < 1◦ and 179◦ < θ < 180◦). For a partially

wetting fluid (fixed contact angle θ), a flat film becomes more stable as the inclination

angle α approaches 0◦; while as α→ 180◦, the film becomes more unstable.

Figure 2.30 shows the evolution of vertically falling films with different contact

angles. Note that both cases lie in the nonlinearly stable regime, we do not expect

any surface waves to appear. For small contact angle, K = 0.3, we observe a stable

traveling wave solution. In addition, a dewetting process takes place during the early
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Figure 2.28 Stability diagram for a partially wetting fluid flowing down a possibly
inverted incline. Here, h∗ = 0.001. Parameter K, defined by Equation 2.38, reflects
the influence of the contact angle; α is the inclination angle.

stage of evolution. The contact line is initially placed at x = 50 and at first moves

backward (dewetting) until t = 3. Only then does it advance, and a traveling wave

solution is formed.

For larger contact angle (K = 0.5), in addition to dewetting, we observe film

breakup, illustrated in Figure 2.30 (b). At t = 11 the film breaks up into two parts

Figure 2.29 Zoom-in version of Figure 2.28.
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behind the capillary ridge. The detached portion at the front moves forward as a

single droplet, while the portion connected to the main film dewets again.
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(a) K = 0.3
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(b) K = 0.5

Figure 2.30 Evolution of a partially wetting fluid with constant flux boundary
condition. The initial condition are the same for both cases, shown as a dashed line
in (a). For K = 0.3, the dotted line corresponds to t = 3 and solid line is t = 30. For
K = 0.5, the dotted line corresponds to t = 11 and solid line is t = 12. Parameters
are chosen as: h∗ = 0.01, Dc = 0, Ds = 1.

We have found in simulations that, for sinα = O(1), the breakup of a film

occurs in the nonlinearly stable regime (between the red solid curve and the green

dashed curve in Figure 2.28). As a result, we do not observe surface instabilities since

there is no flat film after the film breaks up. On the other hand, this mechanism of

breakup is of interest and will require further investigation.



CHAPTER 3

SPREADING NEMATIC LIQUID CRYSTAL DROPLETS

3.1 Introduction

The coating of a thin film of nematic liquid crystal (NLC) onto a substrate is

one stage in the manufacture of liquid crystal display devices. For example, a

recent experimental study [10] on coating/falling flows in the nematic phase was

motivated by the search for improved manufacturing techniques for NLC microdisplay

components. We refer readers to [52], which discusses many intriguing features

of liquid crystals, and to [13, 24] for more in-depth reviews of liquid crystal

phenomenology.

Coating may be unstable: In a series of beautiful and surprising experiments

in [54], Poulard & Cazabat observed remarkable spontaneous instabilities in droplets

of nematic liquid crystal (5CB, pentyl-cyanobiphenyl) spreading on hydrophilic silicon

substrates under conditions of high relative humidity. The authors found that

the drops could either remain stable without spreading [Figure 3.1 (a)], spread

stably [Figure 3.1 (b)], or spread while destabilizing [Figure 3.1 (c)-(e)]. The

major factors influencing the behavior appear to be the relative humidity (RH) at

which the experiment is carried out, and the droplet size: qualitatively speaking,

at low RH (< 40%) no spreading is observed [Figure 3.1 (a)]; at intermediate RH

(40% < RH < 60%) stable spreading is seen [Figure 3.1 (b)]; for 60% < RH < 80%

instabilities develop at the moving contact line, (and in the free upper surface of the

droplet) [Figure 3.1 (c)]; and for RH > 80% a second (longer wavelength) instability

is manifested [Figure 3.1 (d)]. In general, small droplets are reported to be stable

however, even at high RH; while larger droplets can be unstable as observed above.

Curiously, all contact line instabilities are observed to fade away at very large times,

59
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as spreading ceases. In addition, defects (discontinuities of the director field, the unit

vector describing the local average direction of the molecules of the NLC) appear

always to accompany instabilities, but at this stage their role in the instability

development is unclear: whether defects induce the instabilities, are induced by them,

or some other explanation altogether, is still an open question.

As is apparent, despite the simplicity of the experimental setup, the observed

behavior is remarkably complex, and our challenge is to find a minimal plausible

model capable of exhibiting such behavior in different parameter regimes.

We follow [6, 20] to derive a simple model describing the free surface evolution of

a thin film of NLC on a rigid substrate. The derivation is based on standard long wave

theory. The improvements in the model here permit fully nonlinear time-dependent

simulations. In particular, our model enables us to simulate instabilities that occur

at the contact line. These simulations are compared with experimental results of

Poulard & Cazabat [54]. We have found qualitative agreement and believe that this

model is a good starting point for a description of spreading NLC droplets.

3.2 Model Derivation

The main dependent variables governing the dynamics of a liquid crystal in the

nematic phase are the velocity field v̄ = (ū, v̄, w̄), and director field n = (n1, n2, n3),

the unit vector describing the orientation of the anisotropic axis in the liquid crystal

(an idealized representation of the local preferred average direction of the rodlike

liquid crystal molecules). The director is a function of space and time, which is

determined by minimizing a suitably-defined free energy W̄ within the NLC, with

coupling to the local flow-field. Molecules like to align locally, and this preference is

modeled by an elastic energy, which is minimized subject to boundary conditions. In

general, a bounding surface is associated with a given preferred direction for n; this

preference is known as surface anchoring, and is modeled by an appropriate choice of
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Figure 3.1 Experimental photos reproduced from Poulard & Cazabat [54]. Full
details are given in [54], but in summary, (a) shows a stable, non-spreading droplet
of 5CB at 20% relative humidity (RH); (b) shows a stable spreading droplet at 50%
RH; (c) shows a spreading unstable droplet at 80% RH, with corrugated free surface
and fingering at the apparent contact line; and (d) shows another unstable spreading
droplet at yet higher RH 90%. In (d) a second, longer-wavelength instability appears
alongside the first, and in (e) only this second instability is present.
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surface energy. Anchoring can be tuned by appropriate treatment of a surface and

may be either weak or strong.

3.2.1 Leslie-Ericksen Equations

The flow of nematic liquid crystal is described by the Leslie-Ericksen equations [39].

Neglecting inertia effects, the flow is governed by

λni −
∂W̄

∂ni

+

(
∂W̄

∂ni,j

)
,j

+ G̃i = 0, (3.1)

−Π,i + G̃knk,i + t̃ij,j = 0, (3.2)

∂v̄i
∂x̄i

= 0. (3.3)

representing energy, momentum and mass conservation, respectively. Here, λ is a

Lagrange multiplier ensuring that the director n is a unit vector; W̄ is the bulk

elastic (Frank) energy and an overdot denotes differentiation with respect to time t.

The quantities W̄ , G̃ and Π are defined by

2W̄ = K
(
(∇̄ · n)2 + |∇̄ ∧ n|2

)
; (3.4)

G̃i = −γ1Ni − γ2 ēiknk, ēij =
1

2

(
∂v̄i
∂x̄j

+
∂v̄j
∂x̄i

)
; (3.5)

Ni = −ṅi − ω̄ik nk, ω̄ij =
1

2

(
∂v̄i
∂x̄j

− ∂v̄j
∂x̄i

)
; (3.6)

Π = p̄+ W̄ + ψg, (3.7)

where K is an elastic constant, γ1 and γ2 are constant viscosities; p̄ is the pressure

and ψg is the gravitational potential. Finally, t̃ij is the extrastress tensor, given by

t̃ij = α1nknpēkpninj + α2Ninj + α3Njni + α4ēij + α5ēiknknj + α6ējknkni, (3.8)
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where αi are constant viscosities (related to γi in Equation (3.5) by γ1 = α3 − α2,

γ2 = α6 − α5, and to each other by the Onsager relation, α2 + α3 = α6 − α5), and

µ := α4/2 corresponds to the usual viscosity in the standard Newtonian case, when

all other αi are zero.

3.2.2 Nondimensionalisation

We make the usual lubrication scalings to nondimensionalize the governing equations:

(x̄, ȳ, z̄) = (Lx,Ly, δLz), (ū, v̄, w̄) = (Uu, Uv, δUw), (3.9)

t̄ =
L

U
t, p̄ =

µU

δ2L
p, W̄ =

K

δ2L2
, (3.10)

where L is the lengthscale of typical variations in the x and y directions, U is the

typical flow speed; δ = h0/L � 1 is the aspect ratio of the film based on a typical

film height h0, and µ = α4/2 was chosen as the representative viscosity scaling in the

pressure, since this corresponds to the usual viscosity in the isotropic case.

3.2.3 Energy Equation

It is found in [6, 20] that by choosing the time scale appropriately, the coupling

effect, G̃ in Equation (3.1)-(3.2), between the director field and velocity field can

be neglected. The energy equation simply reduces to the appropriate static Euler-

Lagrange equations for minimizing the free energy of the film subject to the constraint

n·n = 1. Imposing the constraint directly, we have a director field that is an arbitrary

vector on the unit sphere,

n = (sin θ cosφ, sin θ sinφ, cos θ) (3.11)

for some functions θ(x, y, z, t) and φ(x, y, z, t), where φ is the azimuthal angle of the

direction n about the axis θ = 0.
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The leading order elastic energy in the bulk, under lubrication scalings, is given

by

2W = θ2z + φ2
z sin

2 θ +O(δ). (3.12)

The surface energy at the free surface z = h(x, y, t) is denoted by G = G(θ̂) where θ̂

is the director orientation at the free surface. It is related to the director orientation

θ by the relation

θ̂ = θ(z = h(x, y, t)). (3.13)

The energy is a minimum when the director aligns in the preferred orientation θ̂ = 0

(homeotropic surface anchoring). On the other hand, at the substrate we assume the

anchoring is strong and the director always stay planar. That is, θ(z = 0) = π/2.

We carry out the free energy minimization directly using a variational principle.

The free energy J is made up of contributions from the bulk, and from surface effects.

We write

J =

∫ h

0

∫
Ω(t)

W dV dz +

∫
Ω(t)

G dV, (3.14)

where Ω(t) is the domain occupied by the liquid crystal sample in the x-y plane.

We then consider the variation induced in the energy J by small variations in

the fields θ and φ. The first variation must vanish at a minimum and the second

variation tells us whether or not we have an energy minimum. The Euler-Lagrange

problem of minimizing J (subject to appropriate boundary conditions) is then given

by

θzz =
φ2
z

2
sin 2θ in Ω, (3.15)

(φz sin
2 θ)z = 0 in Ω, (3.16)
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with boundary conditions coming from the first variation: φz sin
2 θ = 0 on z = h.

Therefore, we have φz ≡ 0, ie., φ = φ(x, y, t). We will assume strong anchoring on φ

at the substrate z = 0 to close the problem. For θ, we then have θzz = 0, which leads

to

θ = a(x, y, t) z +
π

2
. (3.17)

The function a has to be determined by the boundary condition of first variation,

Gθ̂ + θz(z = h) = 0. (3.18)

It is worth noting that the most commonly-used weak anchoring model, given

by the Rapini-Papoular surface energy 1 cannot be applicable in the vicinity of a

contact line [21]. (Such an approach introduces an extra “nematic” term into the

standard thin film equation for h = O(1) and is not well-defined for h� 1.) Instead,

we propose that the change in the director angle across the fluid layer, ah, approaches

0 as the film thickness h→ 0. We introduce an ad hoc anchoring condition based on

specifying this change in director angle by the formula,

ah = Θm(h), (3.19)

where m(h) is a monotone increasing function of h with m(0) = 0 and m(∞) = 1, Θ

is the difference in the preferred angle between the free surface and solid substrate.

With our assumption of homeotropic alignment at the free surface, Θ = −π/2.

The physical rationale behind the ad hoc anchoring is that, when the film is

relatively thick, (h� 1, so that m(h) ≈ 1) it is easy for the director to adjust to the

preferred angles at each interface by bending across the film. However, as the film

gets thin, and in particular near contact lines, there is a very large energy penalty

1G = A sin2(θ − θ0) where A is the anchoring strength and θ0 is the preferred angle.
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to pay for bending between two fixed angles across a very short distance h. Thus, it

should be such that ah ≈ 0 for very thin films and ah ≈ Θ for thick films.

There are many possible forms we could choose for m(h) that satisfy our basic

requirement; we take

m(h) =
h3/2

h3/2 + β3/2
, (3.20)

where β is a constant. It is easy to verify that m(0) = 0 and m(∞) = 1. However,

Equation (3.20) is chosen particularly such that m ≈ h3/2 for h � 1. Under such

conditions we find that that a very thin film remains isotropic while thick films are

nematic [29]. This relation can be clearly seen later in the full evolution equation.

One should note that even though we do not specify the surface energy G in the

derivation of director orientation θ, it is implicitly imposed in our anchoring condition,

Equation (3.20). In fact, one can recover the appropriate surface energy easily. Based

on Equation (3.18) (recall that θ̂ is simply the director angle θ evaluated on the free

surface, given by Equation 3.13), we have

−
(
−π
2

m(h)

h

)
= −a =

dG
dθ̂

=
dG
dh

dh

dθ̂
=

dG
dh

−π
2
m′(h)

, (3.21)

so that

∂G
∂h

= −π
2

4

m(h)m′(h)

h
. (3.22)

Integration of this equation tells us how the surface energy G varies, on the free

surface, as the free surface height changes.

Similarly, we have

∂G
∂θ̂

=
1

β

((π
2
− θ̂
)
θ̂2
) 1

3
. (3.23)

We can easily see that there is only one minimum of the surface energy, occurring at

θ̂ = 0. The energy increases as the director angle goes from 0 to π/2 and reaches its

maximum at θ̂ = π/2. One can think of the quantity 1/β as the surface anchoring
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strength. For weak anchoring, β � 1 and G is approximately a constant. That is,

there is no preferred angle at the surface. For strong anchoring, β � 1, it is more

energetically favorable to stay at the minimal energy, θ̂ = 0.

3.2.4 Momentum Equation

For the momentum equation, Equation (3.2), the balance of dominant terms are

∂π

∂x
∼ ∂t̃13

∂z
,

∂π

∂y
∼ ∂t̃23

∂z
.

On the other hand, based on lubrication scalings and to leading order, we have

t̃13 = (A cos2 φ+B)uz + C vz, t̃23 = C uz + (A sin2 φ+B) vz, (3.24)

where A = 2α1 sin
2 θ cos2 θ+(α3+α6) sin

2 θ, B = 1+(α5−α2) cos
2 θ, C = A sinφ cosφ,

and the αi have been normalized by α4/2. As a result, the leading order equations

are

∂p

∂x
+N ∂W

∂x
=

∂

∂z

{
(A cos2 φ+B)uz + C vz

}
, (3.25)

∂p

∂y
+N ∂W

∂y
=

∂

∂z

{
C uz + (A sin2 φ+B) vz

}
, (3.26)

∂p

∂z
= −B, (3.27)

where B = δ3ρgL2/µU is the Bond number and N = K/µUL is the inverse Ericksen

number.

As in Newtonian flows, we assume that the normal component of the stress

vector at the free surface balances surface tension times curvature, and that the

in-plane component of the stress vector is balanced by surface tension (surface energy)

gradients in the plane of the surface. With the stress tensor tij = −p δij + t̃ij this
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yields the leading order boundary conditions:

p = −C∇2h, on z = h(x, y, t), (3.28)

(A cos2 φ+B)uz + C vz = NGx, on z = h(x, y, t), (3.29)

C uz + (A sin2 φ+B) vz = NGy, on z = h(x, y, t). (3.30)

We can then solve Equations (3.27)-(3.28) for p to obtain

p = B(h− z)− C∇2h.

Substituting p in Equations (3.25)-(3.26), we can solve for uz and vz using the

boundary conditions, Equations (3.29)-(3.30), derived above:

Duz = (A sin2 φ+B) ((px +NWx)(z − h) +NGx)

−C ((py +NWy)(z − h) +NGy),

D vz = (A cos2 φ+B) ((py +NWy)(z − h) +NGy)

−C ((px +NWx)(z − h) +NGx),

where D = AB +B2. Finally, using conservation of flux together with the relations∫ h

0

u dz =

∫ h

0

uz(h− z) dz,

∫ h

0

v dz =

∫ h

0

vz(h− z) dz,

we obtain a partial differential equation governing the evolution of the film height:

ht +
∂

∂x

[(
C(∇2h)x − Bhx −NWx

)
(sin2 φf1 + f3) +NGx(sin

2 φf2 + f4)

−
(
C(∇2h)y − Bhy −NWy

)
f5 −NGyf6

]
+

∂

∂y

[(
C(∇2h)y − Bhy −NWy

)
(cos2 φf1 + f3) +NGy(cos

2 φf2 + f4)

−
(
C(∇2h)x − Bhx −NWx

)
f5 −NGxf6

]
= 0, (3.31)
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where

f1 =

∫ h

0

A(h− z)2

B(A+B)
dz, f2 =

∫ h

0

A(h− z)

B(A+B)
dz, f3 =

∫ h

0

(h− z)2

A+B
dz,

f4 =

∫ h

0

h− z

A+B
dz, f5 = sinφ cosφf1, f6 = sinφ cosφf2.

To further simplify the model, we linearize the the nonlinear terms (A ≈ α3+α6

and B ≈ 1) to have

f1 = −2ν h3, f2 = −3ν h2, f3 = (λ+ ν)h3, f4 =
3(λ+ ν)

2
h2, f5 = −ν sin 2φh3,

f6 = −3ν sin 2φ

2
h2, ν = − α3 + α6

6(1 + α3 + α6)
, λ =

2 + α3 + α6

6(1 + α3 + α6)
.

With these approximated quantities, the equation can be further rewritten in a

compact form as

ht +∇ ·
[
h3∇̃

(
C∇2h− Bh−NW

)
+

3

2
h2∇̃ (NG)

]
= 0, (3.32)

where the operator ∇̃ is defined as

∇̃ =

λI + ν

 cos 2φ sin 2φ

sin 2φ − cos 2φ


 · ∇. (3.33)

In Section 3.2.3, we derived the bulk elastic energy, W , and surface energy, G,

as a function of film thickness h based on our chosen anchoring condition. This leads

to

ht +∇ ·
[
h3∇̃

(
C∇2h− Bh

)
+N

(
m2 − 5

2
hmm′

)
∇̃h
]
= 0. (3.34)

Note that we have rescaled N again for simplification. (N in Equation 3.34 equals

NΘ2 in Equation 3.32.)



70

As mentioned before, for very thin films, h � 1, the function m(h) in our

anchoring condition may be written as m(h) = (h/β)3/2. Therefore, for small h we

have the evolution equation as

ht +∇ ·
[
h3∇̃

(
C∇2h−

(
B +

11

4β3
N
)
h

)]
= 0. (3.35)

That is, the extra “nematic” terms reduce to the same form as the gravity term. So

the model admits solutions that are regular at a contact line; such drops would simply

be expected to spread faster than the Newtonian equivalents. On the other hand,

the anchoring condition at the substrate, φ, is still effective. The film experiences

different forces of director orientation at the substrate. We will discuss this influence

in the following sections.

3.2.5 NLC Evolution Equation

Our final model consists of the PDE, Equation (3.34), with m(h) given by

Equation (3.20) and ∇̃ given by Equation (3.33). We have seven dimensionless

parameters: λ, ν, C, B, N , β and h0. The solution space is potentially very large. In

the following analysis and simulations, we assume a balance between surface tension

and gravity, setting C = B = 1. We also assume that λ = 1 and ν = 2/3, which

correspond to α3 + α6 = −4/5.

3.3 Influence of Surface Anchoring

In this section, we analyze the influence of surface anchoring on the flow. We assume

ν = 0 and only consider the two-dimensional case (y = 0). The evolution equation

can then be written as

ht +

[
h3 (hxxx − hx) +N

(
m2 − 5

2
hmm′

)
hx

]
x

= 0. (3.36)
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3.3.1 Linear Stability Analysis

We begin by considering linear stability analysis of a uniform film, h(x, t) = h0.

Assuming h = h0 + ξ, where |ξ| � 1, we find

ξt + h30 [ξxxxx − ξxx +NM(h0)ξxx] = 0, M(h0) =
h3/2 − 11

4
β3/2

(h3/2 + β3/2)
3 . (3.37)

By putting ξ ∼ exp (ikx+ ωt), we obtain the dispersion relation

ω = −h30
[
k4 + (1−NM(h0))k

2
]
. (3.38)

As a result, we have instability of the flat film to sufficiently long-wavelength

perturbations ifNM(h0) > 1. When this is the case, perturbations with wavenumbers

k ∈ (0, kc) are unstable, where kc =
√

NM(h0)− 1 is the critical wavenumber, and

the fastest-growing wavenumber is km =
√
(NM(h0)− 1)/2, with wavelength

λm =
2π

km
=

2π√
(NM(h0)− 1)/2

, (3.39)

and growth rate ωm = h30(NM(h0)− 1)2/4.

3.3.2 Simulation of Spreading Droplets

Although our stability analysis is valid only for a flat film, and thus is not strictly

applicable to a spreading drop of the kind in the experiments, we expect to be able

to extract qualitative predictions for spreading drop simulations. Our numerical

experiments bear out this expectation: for all simulations we have carried out

(including many more than are shown here) we find that flat film linear stability

analysis is an excellent indicator of stability properties of the droplets considered.

For a spreading droplet there is of course no precise definition of h0, the film height

in the linear stability analysis, but in all our simulations we consider a 2D droplet

whose initial shape is close to a rectangle (though with smoothed corners), of variable

height h0.
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To illustrate the drop evolution for different values of the parameters we refer

to our stability diagrams for N = 10, Figure 3.2. Flat films are unstable for small β,

which corresponds to stronger anchoring at the free surface. There exists a critical

value, βc = 0.22N 1/3. For β larger than this critical value, there is no instability for

any film thickness. On the other hand, for β smaller than the critical value, there

exists a range of unstable films. In general, very thin films and thick films are stable.

0 0.2 0.4 0.6 0.80

0.5

1

1.5

2

2.5

h0

β

unstable

stable

Figure 3.2 Stability diagram of flat NLC film for N = 10.

We also carry out simulations of the PDE (3.36) showing drop evolutions with

N = 10. Numerical simulations are performed using a finite difference method, as

discussed in Appendix B with precursor thickness b = 0.01. Figures 3.3 and 3.4 show

stable spreading droplets, while Figure 3.5 shows an unstable spreading droplet.

In Figure 3.3, we see perhaps the simplest case of a stable spreading drop, with

behavior similar to the Newtonian case. Also note that the drop spreads faster than

its Newtonian equivalent (N = 0), as predicted by Equation (3.35). Figure 3.4 shows

another spreading drop, with the thickness high enough to be in the stable region. In

this case, no instability is observed during drop spreading. In addition, there appears
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Figure 3.3 Evolution of a stably spreading NLC droplet: β = 0.6, h0 = 1 and
N = 10.

to be a well-defined thickness, such that the portion of the drop below this thickness

spreads, while the upper part of the drop essentially stands still.

Figure 3.5 shows the evolution when (h0, β) fall into the unstable region. In the

early stages of evolution, the initial single drop evolves into a drop with 10 humps.

As the drop spreads, the humps merge, and eventually disappear.

3.3.3 Defect Modeling of Spreading 2D Droplets

As mentioned in the paper of Poulard & Cazabat [54], defects (discontinuities of the

director field) appear to always accompany instabilities. But at this stage their role

in the instability development is unclear: whether defects induce the instabilities, are

induced by them, or some other explanation altogether, is still an open question. In

this section, we extend the 2D model, Equation (3.36), to investigate the influence of

defects. Our approach is to derive a ‘smoothed’ model of a defect in the continuum

model, in which the director field varies continuously, but abruptly, in the region of

the supposed defect.
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Figure 3.4 Evolution of a stably spreading NLC droplet: β = 0.4, h0 = 2 and
N = 10.

We model a simple 2D defect by assuming that Θ = Θ(x) (the difference

in the preferred angle between free surface and solid substrate) has (smoothed)

discontinuities at specific locations; instead of, only “pinned” defects that do not

move within the layer are considered here. Figure 3.6 shows two possible defect

configurations in two-dimensions: a point defect, where the director is discontinuous

at a single point, and a line defect, where the discontinuity is along a line. Reverting

to dimensional coordinates (x̄, z̄) momentarily it is clear that, for an idealized 2D line

defect along x̄ = 0, the director angle θ is linear in z̄ away from the actual discontinuity

(the sign of the linear multiplier of z̄ changes as we cross the discontinuity). An

idealized 2D point defect at (0, 0), in contrast, is described locally by θ ≈ − tan−1(x̄/z̄)

(recall that θ is the angle the director makes with the vertical, and by convention is

negative when x̄ > 0). At fixed distance x̄ = X̄, and for z̄ � |X̄|, this is approximated

by θ ≈ ∓π/2 + z̄X̄. For films thinner than the defect outer core size [60], this linear

approximation (where the sign of the linear multiplier again changes as the defect

is crossed and X̄ changes sign) is valid everywhere outside the core; therefore, for

sufficiently thin films, 2D point and line defects are asymptotically equivalent since
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Figure 3.5 Evolution of an unstably spreading NLC droplet: β = 0.2, h0 = 1 and
N = 10.

both have the same linear dependence of director angle on the vertical coordinate. In

the spirit of using a 2D model to qualitatively represent 3D reality, we suggest that

these idealizations can give insight into the behavior of 3D line and point defects [47].

Since defects are often associated with substrate inhomogeneities, we assume

they are fixed and pre-existing. To model the change of director orientation across a

defect, we assume that the difference Θ between the preferred normalized anchoring
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(a) Point defect, (b) line defect, in 2D drop.

Figure 3.6 Schematic of the two defect types considered. The solid (blue) top curve
indicates the free surface of a droplet, the solid (black) bottom curve indicates the
solid substrate, short (red) lines represent the director field orientation, and the black
point-dashed line indicates the defect location.

angles at the two interfaces changes smoothly from −1 to +1 via the prescription

Θ(x) = tanh

(
x− x0
w

)
, (3.40)

where x0 is the position and w is the effective dimensionless width of the defect

(corresponding to a dimensional defect core width wL [60]). To the left of the defect,

where x0−x� w, the director turns through a normalized angle (−1) across the film,

while to the right of the defect where x−x0 � w it turns through a normalized angle

(+1). In our simulations, we choose w = 0.1; the above defect formulation will be

valid within the lubrication approximation provided δ � w. Multiple defects, which

are often observed, can be modeled by replacing Equation (3.40) by a superposition

of hyperbolic tangents. Finally, we have the PDE governing the flow of a thin film

containing a single defect fixed at x = x0 as

∂h

∂t
+

∂

∂x

[
h3(hxxx − hx) +NΘ2

(
m2 − 5

2
hmm′

)
hx −NΘΘxm

2h

]
= 0, (3.41)

with m(h) and Θ(x) given by Equations (3.20) and (3.40), respectively.
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Figure 3.7 shows a stable spreading scenario (N = 10, β = 0.6 and h0 = 1).

Figures 3.7(a) and (c) show the chosen initial condition (smoothed rectangle) and

numerical results, respectively, at t = 20 with a defect at x0 = 3. Consistent with LSA

in Section 3.3.1, there is no free surface instability; however, in Figure 3.7(b) a small

crest appears at the defect location [24]. This crest (the free surface gradient changes

smoothly but abruptly; over the lengthscale w � δ) appears to be a robust feature of

our simulations with defects. Note the change in anchoring function Θ(x)m(h) across

a defect.
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Figure 3.7 Stably spreading droplet with a defect at x0 = 3: β = 0.6, h0 = 1 and
N = 10, as in Figure 3.3. The solid (black) curves show the droplet profile h and the
dashed (red) curves show the corresponding anchoring function Θ(x)m(h).

We have carried out other simulations with different parameter values and with

different numbers of imposed defects. We have found that in all our simulations

defects do not appear to alter the stability of the bulk droplet. Stability of an initially

rectangular droplet containing one or more defects is still very well predicted by the

linear analysis of the flat film of the same height. For a stable spreading droplet,

a defect leads to a crest in the profile at large times, while for the unstable case,

the defect gives rise to a pinned hump. Furthermore, in either case, defects do not
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influence spreading versus nonspreading behavior. They have only a local effect;

global effects, such as surface anchoring strength over the whole droplet, are more

likely to affect the spreading behavior.

3.4 Influence of Prescribed Director Orientation at the Substrate

3.4.1 Uni-Directional Director Field

To analyze the influence of spatially-varying substrate anchoring φ(x, y) on droplet

spreading, we firstly compare the governing equations for two different uni-directional

substrate anchoring patterns. Assuming φ = 0 and y-independent (the droplet

spreads in the x direction and the director orientation at the substrate is parallel

to the fluid flow), we have

ht +
5

3
∂x

[
h3 (hxxx − hx) +N

(
m2 − 5

2
hmm′

)
hx

]
= 0. (3.42)

If we assume φ = π/2 and y-independent (the director orientation at the substrate is

perpendicular to the fluid flow), the equation becomes

ht +
1

3
∂x

[
h3 (hxxx − hx) +N

(
m2 − 5

2
hmm′

)
hx

]
= 0. (3.43)

These two equations are identical once the time is rescaled by a constant. That is,

the only influence of the substrate pattern is on the time scale. NLC flows faster

if the substrate anchoring pattern is parallel to the flow direction, while it is slower

otherwise.

3.4.2 Weak Surface Anchoring

To further identify the effect of the substrate anchoring pattern, φ(x, y), we assume

that the surface anchoring is so weak that the director orientations are mainly

determined by the boundary conditions at the substrate, θ = π/2. We can then
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set N = 0 in our model. The resulting equation is

ht +∇ ·

h3

I + 2

3

 cos 2φ sin 2φ

sin 2φ − cos 2φ


 · ∇

 (
∇2h− h

) = 0. (3.44)

As a first step in our investigations, we simulate a spreading droplet where the

anchoring at the substrate appears as stripes. (As illustrated in Figure 3.8, φ = π/2

for x ∈ (4n−1, 4n+1), n = 0, ±1 and ±2, and φ = 0 otherwise.) Figure 3.8 shows the

contact line evolution of such a droplet. The initial contact line position is a straight

line, and the droplet spreads in the +y direction. When the droplet spreads, the

anchoring pattern at the substrate will influence the fluid motion. As we discussed

previously, it moves faster when the fluid motion is in parallel with the anchoring

pattern, and is slower when flow is perpendicular to anchoring. This is verified in

Figure 3.8. The contact line moves faster at x = 0, ±4 and ±8, where the director is

aligned parallel to y. Furthermore, since the contact line moves with different speed

at the substrate, it appears as sawtooth pattern in this example.

We now proceed to analyze the influence of different substrate anchoring

patterns on spreading droplets. In particular, we investigate patterns that represent

idealized defects. In Section 3.3.3, we have presented a simple model to consider the

influence of defects at the free surface, in two space dimensions. We find that a defect

does not alter the stability properties of the film. It only modifies locally the droplet

profile, appearing as a crest at the free surface. Here we consider the influence of

corresponding substrate anchoring patterns that may represent defects. There are

four essential types of point defect [24], characterized by the winding number, m, of

the accompanying director field. These four defects are m = ±1 and m = ±1/2, with

anchoring patterns shown in Figure 3.9 (b) and in Figure 3.10 (a), (b) and (c).
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Figure 3.8 Contact line evolution of a spreading NLC front on the stripe-patterned
substrate. The black dashed lines show the anchoring pattern at the substrate. The
red curves show the contact line position at different times, with time interval dt = 10
between successive curves. The initial position of the contact line is shown as a red
straight line at y ≈ 10.

Figure 3.9 shows the evolution of a droplet on the simplest point defect, m = 1

radially symmetric defect. Due to the symmetry, the droplet spreads uniformly in

the radial direction, and the contact line remains circular for all time.

Figure 3.10 shows the droplet evolutions for the three other different point defect

patterns. Each point defect has its corresponding substrate anchoring pattern. Due to

the nonuniformity of the pattern in the radial direction, the droplet spreads differently.

In general, the spreading behaviors follow the substrate anchoring patterns.

3.5 Implications for the Experiment

The two trends observed by Poulard & Cazabat are that higher humidity correlates

with droplet instability, as does larger droplet size. They also state (See Section IV.1
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(a) (t = 0, contour) (b) m = 1 (anchoring) (c) m = 1 (t = 10, contour)

Figure 3.9 Spreading NLC droplet on radial substrate anchoring. The surface
anchoring is assumed to be weak such that the flow can be described by
Equation (3.44). The initial condition is shown in (a), with substrate anchoring
pattern shown in (b) and the contour plot at t = 10 shown in (c).

in [54]) that at low RH, the drops do not spread macroscopically. These observations

are only qualitative however, and likely the interplay between the individual effects

of droplet size and humidity is complex. We note in addition that although humidity

can affect surface tension (so that in principle the capillary number could change),

we focus here on its effect on β and N . We deal with each of these in turn.

If N is fixed then we hypothesize that β is a decreasing function of humidity:

that is, larger values of β correspond to low humidity, and vice versa. This correlation

would suggest that at low humidity anchoring is weaker (for a given droplet height h,

the value of m(h) decreases as β increases), and that effective anchoring strength

increases with humidity. If this is so then our model supports this qualitative

trend, since in general large values of β give rise numerically to stable drops, while

small values of β (for droplet height h lying in the appropriate range) give rise

to unstable drops. We note also that under this assumption our model leads to

additional predictions, which would be interesting to test with future experiments:

firstly, sufficiently large droplets (h0 above the upper branch of the stability curve
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(a) m = −1 (anchoring) (b) m = 1/2 (anchoring) (c) m = −1/2 (anchoring)

(d) m = −1 (contour) (e) m = 1/2 (contour) (f) m = −1/2 (contour)

Figure 3.10 Spreading NLC droplets on different substrate anchoring patterns.
The surface anchoring is assumed to be weak such that the flow can be described by
Equation (3.44). Panels (a), (b) and (c) show the anchoring pattern at the substrate,
while (d), (e) and (f) show the contour plot of film thickness at t = 10. The initial
conditions are the same for all three simulations and are shown in Figure 3.9 (a).

in Figure 3.2) should again become stable; and secondly, at sufficiently low humidity

(sufficiently large β) droplets of any size should be stable.

Suppose now that β is fixed, while N varies with humidity, via its dependence

on Θ. Humidity is known to affect anchoring angles; the work [5] suggests that Θ, and

hence N , could be an increasing function of humidity. Looking at Equation (3.38),

the general trend for increasing humidity is then correct, since the stability of a film

goes from stable to unstable as N increases.

Temperature is also investigated experimentally. This quantity can, of course,

influence many variables, but Poulard & Cazabat focus chiefly on its effect on the
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elastic constantK, which decreases as temperature increases 2. While the dependence

on temperature is not precisely documented, the observed trend is that increasing

temperature suppresses the instabilities. This general effect is captured by the model,

since as K decreases, N decreases, and the stability of a film goes from unstable to

stable. The data shown in Figure 4 of [22] show that the variation of K can be quite

profound over only a few degrees Kelvin, so that the stability of a film can change

appreciably as temperature is varied.

3.6 Conclusions

We have presented a new model for spreading of a thin film of nematic liquid crystal,

in which the traditional anchoring boundary conditions on the director (either strong

anchoring, or classical weak “Rapini-Papoular” anchoring [56], neither of which are

suitable to describe a very thin spreading film) are replaced by a new condition,

Equation (3.23). This new formulation preserves the property of strong anchoring

when the film is thick, while allowing the director to relax to a state of uniform

alignment when the film is very thin.

We have found two mechanisms leading to an unstable spreading droplet: the

bending forces of the anchoring angle, θ, between the free surface and at the solid

substrate leads to free surface instability, while the anchoring conditions, φ, at the

solid substrate may guide a droplet to spread accordingly.

For the two-dimensional surface instability, simple linear stability analysis

for a flat film appears to serve as a very good indicator of the behavior of more

complicated spreading drops, even providing reasonable estimates of the wavelength

of droplet instabilities well into the nonlinear regime. The basic mechanism driving

the instability is the mismatch in anchoring angles at the rigid substrate and the

2Of course, quantities such as viscosity can also change dramatically with temperature;
but with the Bond and capillary numbers fixed, viscosity does not enter the remaining
parameters. The viscosity would, however, affect the wavenumber of any observed
instability, but this effect is not studied.
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drop’s free surface. This mismatch means that the director has to bend across the

film, and for sufficiently thin films, this requires a large energy penalty, which is

destabilizing.

For three-dimensional spreading drops, we find that the speed of spreading

changes dramatically at different substrate anchoring patterns. A drop spreads faster

when the anchoring at the substrate is in parallel with its flow, while spreading

is slower when flow is perpendicular to the substrate anchoring. For a substrate

with nonuniform anchoring conditions, the contact line behaves nonuniformly, in the

manner expected with the prescribed anchoring patterns.

We also examined the influence of defects on a spreading droplet. Our simple

2D model and simulations suggest that defects will not alter the stability character

of the film. At the free surface, the influence of a defect is only local, including a

crest. On the other hand, our 3D model, which allows us to investigate anchoring

patterns at the substrate that may correspond to a defect, indicates that the contact

line of a spreading droplet can behave quite differently as the substrate anchoring is

varied. However, as discussed in Section 3.3.3, the size of a defect core is typically

much smaller compared to a droplet. The influence of a defect with its corresponding

patterns still requires further studies.

In addition, all the three-dimensional simulations we have shown were done

for the case N = 0, without including the free surface anchoring (thus, the elastic

bending of the NLC across the layer is negligible). To study fully a NLC drop, it is

necessary to consider the case where elasticity and “defects” acting simultaneously.

This will be done in the near future.



CHAPTER 4

CONCLUDING REMARKS AND FUTURE WORK

In this Dissertation, we have studied the instabilities of Newtonian films flowing

down an inverted inclined plane within a framework using the long wave (lubrication)

approximation. Both completely wetting and partially wetting fluids are considered.

We have found that, a contact line, modeled by the commonly used precursor film

model, leads to free surface instabilities without any natural or imposed perturbation.

Complex behavior, due to the coupling of the surface instabilities and the well-known

transverse (fingering) instabilities, was uncovered with different families of waves

evolving in the configurations characterized by different values of the governing

parameter D, measuring the strength of the destabilizing component of gravity. The

observed instabilities are categorized into three types and are further examined using

linear stability analysis together with the absolute and convective instability analysis

of a flat film. We find excellent agreement.

We have also studied the flow of a nematic liquid crystal. A mathematical

model for the evolution of the surface flow of a nematic liquid crystal is derived based

on the long wave approximation. The present model shows satisfactory behavior in

the vicinity of the contact line. Instabilities are also studied. It is found that the

mismatch of the anchoring angle, θ, at the free surface and at the substrate leads

to free surface instabilities, while the anchoring condition at the solid substrate, φ,

affects the speed of spreading.

The results and approaches presented here could serve as a basis for significant

further research. As we pointed out in Section 2.4, breakup of a film plays an

important role for partially wetting fluids. But we so far only considered the LSA

based analysis without investigating when and how the film breaks up. Specifically,

85
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in Figure 2.28 we have shown the stability of a film of partially wetting fluids flowing

down an inclined plane under the influence of a front. There should be another curve

in this figure to indicate whether or not the film will experience breakup. In addition,

we have observed rich dynamics as the inclination angle α approaches 180◦. How

are the instability mechanisms that we have studied for completely wetting fluids

modified in the case of partially wetting fluids requires further investigation.

In the direction of NLC flow, the surface anchoring energy that we used is based

on the regularizing hypothesis that an NLC film approaches the isotropic state as the

film height goes to zero. More experimental support as well as theoretical justification

regarding the form of the surface anchoring energy are definitely needed. Besides,

one should also note that the Leslie-Ericksen equations in the presented format,

Equations (3.1)-(3.3), do not support mathematically a defect. Indeed, discontinuities

of the director field in the vicinity of a defect break down the continuum assumption.

Our approach, in this Dissertation, is to model the influence of a defect in two ways.

One is to consider the influence of rapid variation of the director field across a defect.

We derive a smoothed model in which the director field varies continuously, but

abruptly, in the region of the supposed defect. The other approach is to consider

the influence of substrate anchoring patterns surrounding a defect. Although we

have found expected behavior of NLC flow under these two approaches, a rigorous

theoretical justification is needed.

Further experimental verification of all studied instabilities is also needed. In

spring 2011, undergraduate students at NJIT studied the NLC fluids flow down

an inclined plane. They performed experiments and simulations and had found

interesting results [48]. Particularly, in simulations they observed the contact

line induced waves similar to what we have found in the Newtonian fluids under

destabilizing forces (for example, Figure 2.5). This finding is not surprising as the

films of NLC flow experience destabilizing force from the anchoring, and so the contact



87

line might have a chance to influence the films behind it. We believe that the new

mechanism of contact line instabilities found in our work can be applied to other

scenarios as well, such as under destabilizing electric fields or on a heated plate.

Finally, regarding numerical simulations, all the results we have shown are based

on a method developed in Cartesian geometry. While most of the problems can be

solved in such a geometry, there are some cases where the usage of polar coordinate

is more appropriate. For example, one of the techniques in coating is to place a

blob of liquids in the center of a spinning flat plate such that the blob will spreads

outward and leave a coating that is uniform in thickness, so-called spin coating [62].

Obviously, polar coordinates are the most natural choice for such a geometry. It

would be of interested to extend the ADI type of simulations that we implemented

in the Cartesian case to polar geometry.



APPENDIX A

EVOLUTION OF SMALL PERTURBATIONS

Equation (2.4) is a strongly nonlinear PDE and, to our knowledge, has no analytical

solutions. In this appendix, we present two analytical approaches which consider

evolution of small perturbations from a base state within linear approximation. While

these results are useful for the purpose of verifying numerical results, they also provide

a very useful insight into formation and evolution of various instabilities discussed in

this work.

A.1 Traveling Wave Solution

Setting s = x− Ut in Equation (2.4), a traveling wave H(s) = h(x, t) must satisfy

−UH + [H3(H ′′′ −DH ′ + 1)] = c. (A.1)

Imposing the conditions H → 1 as s → −∞, and H → b as s → ∞, we find

U = 1+ b+ b2, c = −b− b2 [8, 70]. The traveling wave speed, U , is useful for verifying

whether or not the numerical result is indeed a traveling wave.

Figure A.1 shows a typical profile of the traveling wave solution for D = −1. A

capillary ridge forms behind the fluid front, similarly as for the flow down a vertical

or inclined (D > 0) substrate. We also find that there exists a long oscillatory region

behind the capillary ridge. To analyze this ’tail’, we expand Equation (A.1) around

the base state, H ≡ 1, and consider the evolution of a small perturbation of the form

exp(qs), where q = qr + iqi. We find

−8q3r + 2Dqr + 2− b− b2 = 0, (A.2)

q2i +D = 3q2r . (A.3)
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Table A.1 shows the only positive root for qr, for a set of D’s. The positivity of

this root signifies that the amplitude of the tail decays exponentially in the −x

direction, as also suggested by the insets of Figure A.1. Furthermore, as shown

in Table A.1, qr decreases for more negative D’s, meaning that the tail is longer for

these D’s. This table also shows the imaginary part of q; we see an increase of its

magnitude as D becomes more negative, suggesting shorter and shorter wavelengths

in the tail. Tail behavior is very useful for computational reasons. For example,

x0 10 20 30 40 500

1

2
x20 300.99

1

1.01

x18 240.9999

1

1.0001

Figure A.1 Traveling wave solution of D = −1 case at three different scales with
precursor thickness b = 0.01 (solid) and b = 0.1 (dashed). Note that the precursor
thickness only changes amplitude of the traveling wave profile but not the wavelength.
The arrows point to the zoomed-in regions.

to solve Equation (A.1) by a shooting method, one can evaluate suitable shooting

parameters through Equations (A.2,A.3).

Figure A.1 also shows the effect of precursor thickness on traveling wave solution.

It is found that while the precursor thickness changes the height of the capillary ridge,

it has almost no effect on the wavelength of the tail.

A.2 Linear Stability Analysis

Another approach to analyze the stability of a flat film, is classical linear stability

analysis. Assume h = 1 + ξ where ξ � 1. Equation (2.4) can be simplified to the
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Table A.1 Properties of the Damped Oscillatory Region Behind the Capillary Ridge

D qr qi

0 0.63 1.09

-1.0 0.50 1.32

-2.0 0.38 1.56

-3.0 0.30 1.81

leading order as

ξt + ξxxxx −Dξxx + 3ξx = 0. (A.4)

By putting ξ ∼ exp i(kx− ωt), where ω = ωr + iωi, we obtain the dispersion relation

−i(ωr + iωi) + k4 +Dk2 + 3ik = 0, (A.5)

hence

ωr = 3k, ωi = −(k4 +Dk2) = −(k2 +D/2)2 +D2/4. (A.6)

As a result, for non-negative D’s, a flat film is stable under small perturbations. For

negative D’s, it is unstable for the perturbations characterized by sufficiently large

wavelengths. The critical wave number kc =
√
−D, and the perturbation with wave

number km =
√
−D/2 has the largest growth rate. Besides, the speed of a linear wave

is 3, and it is significantly larger than the traveling wave speed, U . As discussed in

the main body of the text, this speed is very important to identify the waves induced

by natural noise.

In addition, one should note that the maximum growth rate increases as

inclination angle α goes from π/2 to π. Particularly, in the limiting case α → π

(hanging film), the growth rate is exactly the same as for thin film Rayleigh-Taylor



91

instability (e.g., [9]). Note that the scaling used in present work is not appropriate

for α→ π; to establish the result for this case, one should consider a different scaling,

or the dimensional formulation of the problem.

A.3 Absolute and Convective Instability Analysis

For an unstable film, D < 0, we can perform the absolute and convective instability

analysis by carrying out a change of variables

η =
√
−D (x− 3 t) , τ = (−D)2 t

in Equation (A.4). Then we have

ξτ + ξηηηη + ξηη = 0.

The front velocities (velocity of the boundary of local disturbance) are known as

±1.62 [15]. Therefore, the front velocities of completely wetting films, Equation (A.4),

are (x
t

)
±
= 3± 1.62 (−D)3/2. (A.7)



APPENDIX B

NUMERICAL METHODS FOR THIN FILM EQUATION

In this appendix, we present a numerical method to solve Equation (2.3). We use

finite difference method to discretize spatial variables and integrate in time implicitly.

Such a procedure leads to a nonlinear system that needs to be solved in each time step.

We use the Newton’s method to solve such a system for two dimensional problems

and use the approximate-Newton approach to solve three dimensional problems.

B.1 Solving Nonlinear Time Dependent PDE

In general, time dependent PDE can be expressed as ht+f(h) = 0, where h = h(x, t)

is the unknown function with time variable t, spatial variables x, and f is a nonlinear

discretization operator for spatial variables. From time tn = n∆t to tn+1, where ∆t

is the time step, the PDE can be integrated numerically by the so-called θ method

leading to a nonlinear system:

hn+1 + (1− θ)∆tfn+1 = hn − θ∆tfn, (B.1)

where fn = f(hn) and hn = h(x, tn). This method is known to be first order for

θ 6= 1/2 and is second order for θ = 1/2. In this Dissertation, we use θ = 1/2 for

numerical simulations.

To solve the nonlinear system (B.1), we apply the Newton’s method. Firstly,

we linearize hn+1 about a guess for the solution by assuming hn+1 = h∗ + c, where h∗

is a guess and c is the correction. Then we express the nonlinear part using Taylor’s

expansion

fn+1 = f(h∗ + c) ≈ f(h∗) + Jf (h
∗) · c = f ∗ + J∗

f · c,

92
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where Jf is the Jacobian matrix for function f and J∗
f = Jf (h

∗). After substituting

the above quantities into Equation (B.1), we obtain a linear system for the correction

term, c: (
I + (1− θ)∆tJ∗

f

)
c = −h∗ − (1− θ)∆tf∗ + hn − θ∆tfn, (B.2)

where I is the identity matrix that has the same size as the Jacobian matrix, J∗
f . The

solution at t = tn+1 is obtained by correcting the guess iteratively until the process

converges, i.e., the new correction is small enough.

B.2 Spatial Discretization for Thin Film Equation

We discretize the spatial derivatives of thin film equation through finite difference

method. The grid points in the computational domain, [0, L]× [0,M ], is defined as

xi =

(
i− 1

2

)
∆x, i = 1, · · · , nx, yj =

(
j − 1

2

)
∆y, j = 1, · · · , ny, (B.3)

where ∆x = L/nx, ∆y = M/ny are the step size in the x, y domain; nx, ny are

number of grid points in the x, y domain, respectively.

The scheme presented here is 2nd order central difference scheme. In the

following, the subscripts, i, j, denote that the value been taken at (xi, yj). The

notation hi+1/2,j denotes an average at the point (xi+1/2, yj) as

hi+1/2,j =
hi+1,j + hi,j

2
.
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Also we use the standard difference notation as

δxhi+1/2,j = hi+1,j − hi,j,

δyhi,j+1/2 = hi,j+1 − hi,j,

δ3xhi+1/2,j = hi+2,j − 3hi+1,j + 3hi,j − hi−1,j,

δ3yhi,j+1/2 = hi,j+2 − 3hi,j+1 + 3hi,j − hi,j−1,

δxδ
2
yhi+1/2,j = hi+1,j+1 − 2hi+1,j + hi+1,j−1 − hi,j+1 + 2hi,j − hi,j−1,

δyδ
2
xhi,j+1/2 = hi+1,j+1 − 2hi,j+1 + hi−1,j+1 − hi+1,j + 2hi,j − hi−1,j.

The discretization of each term involving spatial derivatives is as follows:

The surface tension term

∇ · [h3∇∇2h]i,j =(
h3i+1/2,jδ

3
xhi+1/2,j − h3i−1/2,jδ

3
xhi−1/2,j

)
/∆x4

+
(
h3i+1/2,jδxδ

2
yhi+1/2,j − h3i−1/2,jδxδ

2
yhi−1/2,j

)
/∆x2∆y2

+
(
h3i,j+1/2δyδ

2
xhi,j+1/2 − h3i,j−1/2δyδ

2
xhi,j−1/2

)
/∆x2∆y2

+
(
h3i,j+1/2δ

3
yhi,j+1/2 − h3i,j−1/2δ

3
yhi,j−1/2

)
/∆y4.

The normal gravity term

∇ · [h3 ∇h]i,j =(
h3i+1/2,jδxhi+1/2,j − h3i−1/2,jδxhi−1/2,j

)
/∆x2

+
(
h3i,j+1/2(hi,j+1 − hi,j)− h3i,j−1/2(hi,j − hi,j−1)

)
/∆y2.

The tangential gravity term

∂

∂x

(
h3
)
i,j

=
(
h3i+1/2,j − h3i−1/2,j

)
/∆x.
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B.3 Fully Implicit Algorithm

Applying algorithm Equation (B.2) to 3D thin film equation, we have [26]

(
I + (1− θ)∆t(J∗

fx + J∗
fy + J∗

fm)
)
· c = −h∗ − (1− θ)∆tf∗ + hn − θ∆tfn,

where Jfx, Jfy and Jfm are the Jacobian matrices for x, y and mixed derivative

terms of function f , respectively. Equation (B.4) is a non-symmetric sparse linear

system that has nxny unknowns. For large nx and ny, as it is the case for the

problems discussed in the present work, solving such a system carries a significant

computational cost. In general, the operation count is proportional to O(n3
xn

3
y) or

O(n2
xn

2
y), depending on the matrix solver.

B.4 Alternating Direction Implicit (ADI) Method

To decrease the computational cost, Witelski and Bowen suggested to use the

approximate-Newton approach [71]. The idea is to replace the Jacobian matrix by

an approximated one

[
I + (1− θ)∆t

(
J∗
fx + J∗

fy + J∗
fm

)]
∼
[
I + (1− θ)∆tJ∗

fy

] [
I + (1− θ)∆tJ∗

fx

]
.

Therefore we get a new system of equations

[
I + (1− θ)∆tJ∗

fy

] [
I + (1− θ)∆tJ∗

fx

]
· c = R, (B.4)

where R = −h∗ − (1− θ)∆tf ∗ + hn − θ∆tfn is the right hand side of Equation (B.4).

One should note that as long as c decreases after each iteration and approaches 0 in

some norm, we have R = 0, leading to Equation (B.1). That is, such an approach

does not affect the stability and accuracy of the original space-time discretization.
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Under the same spirit of ADI method, equation (B.4) can be easily split into

two steps:

(
I + (1− θ)∆tJ∗

fx

)
· w = R,(

I + (1− θ)∆tJ∗
fy

)
· c = w. (B.5)

The main advantage of such splitting is that the operations in the x and y

directions are decoupled and therefore the computational cost reduced significantly.

Specifically for our discretization, the Jacobian matrices in the x and y direction

are penta-diagonal matrices, leading to system that can be solved in O(nx) and

O(ny) arithmetic, and the overall computational cost for solving Equation (B.5) is

proportional to O(nxny).

The approach presented here deals with a matrix that is an approximation to

the original Jacobian one. Therefore we should not expect the convergent rate of the

ADI method to be quadratic. However, since the approximation error is proportional

to O(∆t), for small enough time step, we expect the rate of convergence to be close to

quadratic; see [71] for further discussion of this issue. Furthermore, the ratio in the

operation count between fully implicit discretization and the ADI method is O(nxny).

That is, even if we need to decrease the time step or increase the number of iterations

to achieve convergence, the ADI method is still more efficient as long as the additional

effort is of o(nxny). In our experience, under the same conditions, ADI method is

significantly more efficient compared to fully implicit discretization.
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