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ABSTRACT

METHODS FOR THE DIRECT SIMULATION OF NANOSCALE
FILM BREAKUP AND CONTACT ANGLES

by
Kyle Mahady

This thesis investigates direct simulation of fluids with free surfaces and contact lines,

with a focus on capturing nanoscale physics in a continuum based computational

framework. Free surfaces and contact lines have long presented some of the most

challenging problems in computational fluid dynamics. Extensive progress has been

made in recent years, and a wide variety of different methods are currently employed

for direct simulation in these contexts. The complexity of the full governing equations

for such flows poses significant challenges in terms of analytical techniques, and leads

to lengthy computational times for direct simulations. For these reasons, reduced

models are preferable in many contexts, even when it is not clear that such reduced

models strictly apply.

Recent advances in nanotechnology motivate the comparison between direct

simulations and reduced models by presenting situations in which each possesses

advantages; these experiments involve the deposition of nanoscale flat metallic

structures onto a surface with unprecedented precision, the almost instantaneous

liquefaction of which leads to new initial liquid configurations which have been

previously impossible to achieve in an experimental setup. The mechanisms that lead

to the instability of these structures are a combination of classical liquid instability

(such as Rayleigh-Plateau), novel capillary instabilities driven by the initial geometry,

and nanoscale physics.

This study begins by examining the differences in qualitative behavior between

direct numerical simulation of the full equations and a particular reduced model in

the context of wetting and dewetting of drops. Afterwards, a specific initial liquid



geometry is presented, the breakup of which requires direct numerical simulation in

order to explain the experimental behavior. A parameter study of this geometry

demonstrates that it offers a rich variety of dynamics; the breakup of the geometry

is found to result in nanoparticle arrangements previously unobtainable using similar

techniques, and through careful tuning of the parameters the end state of the breakup

can be various combinations of metallic filaments and nanoparticles. While such

instabilities are driven by surface tension, an important class of thin film instability

is driven by intermolecular fluid/solid interactions. A numerical method is developed

which, for the first time, permits the explicit inclusion of this fluid/solid interaction

in the context of direct numerical simulations. This method not only allows for

modeling and simulating film breakup, but additionally yields a numerical method

for the simulation of contact angles as well.
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CHAPTER 1

INTRODUCTION

Droplets on surfaces, and their formation by means of the breakup of liquid interfaces,

are ubiquitous in every day life, from a thin film of water breaking into drops on a

solid substrate, to a dripping faucet. The richness of the physics of these phenomena

introduces numerous complexities for both numerical and analytical study. Numerical

simulations must accommodate the free surface of the liquid as it undergoes extensive

deformation, as well as possible topology changes. While simulation of liquids with

free surfaces is difficult, much more difficult still is the simulation of phenomena in

which a solid substrate is partially covered by one liquid, as in a drop on a solid

substrate.

When two immiscible fluids - for example, water and air - are in contact with a

solid surface, the terms wetting and dewetting refer to the phenomena by which

these fluids displace one another. For liquid on a solid surface, the intersection

of the free surface of the liquid with the solid substrate is known as the contact

line; this intersection is characterized by the angle formed between the interface

and the solid, known as the contact angle, which may take a wide range of values

depending on the properties of the fluids and the solid. The problem of wetting

and dewetting has been extensively studied both theoretically and experimentally

(see e.g., [4, 17, 76, 80, 81, 83, 86], and [10] for a review). In order to deal with

the complexities associated with the fluid/fluid interface, wetting and dewetting

phenomena are frequently modeled by means of the long–wave (otherwise referred

to as lubrication, and which we occasionally abbreviate L-W) theory; see [18, 63] for

reviews. Long–wave theory assumes small slopes everywhere on the interface, and

is additionally typically derived assuming negligible inertial effects. The long–wave
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approach allows the reduction of the complicated mathematical description to a

simpler problem of a nonlinear 4th order partial differential equation for the fluid

thickness. Still, even within the long–wave approach, a difficulty arises when

employing the commonly used no-slip boundary condition at the fluid/solid interface:

a non-integrable shear-stress singularity at the moving contact line. Simulating

dynamic contact lines therefore requires additional ingredients for the model. One

option is to include fluid/solid interaction forces with conjoining-disjoining terms

which lead to a prewetted (often called ‘precursor’) layer in nominally ‘dry’ regions.

This approach effectively removes the ‘true’ contact line, consequently avoiding the

associated singularity [24, 31, 74]. A second approach is to relax the no-slip condition

and instead assume the presence of slip at the fluid/solid interface. Both slip

and disjoining pressure approaches have been extensively used to model a variety

of problems including wetting, dewetting, film breakup, and many others (see,

e.g., [18, 63] for reviews).

While the approach based on the long–wave model has been very successful,

it is limited by the assumptions used to formulate the theory: in particular the

restriction to small interfacial slopes (strictly speaking, slopes much less than unity),

and therefore small contact angles. For this reason, computationally demanding

direct simulations of the full governing equations may be used. A large variety of

different methods for tracking the evolution of the interface are currently employed.

Lagrangian methods conform the computational grid to the interface (e.g. [7, 81, 82]).

Eulerian methods require a separate mechanism to track the interface location; these

include front tracking methods (e.g. [91]), and interface capturing methods such as

Volume of Fluid methods and level set methods. The latter two methods easily treat

topology changes, and with recent developments have been shown to be effective for

simulating surface tension driven flows [36, 66, 71, 87]. A common feature of Volume

of Fluid methods is that contact angles are imposed geometrically, in that the angle at
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which the interface intersects the solid substrate is specified as a boundary condition

on the interface [1, 2, 86].

The fact that Volume of Fluid (which we occasionally abbreviate VoF) methods

employ a geometrically imposed contact angle has crucial consequences for the physics

of the contact line. We can contrast this most readily with the disjoining pressure

methods used in long–wave based methods that we mentioned above. The geometric

method forces the fluid interface to intersect the solid substrate with at an angle

equal to the contact angle as a boundary condition on the interface orientation, while

disjoining pressure attempts to model the underlying liquid/solid interaction that

gives rise to contact angles. This is not a unique feature of long–wave based models;

a variety of other computational methods have been considered in the context of

wetting/dewetting which employ similar liquid/solid interactions. Here we mention

phase-field methods that treat two fluids with a diffuse interface by means of a smooth

concentration function, which typically satisfies the Cahn-Hilliard or Allen-Cahn

equations, and is coupled to the Navier-Stokes equations. Jacqmin [49] describes

a phase-field contact angle model that uses a wall energy to determine the value of

the normal derivative of the concentration on a solid substrate. This model has been

used to study contact line dynamics [50, 51], and similar models have been considered

in the investigation of the sharp interface limit of the diffuse interface model [77, 96].

Lattice-Boltzmann methods have also treated the contact angle with a wall energy

contribution [12, 55]. These approaches have explained a variety of phenomena related

to spreading of fluids on solid substrates, but do not consider explicitly the long

distance stabilizing and destabilizing forces between fluid and solid, as has been done

via the disjoining pressure in the long–wave model.

What is crucially missing from both the Volume of Fluid based methods, as

well as all of the methods described above (with the exception of long–wave), is the

phenomenon of disjoining pressure. That is, the long-range interaction between a
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liquid and a solid substrate does not just give rise to a contact angle, it also leads to

a difference in pressure inside the liquid which is dependent on the thickness of the

film, and this pressure can lead to the spontaneous rupture of the film into drops.

The long distance fluid/solid interaction is naturally included in molecular dynamics

(MD) simulations [37, 61, 68] that typically consider Lennard-Jones potential between

fluid and solid particles. However, MD simulations are, in general, computationally

expensive, even when simulating nanoscale systems. One would therefore like to be

able to include liquid/solid interaction within the framework of a continuum model.

While there have been methods which incorporated similar long range interactions

into direct simulations (for example, the Volume of Fluid method of [52]), to our

knowledge this has not been extensively applied to wetting phenomena. Such a

method, which we describe in detail in this thesis, permits the direct simulation

of contact angle physics, as well as film rupture.

The difference in contact angle physics between those methods which simulate

the underlying liquid/solid interaction, and the geometric contact angle method used

by Volume of Fluid, is of great practical interest, in addition to its obvious theoretical

significance. While at large scales these two behave much the same, this can not be

said at nanoscales, where the aforementioned disjoining pressure can be a dominant

mechanism driving film breakup.

The natural instabilities of nanoscale films have been of great interest recently,

as these have been harnessed as a means for the self-assembly of nanoparticles and

nanoparticle arrays [35]. Metallic nanoparticles have great potential in a variety of

applications, and have been used as a basis for controlled growth of carbon nano-

fibers [45], with applications in numerous settings [32]. More generally, formation

of nano-structures of metallic materials finds a role in applications that range from

plasmonics to liquid crystal displays and solar cells [58, 84]. For example, the size

and distribution of metallic particles are known to be related to the coupling of
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surface plasmons to incident energy. Controlling this coupling has the potential for

large increases in the yield of solar cell devices, see, e.g., [57]; for this application, it is

particularly important to be able to produce uniformly distributed and closely spaced

metallic nanoparticles [6, 59]. The accurate simulation of the breakup of nanoscale

films is of fundamental importance for the understanding of the mechanisms that lead

to this breakup, and subsequently to control the size and distribution of the resultant

nanoparticles.

Our focus for computational methods is full direct numerical simulation of the

Navier-Stokes equations, where the free surface is tracked using the Volume of Fluid

method. In Chapter 2, we outline the basic governing equations, and give an overview

of the computational methods that we use. The equations in Chapter 2 are given in

dimensional form; the nondimensionalization of these equations is specific to the needs

of each subsequent chapter and will be discussed there.

In Chapter 3, we undertake a study of the comparison between direct simulation

of fluid spreading on a substrate using the Volume of Fluid interface capturing

method, with the classical long–wave approximation. We review basic aspects of

theory of wetting drops, and describe the long–wave approximation. In order to

isolate the influence of the small slope assumption inherent in long–wave theory, we

present a quantitative comparison between the two methods in the regime where

inertial effects are negligible. The flow geometries that we consider include wetting

and dewetting drops within a broad range of equilibrium contact angles in planar

and axisymmetric geometries, as well as liquid rings. For perfectly wetting spreading

drops we find good quantitative agreement between the models, with both of them

following rather closely Tanner’s law. For partially wetting drops, while in general we

find good agreement between the two models for small equilibrium contact angles, we

also uncover differences that are particularly evident in the initial stages of evolution,

for retracting drops, and when additional azimuthal curvature is considered. The
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contracting rings are also found to evolve differently for the two models, with the

main difference being that the evolution occurs on the faster time scale when the

long–wave model is considered, although the ring shapes are very similar between the

two models.

In Chapter 4, we turn our attention to the direct numerical simulation of the

aforementioned nanoscale liquid breakups, with a particular focus on the influence

of the complex initial shapes that are now possible using those methods. We study

the nontrivial influence of the initial geometry on the evolution of a liquid filament

deposited on a substrate. Based on the analogy to the classical Rayleigh–Plateau

instability of a free-standing liquid jet, an estimate of the minimal distance between

the final states (sessile drops) can be obtained. However, this numerical study

shows that while the prediction based on the RP instability mechanism is highly

accurate for an initial perturbation of a sinusoidal shape, it does not hold for

a rectangular waveform perturbation. The results show that rectangular-wave

perturbations can lead to the formation of patterns characterized by spatial scales that

are much smaller than what is expected based on the Rayleigh–Plateau instability

mechanism. Moreover, the nonlinear stage of the evolution and end states are not

simply related, with a given end state resulting from possibly very different types of

evolution; a variety of end state shapes may result from a simple initial geometry,

including one- and two-dimensional arrays of drops, a filament with side drops, and

a one-dimensional array of drops with side filaments. Some features of the numerical

results are related to the recent experimental study by [72].

In Chapter 5, we present a novel approach to model the fluid/solid interaction

forces in a direct solver of the Navier-Stokes equations based on the Volume of Fluid

interface tracking method. The key ingredient of the model is the explicit inclusion

of the fluid/solid interaction forces into the governing equations. We show that the

interaction forces lead to a partial wetting condition and in particular to a natural
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definition of the equilibrium contact angle. We present two numerical methods to

discretize the interaction forces that enter the model; these two approaches differ in

complexity and convergence. To validate the computational framework, we consider

the application of these models to simulate two-dimensional drops at equilibrium, as

well as drop spreading. We demonstrate that the model, by including the underlying

physics, captures contact line dynamics for arbitrary contact angles. More generally,

the approach permits novel means to study contact lines, as well as a diverse range

of phenomena that previously could not be addressed in direct simulations.

In Chapter 6, we develop an improvement to the method described in Chapter 5.

We show that this method has similar properties to the method of Chapter 5 with

regards to the computation of contact angles. However, it requires considerably less

resolution, and thus computational time, which allows it to be practically applied to

thin liquid film breakup due to the fluid/solid interaction, as well as to simulations in

three dimensions. We thoroughly study the instability of thin films using this method,

and compare simulations with a linear stability analysis from long–wave theory. We

additionally apply this method to study the rupture of such thin films, and analyze

the effect of varying contact angle and parameters on the length scales of the breakup.

In Chapter 7, we summarize the present progress and describe the future

outlook.
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CHAPTER 2

COMPUTATIONAL METHOD

Throughout this thesis, we are concerned with the Navier-Stokes equations, formulated

for two phases and subject to an incompressibility condition. When we discuss “two

phases”, we specifically mean two distinct, immiscible fluids. Purely as a matter of

convention, one of these is referred to as a “liquid phase”, and the other as a “vapor

phase”. As the names imply, the “liquid phase” is the fluid that forms films and

drops on surfaces, and the vapor phase a fluid which occupies much of the rest of the

domain; variables associated with the liquid phase are subscripted by the letter l and

those associated with the vapor by v. In order to make notation clearer, we define

a characteristic function, χ(x). This characteristic function takes the value 1 inside

of the liquid, and 0 in the vapor. In dimensional terms, the Navier-Stokes equations

become

ρ(χ) (∂tu+ u · ∇u) = −∇p+∇ ·
(

µ(χ)
(

∇u+∇uT
))

+ γκδsn (2.1)

∇ · u = 0 (2.2)

Here, ρ is the density, µ is the viscosity, and these both depend on the fluid phase

by means of the characteristic function χ: ρ(χ) = χρl + (1 − χ)ρv and µ(χ) =

χµl + (1− χ)µv. The coefficient of surface tension is γ, the interfacial curvature is κ,

and δs is a delta function centered on the interface, so that the force due to surface

tension is reformulated as a singular force as in [11]. The unknowns in this equation

are the pressure p, and the velocity field u(x), which we write as u = (u, v) in 2D and

u = (u, v, w) in 3D; conventionally, everything is expressed in Cartesian coordinates

unless otherwise noted. Eq. (2.1) essentially reformulates Newton’s second law, while

Eq. (2.2) states the conservation of mass.
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The most common boundary condition applied to Eqs. (2.1)-(2.2) at a solid

substrate is the no-slip condition:

u = 0 (2.3)

The solution of Navier-Stokes equations subject to Eq. (2.3) leads to a stress

singularity at a moving contact line. Modeling dynamics in this context requires

some regularizing scheme to deal with the so-called ‘contact line singularity’, which

manifests itself as an infinite stress at the line where the three phases — liquid, vapor,

and solid — meet. Numerous approaches to overcome this difficulty exist, as reviewed

recently in [10] and [18]. We commonly use a slip model [27, 43, 44, 46] where the

no-slip boundary condition at the fluid-solid interface is relaxed. Thus, instead of

having vanishing horizontal velocities at the substrate, we assume the Navier slip

condition

u · ts = Λ
∂

∂ns

u · ts (2.4)

where ts is the substrate tangential vector and ns is the substrate normal vector, and

the parameter Λ is the slip length.

We solve Eqs. (2.1)-(2.2) by means of the open source software package

Gerris [67]; What follows, unless otherwise specified, is an overview of the method

given in [66]. Spatial discretization is accomplished by means of a quadtree (in 2D) or

an octree (in 3D); the domain is decomposed into discrete square volumes, referred to

as cells. All variables are defined at cell centers, and are interpreted as their average

over the cell. This mesh is adaptive, allowing for effective computation of simulations

with regions of very different interface curvatures and spatial scales. The interface

between the two fluids is tracked using an implementation of the Volume of Fluid

method. The Volume of Fluid method tracks the interface by introducing a volume

fraction function, T , which is equal to the fraction of the cell occupied by the fluid
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phase. The volume fraction is advected with the fluid flow, obeying the transport

equation:

∂T

∂t
+∇ · (uT ) = 0

The Volume of Fluid method reconstructs a sharp interface. For each cell, the

gradient, ∇T , is computed using the Mixed-Young’s method [5], so that the unit

normal vector is given by M = ∇T/|∇T |. This permits a linear reconstruction of the

interface in each cell, according to the equation M · x = α, where α is determined by

T (see [73] for details).

The solution of the Navier-Stokes equations is accomplished through a time-

splitting projection method. First, a predictor step calculates the auxiliary velocity

field u∗ by applying the advection terms and viscous forcing (note that in what follows

a subscripted asterisk will indicate that the term is evaluated on the auxiliary field):

ρn+1/2

[

u∗ − un

∆t
+ un+1/2 · ∇un+1/2

]

= ∇ · [2µn+1/2((1− η)Dn + ηD∗)] (2.5)

where D = 1
2
(∇u + ∇uT ) is the rate of deformation tensor. The parameter η

characterizes the implicitness of the method; η = 1/2 yields a Crank-Nicholson,

second order scheme, and η = 1 yields first-order accurate, fully implicit scheme. The

time step is variable, and the explicit treatment of the surface tension requires [66]

that the time step satisfies ∆t ≤
√

ρ∆3/(πγ), where ∆ is the width of the smallest

computational cell. In our surface tension driven flows, this constraint dominates the

time-stepping restrictions. The advection term un+1/2 · ∇un+1/2 is estimated using a

conservative Godunov method proposed in [9]. The discrete equation is solved using

a multigrid method with Jacobi iteration scheme.

The surface tension is added to u∗ in the next step, and is computed as a

modification of the continuum surface force implementation of the surface tension
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proposed in [11], where ∇T is used to approximate the δsn in Eq. (3.1):

u∗ ← u∗ +
∆tγκn+1/2

ρn+1/2

∇Tn+1/2 (2.6)

Interface curvature, κ, is estimated using a modification of the height function method

[1, 36, 85] first proposed in [89] and described in detail in [66]. In this method, the

‘height’ of the fluid interface in a computational cell is calculated above a reference

axis (e.g. the x axis). If we refer to the height function as f , then the curvature of

the interface in two dimensions is given by the standard formula κ = f ′′/(1 + f ′2)3/2,

so that three fluid heights are required for a finite difference approximation of this

curvature in each cell. The height functions are also used to impose the contact angle,

as described below.

Since the velocity field must be incompressible, the auxiliary field is written,

using the Helmholtz decomposition, as

u∗ = un+1 +
∆t

ρn+1/2

∇pn+1/2 (2.7)

where again p is the pressure. Taking the divergence of both sides leads to a Poisson

equation,

∇ ·
(

∆t

ρn+1/2

∇pn+1/2

)

= ∇ · u∗ (2.8)

The divergence-free velocity field is finally given by

un+1 = u∗ −
∆t

ρn+1/2

∇pn+1/2 (2.9)

The volume fraction T is solved for at half timesteps by a conservative method; the

variables µn+1/2 and ρn+1/2 are thus known through their functional dependence on

the volume fraction function.

We treat the contact angle differently depending on the context. In Gerris,

the two dimensional code implements the contact angle as described in [1]. In this
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method, the slope of the interface in the contact line cell is imposed so that the angle

formed by the interface with the substrate is θeq, and the forcing due to the contact

angle enters into Eq. (3.1) through the surface tension term. It is thus sufficient to

modify the computation of the curvature term to take this into account. The height

of the fluid in the contact line cell is found from a linear reconstruction of the interface

in that cell, using the value of the volume fraction T and the slope determined by θeq.

In order to have a large enough stencil of heights to compute the curvature, ‘ghost

cells’ are introduced, which are cells outside the domain where the height function

and T are defined. The height function in the ghost cells is found by extending the

linear reconstruction in the contact line cell into the ghost cells. The same method

as above is used for θeq = 0, and is equivalent to setting T = 1 in the ghost cells.

In three dimensions, there is no implementation of general contact angles, so

our choices are limited by that is possible by specifying boundary conditions on T .

We can impose a 90◦ contact angle by setting a homogeneous Neumann condition

on T on the substrate; since the interface normal is given by ∇T , this implies that

∇T = (∂xT, 0, ∂zT ), and thus this is equivalent to a 90◦ contact angle. Likewise,

setting T = 1 on the substrate results in a 0◦ contact angle, and T = 0 a 180◦

contact angle. It is important to note that the computational method developed in

Gerris is accurate when dealing with surface tension driven flows. We demonstrate the

accuracy and the convergence of these simulations, in the context of spreading drops,

at the end of Chapter 4. Chapters 5 and 6 discuss a new computational method for

including the contact angle in Gerris for both two and three dimensional simulations.
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CHAPTER 3

COMPARISON OF NAVIER-STOKES SIMULATIONS WITH

LONG–WAVE THEORY: STUDY OF WETTING AND DEWETTING

3.1 Introduction

The comparison between the results of Navier-Stokes equations and the long–wave

model is the main focus of this chapter. Despite the wide application of long–wave

based models, we were unaware of benchmark tests considering the validity of

long–wave model by comparing its solutions to direct numerical solutions of the

full Navier-Stokes system in a fully dynamic setting. To accurately describe the

evolution under general conditions, it is important to consider a more complete theory,

and discuss the degree of agreement. This agreement (or lack of it) is of relevance

also for practical reasons: obtaining direct solutions of Navier-Stokes equations is

computationally demanding, and knowing precisely when long–wave model can be

used, and with which degree of accuracy, is needed.

As we discuss in detail below, carrying out this comparison in a meaningful

way is not trivial, since the models necessarily involve their own sets of definitions

of relevant quantities (such as contact angle). Therefore, comparing ‘raw’ data, such

as front positions as a function of time, for example, turns out not to be always

very insightful; instead, we carry out the comparison by considering the degree of

agreement of the two models with asymptotic solutions in the form of Cox-Voinov

and Tanner’s laws [88] for the flow regimes where these laws are expected to be valid.

To facilitate the comparison between the models and the asymptotic solutions, we

concentrate on flow configurations such that inertial effects are not significant (to

the degree possible), capillary numbers are reasonably small, and the effect of the

vapor phase is minimal. Furthermore, we consider relatively simple flow geometries,
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so to be able to focus on the comparison between the models, and not necessarily

on the complexities which may be expected if more complicated flow problems were

treated. First we consider the classical problem of a wetting or dewetting drop on a

substrate in two and three dimensions. Second, motivated by recent works on liquid

metals [3, 93, 94], we investigate the fluid ring geometry [39].

The remainder of this chapter is organized as follows. In Section 3.2, we

present the full governing equations including a Navier slip model [27, 43, 46, 44]

to alleviate the stress singularity at the moving contact line which occurs when the

no-slip condition is applied on the substrate [47]. We continue by describing the

long–wave model which also uses the slip model for consistency with the Volume of

Fluid based solver, and specifies the contact angle via a disjoining pressure approach,

discussed in some detail in [24]. In Section 3.3 we systematically investigate the

degree of agreement between the models for both wetting and dewetting problems

in two and three (axisymmetric) dimensions. Section 3.4 considers the problem of a

fluid ring structure collapsing into a drop. We conclude in Section 3.6.

3.2 Models

The governing equations that we will study in this chapter are the Navier-Stokes

equations, Eqs. (2.1)-(2.2). We nondimensionalize by choosing the velocity scale to be

U = γ/µl and the length scale to be L = µl/(ρlU). With these scales, Eqs. (2.1)-(2.2)

remain formally the same:

ρ (∂tu+ u · ∇u) = −∇p+∇ ·
[

µ
(

∇u+∇uT
)]

+ γκδsn, (3.1)

∇ · u = 0. (3.2)

Here, ρ = 1 in the liquid phase and ρ = ρv/ρl in the vapor phase, where ρv is the

vapor phase density. Similarly, µ = 1 in the liquid phase and µ = µv/µl in the vapor

phase, where µv is the vapor phase viscosity. We have γ represent a unit surface
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tension. The ratios ρv/ρl and µv/µl are both set to 1/100; for these ratios, we have

found that the influence of the exterior fluid on the results is negligible. Likewise, the

Navier slip boundary (Eq. (2.4)) condition remains formally the same

u = Λ
∂u

∂y
(3.3)

where Λ is the dimensionless slip length. Solution of Eqs. (3.1)-(3.3) are solved via

Gerris, as described in Chapter. 2

3.2.1 Long–Wave Model

The long–wave approach allows for the reduction of the Navier-Stokes equations to a

single nonlinear partial differential equation for the fluid thickness, h. We note that

although this approach is strictly valid only for fluid configurations characterized by

small free surface slopes, it has been commonly used in situations where the contact

angle is not necessarily small. The partial wetting conditions can be considered in

the model by accounting for van der Waals forces between solid and fluid, as briefly

described below.

The comparison between the results of long–wave approach and solutions of

the Stokes or Navier-Stokes equations has been considered in the literature, but

mostly for steady state configurations. For example, [64] compares the solutions

for the steady cross section of a rivulet flowing down a plane obtained by solving

the complete Navier-Stokes equation with the predictions of the long–wave approach

(see their Table I). For a contact angle of 30◦, they find that the differences between

both approaches related to the shape of the free surface are of the order of a few

percents. The appropriateness of the use of long–wave approach was also discussed

earlier in [41]. In that work it was shown that there are some differences in the free

surface slope between long–wave theory and Stokes formulation, but only very close

to the contact line.
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In the present chapter, the partial wetting conditions are included in the

long–wave model via the disjoining pressure Π(h), which represents the effects of

the intermolecular forces through the solid/liquid interface (see, e.g., [24] and the

references in that paper). Using the time and length scales defined previously, the

resulting (nondimensional) equation for the fluid thickness, h = h(x, y, t), which also

includes the Navier slip boundary condition, Eq. (2.4), is (see, e.g., [63])

3
∂h

∂t
+∇ ·

(

H3∇∇2h
)

+∇ ·
[

H3∇Π(h)
]

= 0 (3.4)

where H3 = h2(h + 3Λ). Here, the first term stands for viscous dissipation and

the other two terms account for the driving forces, which are surface tension and

disjoining pressure, respectively. For disjoining pressure, we use power-law form

Π(h) = Kdj

[(

h∗
h

)m

−
(

h∗
h

)n]

(3.5)

where the exponents satisfy m > n > 1. The first term represents the liquid/solid

repulsion, while the second term stands for the attraction, and when they balance,

Eq. (3.5) predicts a stable film of dimensionless thickness h = h∗. Here, Kdj is a

dimensionless pressure scale given by Kdj = AL/(6πγh3∗), where A is the Hamaker

constant for the liquid/solid/vapor configuration [48]. Instead of characterizing the

interaction by means of A, it is also possible to relateKdj with the equilibrium contact

angle, θeq, as discussed in some detail in e.g., [24]. Briefly, through the ‘augmented’

Young-Laplace condition, which assumes a local equilibrium of pressures, one obtains

Kdj = tan2 θeq/(2M) where M = (m − n)/((m − 1)(n − 1)); we use (m,n) = (3, 2),

and h∗ = 10−3 except if specified differently. Note that here we are assuming a

dependence on θeq in the form of (tan2 θeq)/2 instead of (1 − cos θeq) as usually seen

in the literature [24, 74]. In fact, the former dependence comes directly from using

the linearized form of the free surface curvature [60], which is consistent with the

hypothesis of small slope in the long–wave approximation, while the latter is derived
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when using the complete (nonlinear) form. The connection between Kdj and θeq has

been recently discussed in more detail in [38].

In the present chapter, we concentrate on one-dimensional solutions of Eq. (3.4),

in both planar and axial geometry. To consider both cases simultaneously, we write

Eq. (3.4) in the form

3
∂h

∂t
+

1

xd
∂

∂x

[

xdH3 ∂

∂x

(

1

xd
∂

∂x

(

xd
∂h

∂x

)

+Π(h)

)]

= 0 (3.6)

where d = 0, 1 for planar and axisymmetric cases, respectively. The evolution from a

given initial condition, h(x, 0), towards equilibrium is calculated by solving Eq. (3.6)

using a numerical code discussed elsewhere [23]. It is worth pointing out that inclusion

of Navier slip in the present long–wave model is not needed from the computational

point of view; we include, however, slip effects anyway so to facilitate the comparison

with the Volume of Fluid results, where slip is required. One consequence is the

presence of two length scales in the long–wave model (the slip length and the thickness

of prewetted layer), increasing the complexity. To simplify, we always use h∗ ≪ Λ (for

Λ 6= 0) so that, as discussed in the following section, the results are not influenced by

the value given to h∗.

Before proceeding with the comparison of the models, it is worth pointing out

their differences: (i) Volume of Fluid requires externally imposed contact angle,

considers a two fluid problem, and includes inertial effects, and (ii) the long–wave

approach requires the presence of a prewetted layer (of the thickness comparable to

h∗), requires disjoining pressure to specify contact angle, and ignores the inertial

effects. While, in principle, non-zero contact angle can be implemented in the

long–wave approach by specifying it externally, we consider on the physical grounds

that using disjoining pressure for this purpose is more appropriate. In order to

minimize, if not completely remove these differences, in this chapter we proceed as

follows: (i) consider a low inertia, surface tension dominated regime (i.e., the Reynolds
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and capillary numbers are small); (ii) analyze carefully what is the influence, if any,

of the prewetted layer and disjoining pressure on the long–wave results, and (iii)

concentrate on the ratio of the fluid densities and viscosities in the Volume of Fluid

simulations such that the vapor phase has no influence on the results. As we will

see below, we find that the influence of the thickness of the prewetted layer and the

details of disjoining pressure model are minimal, allowing us to concentrate on the

intrinsic differences between the considered models.

3.3 Partially Wetting Drops: Spreading and Retracting

In the simulations that follow, we take as initial configuration a fluid geometry

characterized by an initial contact angle, θi, different from the equilibrium contact

angle, θeq, so that the imbalance of forces leads to contact line motion and bulk flow,

until θeq is reached. In particular, we take the initial fluid profile to be the portion

of the circle with radius R and center (0,−R cos θi) lying above the x-axis. In the

long–wave simulations, the fluid profile is lifted by an amount h∗. An equilibrium

contact angle, θeq, is specified on the solid substrate, and we consider spreading

and retracting of planar and axisymmetric drops from the initial to the equilibrium

configuration using Volume of Fluid and long–wave simulations.

As we will see below, direct comparison of the two models (e.g., considering

front positions as a function of time suggests significant differences between the two

models; the unifying features can be extracted by considering the relation between

the instantaneous contact angle, θ, θeq, and the contact line front velocity, vf , that is

expected to be satisfied based on the well known Cox-Voinov law [92]

θ3 − θ3eq = 9Ca log (hM/hm) +O(Ca) (3.7)

Here we define the capillary number as Ca = µlUvf/γ, hM is a macroscopic length

scale, and hm is a microscopic length scale. With our choice of scales, Ca and the

18



Reynolds number, Re = ρlLUvf/µl, satisfy Ca = Re = vf . Note that the Cox-Voinov

law is derived under the assumptions of Stokes flow dominated by capillary effects,

with the only restriction that θ < 3π/4.

For our purposes, we consider this general form of the Cox-Voinov law:

θ3 − θ3eq = aCab (3.8)

with a prefactor, a, and exponent, b. As we will see, the differences between the two

models will require focusing on b when discussing the agreement of the models between

themselves, and with this generalized form of the Cox-Voinov law; a is discussed

in some more detail in the Remarks at the end of this section. The exponent b is

computed by performing a least squares fit in the above equation over a representative

portion of the spreading process, defined by Ca > 0.001, and θ3− θ3eq < 0.7(θ3i − θ3eq).

This choice ensures that the drop is spreading fast enough so that its speed can be

accurately resolved, and removes any transient effects associated with early times.

Spreading speeds on the order of or less than 0.01 are typical; this places us in

a viscous, capillary regime where the Cox-Voinov and the long–wave equations are

applicable. Moreover, this choice ignores the early phase of spreading and retraction,

which is not governed by Eq. (3.8).

For the Volume of Fluid simulations, the quantities in Eq. (3.8) are computed

in the following way. The front location, xf , is taken to be the intersection of the

reconstructed interface with the x-axis. The front velocity, vf , is then computed using

discrete values of xf by simple finite differences. Velocities are computed only when

the cell which contains the front is of a specified volume fraction; this ensures that

the front velocities are all comparable. To find the contact angle, we consider the

volumes of the drops. In planar geometry the cross-sectional area is given by A =

R2(θ−sin θ cos θ), where R is the radius of the circular cap, while in the axisymmetric

case we have V = (πR3/3)
(

2− 2 cos θ − sin2 θ cos θ
)

. The front location is given by
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Figure 3.1 Planar drop spreading from an initial contact angle of 30◦ to an
equilibrium contact angle of 15◦, with Λ = 0.01 for long–wave and Volume of Fluid
simulations, showing, as a function of time: (a) θ3 − θ3eq, (b) Capillary number Ca,
and (c) Front location xf . Note the different time range in part (c). Insets plot each
quantity for t < 2.

xf = R sin θ, so that fixing the volume V (A in the planar case) yields simple nonlinear

equations for the contact angle θ. In the long–wave computations, θ is defined as the

slope at the inflection point of the thickness profile h(x, t) near the contact region,

i.e. where h is close to h∗.

To illustrate the differences between the results of the models, and to further

motivate the comparison with the Cox-Voinov law, Figure 3.1 shows θ3 − θ3eq, Ca,

and xf versus time for the planar drop spreading from 30◦ to 15◦ with Λ = 0.01.

In the part (a) we see that θ decreases more rapidly in long–wave for early times,

while for intermediate and large times, the trend in both models is similar, although

θ3 − θ3eq is different in magnitude. The difference in early time behavior is partially

explained by the fact that the initial condition, a circular cap, is also the shape of the

quasi-static solution for the Volume of Fluid model, while the long–wave drop must

relax to its quasi-static shape, which is parabolic (except in the contact line region

where it matches smoothly h∗). Another possible reason for the different behavior for

early times may be due to the inertial effects that are not included in the long–wave

model.
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The inset in Figure 3.1(b) shows that the behavior of Ca is similar in both

models for early times, and although Ca is somewhat smaller for the long–wave

model, both evolutions share similar trends. Figure 3.1(c) shows the front location

as a function of time. As mentioned above, the final equilibrium shapes are different

for long–wave and Volume of Fluid, and consequently, their equilibrium values of xf

differ as well.

In order to compare the results with the Cox-Voinov law, we consider three cases:

a small contact angle drop spreading from θi = 30◦ to θeq = 15◦ already considered

in Figure 3.1; a larger contact angle drop spreading from θi = 45◦ to θeq = 30◦; and

a drop retracting from θi = 30◦ to θeq = 45◦. For each case, we consider two slip

lengths, one large, Λ = 0.046875, and one small, Λ = 0.01 (the former value is chosen

for convenience, since it is exactly 12 times the minimum cell size in the Volume of

Fluid simulations). These cases will be analyzed for both planar and axisymmetric

drops. For the planar drops, the volume per unit length, i.e., area, is held constant

at A ≈ 0.21, while for the axisymmetric case the volume is held at V ≈ 0.15, both

corresponding to an initial front location xf = 0.6 for θi = 45◦.

Figure 3.2 shows θ3 − θ3eq versus Ca for the planar drop. Both models show a

similar trend. A transient initial period where Ca rapidly decreases while θ changes

very little is reflected in the flat regions at the far right of each curve. This is

followed by the spreading phase where θ relaxes to equilibrium and Ca is smaller than

approximately 0.1. The most obvious difference between the curves resulting from the

two models is that the long–wave curves are generally shifted to the right (meaning,

e.g., that for a given θ, the drops spread or retract faster under the long–wave model).

This shift can be traced back to the differences in the initial evolution of θ for the

two models.

The dashed lines shown in Figure 3.2 are the best fits of the functional form

given by Eq. (3.8). The resulting exponent, b, is given in Table 3.1; It turns out
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Figure 3.2 Planar drop spreading and retracting for the long–wave and Volume of
Fluid models for various slip lengths. The following cases were considered: (a) drop
spreading from an initial contact angle of 30◦ to 15◦; (b) drop spreading from 45◦ to
30◦; (c) a drop retracting from 30◦ to 45◦. The dashed line show the best fits to the
data of the form specified by Eq. (3.8). The definitions of the symbols used are given
in the part (a) of this and the following figures.

0.9 < b < 1.0 for the Volume of Fluid model. For the long–wave simulations, b ≈ 1 for

the (θi, θeq) = (30◦, 15◦) and b . 0.9 for the (45◦, 30◦) spreading drop. For retracting

drops, long–wave results give 1.1 < b < 1.2, but we also note that the retracting drop

is not well described by the power law prescribed by Eq. (3.8).
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Figure 3.3 Effects of h∗ and the exponents (m,n) on the relation between Ca and
θ for the planar (30◦, 15◦) spreading drop with Λ = 0.01: (a) for different h∗ and
(m,n) = (3, 2); (b) for different pairs (m, b) and h∗ = 10−3.

There are two parameters in the long–wave model that do not appear in Volume

of Fluid simulations, namely, the equilibrium thickness, h∗, and the pair of exponents
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Table 3.1 Values of b Resulting From Fitting the Evolution of Planar
Drops with a Spreading Law of the Form θ3 − θ3eq ∝ Cab, for Long–Wave
and Volume of Fluid Simulations.

Volume of Fluid long–wave

30◦-15◦, slip 0.01 0.92 0.89

30◦-15◦, slip 0.046875 0.96 0.95

45◦-30◦, slip 0.01 0.98 0.82

45◦-30◦, slip 0.046875 0.99 0.87

30◦-45◦, slip 0.01 0.92 1.1

30◦-45◦, slip 0.046875 0.90 1.2

(m,n). It is a natural question to ask whether these quantities influence the long–wave

results. Figure 3.3 shows that their influence is very weak. In particular, we see

that values of h∗ smaller than 10−3 do not affect the presented results; additional

simulations (not shown for brevity) suggest that the exact value given to h∗ is not

relevant as long as h∗ ≪ Λ. The influence of the exponents (m,n) is minor as well,

although one may note that the pair (3, 2) gives the slope closer to unity for small

Ca than the other two pairs of exponents.

Figure 3.4 shows θ3 − θ3eq versus Ca for an axisymmetric drop. The computed

exponent, b, is given in Table 3.2. Similarly to the planar case, we find that the power

law behavior with b = 1 describes well the Volume of Fluid simulations for spreading

as well as for retracting drops, and the long–wave simulations for spreading drops.

For retracting drops, the long–wave curves are not well described by the power law

dependence prescribed by Eq. (3.8), viz. Figure 3.4(c).

Remarks:

• It is appropriate to comment on the value of a in Eq. (3.8). Recall the rapid

reduction in θ3 − θ3eq found in the long–wave simulations for early times, see
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Figure 3.4 Axisymmetric drop spreading and retracting for the long–wave and
Volume of Fluid models for various slip lengths. The following cases were considered:
(a) drop spreading from an initial contact angle of 30◦ to 15◦; (b) drop spreading from
45◦ to 30◦; (c) a drop retracting from 30◦ to 45◦. The dashed line shows the best fits
to the data of the form specified by Eq. (3.8).

Figure 3.1(a). This reduction, together with (approximate) power law behavior for

late times, (b ≈ 1), requires that Ca is larger in the long–wave model, for equivalent

θ. In terms of Eq. (3.8), a must be smaller for long–wave drops, so direct comparison

of a between the two models is not appropriate. This finding suggests that the

interpretation of the length scales appearing in Eq. (3.7) has to be different; we

further discuss these length scales below. Here we also note that the exact values of a

are difficult to extract accurately from the present data, and this is one of the reason

we have so far concentrated on b, which can be found much more accurately, and in

addition is not influenced by the differences in the early time evolution.

• Recent works [10, 30] consider the asymptotic limit of spreading drops in the small

slip and contact angle limit, including discussion of the length scales entering into

the Cox-Voinov law, Eq. (3.7). The approach followed suggests that hM ∝ xf , and

hm ∝ Λ/θeq. As θ → θeq ≪ 1, volume conservation gives xf ∝ θ
−1/(d+2)
eq , (where

again d = 0, 1 for planar and axisymmetric geometry, respectively); from this one

finds that hM/hm ∝ θ
(d+1)/(d+2)
eq /Λ. We briefly discuss how our results compare to

this prediction.
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Table 3.2 Values of b Resulting From Fitting the Evolution of
Axisymmetric Drops with a Spreading Law of the Form θ3 − θ3eq ∝ Cab,
for Long–Wave and Volume of Fluid Simulations.

Volume of Fluid long–wave

30◦-15◦, slip 0.01 0.93 0.90

30◦-15◦, slip 0.046875 0.92 0.86

45◦-30◦, slip 0.01 0.98 0.88

45◦-30◦, slip 0.046875 0.99 0.87

30◦-45◦, slip 0.01 0.92 1.13

30◦-45◦, slip 0.046875 0.88 1.18

1. Figures 3.2 and 3.4 show that increasing Λ shifts both long–wave and Volume

of Fluid curves downward a similar amount on the log-log plot, suggesting that

both models share similar dependence on Λ for both planar and axisymmetric

drops, consistently with [30].

2. For both planar and axisymmetric drops, we observe in Figure. 3.2 and 3.4 that

for spreading drops, the difference between the long–wave and Volume of Fluid

curves increases for larger θeq. Careful inspection of the figures suggests that

this increase is due to the fact that the Volume of Fluid curves shift upwards

as θeq is increased, while this shift (if any) is less pronounced for the long–wave

curves. The dependence of Volume of Fluid results on θeq is consistent with [30].

3. Both models are more sensitive to variations of Λ than to those of θeq, again

consistently with the asymptotic results [30].
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3.3.1 Spreading of a Perfectly Wetting Drop
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Figure 3.5 Front location as a function of time, xf (t), for a perfectly wetting
drop (θeq = 0) in long–wave and Volume of Fluid simulations: (a) planar case; (b)
axisymmetric case. The dashed lines show the exponent, δ, predicted by Tanner’s
law for each case.

We carry out here a second comparison between Volume of Fluid and long–wave

simulations now for perfectly wetting drops (i.e. θeq = 0). Under no-slip condition,

the spreading drops are expected to follow an intermediate asymptotic behavior [8]

for large t represented by a self-similar thickness profile whose contact line position,

xf , obeys the Tanner’s law [88],

xf (t) = ξf t
δ (3.9)

Here, ξf is a coefficient related to the thickness profile, and δ = 1/(7 + 3d), so that

we have δ = 1/7 for a planar drop, and δ = 1/10 for an axisymmetric one [22]. When

slip is included, the flow is no longer strictly self-similar due to the addition of this

new length scale to the problem [8]. However, it has been shown that this effect is

not strong if Λ is much smaller than the average thickness of the drop, and a quasi

self-similar solution can be obtained [42]. We will assume that this effect is negligible

here at least for the time scales considered.

The simulations are performed using three different slip lengths (Λ = 0, 0.01, 0.046875)

for both planar and axisymmetric drops. Here, we consider Λ = 0 in addition
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to non-zero values so to be able to see clearly the influence of Λ on reaching the

asymptotic regime described above. Considering Λ = 0 requires few adjustments in

our computations which we now briefly describe. In the long–wave model, we simply

put Λ = 0 in Eq. (3.4). Now the only additional length scale introduced in the

problem is h∗; the results (weakly) depend on this quantity, as discussed in some

details in an earlier work [25]. In Volume of Fluid simulations, a numerical slip on

the order of the mesh size is always present, leading to a mesh-size prewetting layer

ahead of the contact line when θeq = 0. Clearly, this computational feature suggests

that one may expect an influence of the numerical resolution on the results [70]; to

optimize the computational cost, we limit the minimum mesh size to 1/28 units. At

this resolution, the effect of the mesh is found to be negligible on the results we

present below. For the remainder of this section, we will calculate the front location

for Volume of Fluid drops as the point of inflection of the fluid profile, rather than as

the intersection of the reconstructed interface with the substrate.

Table 3.3 Exponents for the Power Law of the Front Position, xf (t), in
the Perfectly Wetting Case (θeq = 0). The Results are Given in Fractional
Form to Help Comparison with the Tanner’s law Exponent δ, 1/7 and 1/10,
for the Planar and Axisymmetric Case, Respectively.

Case δV oF δL−W

Planar, slip 0.046875 1/6.0 1/6.0

Planar, slip 0.01 1/6.3 1/6.2

Planar, no-slip 1/6.2 1/6.6

Axisymmetric, slip 0.046875 1/7.2 1/7.7

Axisymmetric, slip 0.01 1/8.5 1/8.1

Axisymmetric, no-slip 1/9.4 1/9.0
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Similarly to the calculations carried out for non-zero θeq, we start with drops of

a given initial contact angle, θi, and let the drops spread freely. Figure 3.5 shows the

front location as a function of time, xf (t). For clarity, we show in this figure the results

for Λ = 0, 0.01 only. Dashed lines show profiles proportional to t1/7 (Figure 3.5(a))

and t1/10 (Figure 3.5(b)); the behavior of no-slip simulations is seen to agree with

these powers reasonably well for large times. To go beyond visual comparison, we

compute the value of δ in Eq. (3.9) from both models by a least squares fitting over

a range of times when δ is approximately constant. Table 3.3 shows the values of δ

obtained. The long–wave and Volume of Fluid calculations yield similar exponents for

all slip lengths considered, and both show that δ decreases for smaller Λ, approaching

the asymptotic values.

3.4 Collapse of Liquid Rings

As a final comparison, we consider the problem of a collapsing ring, motivated by our

desire to consider a geometry that is more complex than the one of a drop, but that

still allows for identifying clearly the differences between the models. In addition,

we will use this problem to more explicitly demonstrate the influence of slip on the

dynamics.

The ring is defined by its internal and external radii, rint and rext, respectively,

as well as by the radius, R, of its circular cross section. Thus, the liquid is initially

inside the region described by

0 ≤ y ≤ −R cos θ +
√

R2 − (r − r0)2 (3.10)

where r0 = (rext + rint)/2 is the mean radius, r2 = x2 + z2 with rint cosφ ≤ x ≤

rext cosφ and rint sinφ ≤ y ≤ rext sinφ (0 < φ < 2π), and θ is the contact angle.

The radius, R, is chosen to be the same as that in previously considered

axisymmetric drops (R ≈ 3.5, 1.4, 0.8, for θeq = 15◦, 30◦, and 45◦, respectively),
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Figure 3.6 Inner radius, rint(t), for long–wave and Volume of Fluid simulations of
a collapsing ring: (a) θeq = 15◦; (b) θeq = 30◦; (c) θeq = 45◦.

and the mean radius, r0, is held constant at r0 = 1.8. In our setup, we consider

rings with equal initial contact angles, θi, at the internal and external radii, and both

equal to the equilibrium angle for static axisymmetric drops, θeq. However, the ring

is not in equilibrium since the curvatures, 1/rint and 1/rext, yield different capillary

pressures which cannot be balanced by the same contact angle [39]. Consequently,

the ring develops an inward flow which eventually leads to a collapse into a single

central axisymmetric drop. In the present chapter we assume azimuthal symmetry

and do not consider fully three dimensional features of the dynamics, which may lead

to instabilities and breakup [39].

Figure 3.6 shows the time evolution of the inner radius of the ring for both

Volume of Fluid and long–wave simulations. In particular, we will be interested in

the time, τ , the collapse takes, defined as the time when the interior radius vanishes.

Table 3.4 shows the resulting values of τ , together with the ratio between the results

of the two models. We note that this ratio decreases for smaller θeq, suggesting

that the both models predict increasingly similar dynamics for small contact angles.

For large θeq there are, however, significant differences, as can be seen explicitly

in Figure. 3.6(a)-(c). We point out that these differences in dynamics cannot be

predicted based simply on the thickness profiles. To illustrate this point, Figure 3.7
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Table 3.4 Ring Collapse Times, τV oF and τL−W , and the Ratio,
τV oF/τL−W . The First Column Specifies the Equilibrium Contact Angle,
θeq, and the Slip Length, Λ.

Case τV oF τL−W τV oF /τL−W

15◦, slip 0.01 733 641 1.1

15◦, slip 0.046875 337 294 1.1

30◦, slip 0.01 194 142 1.4

30◦, slip 0.046875 102 74 1.4

45◦, slip 0.01 84 44 1.9

45◦, slip 0.046875 48 25 1.9

shows the profiles resulting from the two models at the times when the inner ring

radii are at the same location (parts (a)-(b)), in addition to the equilibrium (long -

time) result (part(c)). We see that the corresponding shapes barely differ, but still

lead to considerably different dynamics.
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Figure 3.7 Ring profiles resulting from Volume of Fluid and long–wave simulations.
(a) and (b) show the profiles at the times when the inner radii are at the same location
for both models, and (c) shows the equilibrium solution.
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Regarding the influence of slip length, note that Figure 3.6 shows that a smaller

Λ leads to a larger collapse time, with slip playing a similar role in both models.

Additional more precise observations can be made: for both Volume of Fluid and

long–wave simulations, τ approximately halves when Λ increases by a factor close

to four, viz. Table 3.4. This would suggest that a dependence τ ∼ Λ−0.5 could be

expected (see dashed line in Figure 8). In fact, a similar behavior is obtained when

we consider the linear stability analysis (LSA) of a contracting ring within long–wave

approach [39], by recalling that the collapse time, τ , can be related to the inverse

of the growth rate for the azimuthally symmetric mode, ω0. Figure 3.8 shows that

the LSA predicts a dependence of τ on Λ that is not too far from what is found in

simulations. The overestimate of τ computed using the LSA is as expected, since the

presented estimate is based on the value of ω0 computed at t = 0 and therefore does

not include an increase of collapse speed as the ring decreases in size.

3.5 Numerical Validation

In our Volume of Fluid simulations, the solution was calculated on an adaptive mesh

refined on the drop surface to a resolution of ∆ = 1/28, while parts of the domain

far from the surface were refined to 1/24. To test the convergence of the method,

we present the case when the planar drop spreads from θi = 30◦ to θeq = 15◦. The

average relative difference is calculated as

Avg∆ =
1

tmax

∫ tmax

0

|xf (t)− xref (t)|
xref (t)

dt

where xref is the drop radius computed with ∆ = 1/28, and xf is computed with

∆ = 1/25, 1/26, and 1/27. We restrict our attention to a representative portion of

the drop spreading, so that tmax is the time it takes for the drop radius to be within

1% of its equilibrium value, as computed using ∆ = 1/28. Figure 3.9 plots Avg∆ and

shows that mesh effects are negligible when compared to the drop radius.
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Figure 3.8 Collapse times, τ , of rings. Solid lines show the inverse of the growth
rate, ω0, of the azimuthally symmetric mode obtained from the linear stability
analysis; filled/hollow circles show τV oF and τL−W , respectively.
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Figure 3.9 Relative error for planar spreading drop. The error is computed as
the average relative difference between the front location compared to the one found
using ∆ = 1/28.

Hocking and Rivers [46] derived an asymptotic solution for the radius of a

spreading drop. In their derivation, the flow is governed by the Stokes equations, and

the effects of gravity are ignored. Additionally, the condition on the solid substrate

is assumed to be the Navier slip condition (see Eq. (2.4)), where the slip length is

taken to be small relative to the drop size. No limitations on the contact angle are

imposed. Their solution yields the following ordinary different equation (ODE) for

the drop radius, xf

2
dxfa
dt

=
G(θ)−G(θeq)

ln(xf )− ln(Λ)−QO(θ) +Qi(θeq)
(3.11)

where

G(θ) =

∫ θ

0

ϑ− sinϑ cosϑ

sinϑ
dϑ

The functions QO and Qi were computed by interpolating Table 1 in [46]. The contact

angle, θ, is related to the drop volume and front location through conservation of

volume, so that Eq. (3.11) can be solved using standard ODE solvers.

We present the case of the axisymmetric drop spreading from 45◦ to 30◦. In order

for Eq. (3.11) to apply, the denominator must be greater than 0, so for our parameters

we find the condition that Λ . 0.03. We thus choose Λ = (0.028, 0.016, 0.008, 0.004).
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Figure 3.10 Comparison of Volume of Fluid simulations with
asymptotic solution [46] for a drop spreading from 30◦ to 15◦ as a
function of the slip length: (a) the average relative difference between
the front locations; (b) the relative difference in spread times.

The drop radius was computed using the Volume of Fluid solver, xfV oF
, and the

asymptotic solution, xfa , for each slip length. The average relative difference between

numerical and asymptotic solution was computed by the integration

Avg
|xfV oF

− xfa |
xfV oF

=
1

tmax

∫ tmax

0

|xfV oF
− xfa |

xfV oF

dt

where tmax is again chosen so that xfV oF
is within 1% of its equilibrium value. Note

that the time it takes for the Volume of Fluid solution to reach equilibrium is Λ-

dependent, so that the comparison is carried out over appropriate ranges for each Λ

considered.

Figure 3.10(a) shows the relative difference between the two results. We see

that the front locations agree well in the limit of small Λ. Another comparison that

can be carried out involves considering the difference in the time scales. We compute

the spread times as the time it takes the Volume of Fluid solution and the asymptotic

solution to reach within 1% of the respective equilibrium values; denote these τV oF

and τa. The relative difference between the two is computed as

|τV oF − τa|/τV oF
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Figure 3.10(b) shows the relative difference of the spread times. For larger Λ,

the asymptotic solution predicts that a drop spreads much faster, compared to the

simulation results. However, for small Λ, the difference in spreading times is less than

10% of τV oF , and on average the relative difference in the computed front locations

is on the order of 10−3.

To conclude, we find that the results of the simulations are fully converged for

the grid resolutions implemented. Furthermore, the location of the front as a function

of time agrees very well with existing asymptotic results for a spreading drop. The

Volume of Fluid based solver thus allows for accurate simulations of contact angle

driven spreading phenomena.

3.6 Conclusions

In this chapter, we report on a comparison between direct solutions of the Navier-

Stokes equations computed using a Volume of Fluid method, and the long–wave

based simulations. We consider two simple geometries, drops and rings, with the goal

of avoiding complexities that are associated with more complicated geometries. To

further facilitate the comparison, we consider the flow regime characterized by low

Reynolds and capillary numbers, where long–wave theory is expected to apply, and

implement Navier slip condition in both models with the same goal.

For partially wetting drops, characterized by non-zero equilibrium contact angle,

θeq, the comparison is carried out by considering consistency with the asymptotic

Cox-Voinov law. While in general our findings are as expected - that long–wave

theory agrees well with the Volume of Fluid results and the Cox-Voinov law for small

θeq - we also uncover additional features of the results, summarized here: (i) the

deviations of long–wave results from the behavior expected based on the Cox-Voinov

law and Volume of Fluid simulations is particularly strong for retracting drops, and in

azimuthal geometry; (ii) the initial stages of spreading or retracting differ significantly
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between the models, for all considered θeq; (iii) the degree of agreement between the

two models is not influenced by the values assigned to the slip length, Λ - in other

words, slip influences both models in a similar manner. To our knowledge, these

findings have not been reported in the literature.

For perfectly wetting drops, with θeq = 0, both models are found to agree well

with the predictions of Tanner’s law in the case of no-slip. Non-zero slip length

modifies the results and introduces deviations from Tanner’s law as expected; an

important finding here is that the two models agree well with each other for non-

vanishing slip.

When the two models are applied to collapse of a liquid ring, the results are

found to be in good agreement for small θeq, while for larger θeq, the collapse time

under long–wave simulations is as much as twice as fast relative to the one found using

Volume of Fluid simulations. Again, the slip length has little effect on the degree of

comparison of the two models.

While in this chapter we consider only a classical long–wave formulation, it

would be of interest to explore whether the recently proposed improvements of this

formulation (see, e.g., [79]), lead to significant differences. Additionally, in situations

where the evolution of the liquid is more complex, the influence of the differences

between the long–wave model and direct simulations is a topic which warrants further

investigation.

36



CHAPTER 4

ON THE INFLUENCE OF INITIAL GEOMETRY ON THE

EVOLUTION OF LIQUID FILAMENTS

4.1 Introduction

The long–wave model of Chapter 3 has been widely applied in the study of the

breakup of liquid metallic nanofilms [54, 34]. As we discussed in Chapter 3 however,

the long–wave model begins to show distinct weaknesses when the contact angle

becomes O(1); for the liquid metallic nanofilms in these experiments the contact angle

is almost 90◦ [34]. In this chapter, we will discuss some particular initial geometries

for nanofilms which appear to require full direct simulations in order to model. This

requirement is due to the fact that the initial conditions which can be considered in

experiments can be placed far from fluid equilibrium, and when this is combined with

the properties of liquid metals implies nonvanishing inertial contributions.

Synthesis and assembly on the nano-scale is one of the most important goals of

contemporary science and technology, see e.g. [33]. While there are a large number

of examples involving a variety of different fluids where self and directed assembly

is relevant, we focus here on one particular example which is finding important

applications: nano-scale metallic particles. With metal films, a recently developed

technique is the irradiation with laser pulses or electron-beams, leading to fast

liquefaction. While in the liquid phase, the metal film becomes unstable and breaks

up into drops which solidify and remain on the substrate as solid particles. The

understanding of this instability development is the main focus of this paper.

One commonly considered geometry in the experiments is the one of a filament

deposited on a solid substrate. In the context of metal films, a liquid filament itself

does not even have to be deposited: it is sufficient to deposit a metal strip of a
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rectangular cross section, liquefy it, and let the capillary forces drive the evolution.

Such a setup has been recently demonstrated experimentally by [34], who consider

a geometry consisting of long, thin, strips with thicknesses of tens of nanometers,

widths of hundreds of nanometers, and lengths of tens of microns. When liquefied by

laser pulses of typical duration of tens of nanoseconds, these strips quickly retract

into filaments that then break up into drops, where the spacing of the drops is

not uniform, but instead obeys a distribution consistent with the prediction of the

classical Rayleigh–Plateau analysis. This mechanism of breakup can be explained

surprisingly well by an analogy with the Rayleigh–Plateau analysis of the breakup

of a free standing fluid jet, modified by the presence of substrate, as discussed in

[54]. Following the analysis in [54], [34] show that varying the width of the deposited

metal strip by a sinusoidal perturbation of a well defined wavelength can be used to

produce an array of uniformly spaced particles, as long as this imposed wavelength

is unstable, based on the Rayleigh–Plateau instability analysis. They show that

perturbing by stable (short) wavelengths leads to distances between the particles

that are nonuniform and not related to the imposed perturbation. In this paper, we

explore whether one could overcome this limitation by appropriately choosing the

initial fluid geometry.

Before discussing this question further, we outline briefly the basic framework

determining the stability of liquid jets. The classical Rayleigh–Plateau linear stability

analysis predicts that radial sinusoidal perturbations of a standing jet of radius R,

with wavenumber k = 2π/λ, and small amplitude, grow or decay with the growth

rate, ω, specified by

ω2 =
γ

ρR3

(

kR(1− k2R2)
I1(kR)

I0(kR)

)

(4.1)

where γ is the surface tension, ρ the density, and I0 and I1 the modified Bessel

functions [29, 69]. This result predicts a critical wavelength, λc, below which modes
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(a) (b)

Figure 4.1 Two perturbation geometries for assembling arrays of nanoparticles:
(a) sinusoidal initial geometry and (b) rectangular-wave initial geometry. The
rectangular-wave geometry consists of a central strip of width w and height h; the
perpendicular protrusions have an amplitude Ap, width wp, and period λp.

are stable, as 2πR. Rayleigh [69] derived the growth rate when the effects of viscosity

are ignored; we should note, however, that the critical wavenumber predicted based

on the Rayleigh–Plateau analysis remains unchanged when considering viscous effects

[26]. We also note that Eq. (4.1) applies to small amplitude varicose modes of any

waveform, as these can be decomposed into sinusoidal component modes via a Fourier

transform.

The presence of a substrate naturally modifies Eq. (4.1). Viscous and

viscointertial limits of the dispersion relation for a filament on a substrate are derived

by [13]. The LSA based on long–wave theory demonstrates that λc is modified only

slightly by the presence of the substrate, showing a weak dependence on the contact

angle (the angle at which the interface between the liquid phase and an ambient phase,

such as a surrounding vapor, meets a solid surface) [54, 34, 19, 21]. Several methods

for calculating λc for a filament on a substrate are compared in [21]; importantly,

for a contact angle of π/2, the critical wavelength remains exactly the same as that

predicted by the Rayleigh–Plateau analysis.

As mentioned above, the Rayleigh–Plateau driven breakup limits how closely

spaced particles can be based on the critical wavelength. To overcome this

limitation, in an experimentally focused study, [72] introduce a rectangular-wave type

perturbation form. The initial geometry consists of a central strip of width w and
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height h, to which perpendicular protrusions are attached, with amplitude Ap, width

wp, and period λp, as illustrated in Figure 4.1 (b). Such a structure can be compared

with a strip whose cross sectional area is given by

Ωeff = h(w + 2Apwp/λp) = Ω0 + 2Aphwp/λp

where Ω0 is the cross sectional area of the main strip (without protrusions), and Ωeff

is the average cross sectional area obtained when the total amount of liquid (including

protrusions) is distributed evenly over a wavelength λp. We call Ωeff an effective cross

sectional area. In [72], this rectangular-wave type of geometry is found to lead to a

one-dimensional array of particles spaced by λp/p, for p ≥ 1.

The focus of this chapter is to use computational tools to uncover the influence of

the initial geometry on the instability development. While our results are general and

apply to any setup such that the initial geometry can be controlled, for definitiveness

we chose relevant length and time scales as well as material parameters corresponding

to metal filaments of nano-scale thickness, as in [72]. We computationally investigate

the effects of varying parameters on conditions for which the breakup occurs and

demonstrate that not only is it possible to destabilize the structure when λp <

λc(Ωeff ), but it is also possible to destabilize a structure when λp < λc(Ω0). That is,

despite the additional liquid added into the system by the protrusions, we can actually

induce the strip to break up with a period less than its own critical wavelength,

leading, as a final outcome, to particles spaced much closer than that would appear

possible by considering the Rayleigh–Plateau predictions. This finding is surprising

and also potentially very useful, since in many applications, it is desirable to have

closely spaced particles [62]. Our results show that nonlinear effects are crucial in

determining the size and spacing of the final drops.

The rest of this chapter is organized as follows. In Section 4.2, we outline

the simulation setup. The results are given in Section 4.3, including description
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of the basic instability mechanism, classification of various end states uncovered

by the simulations, and dependence of the results on the parameters defining the

perturbations. In Section 4.4, we discuss in more details some crucial aspects of the

instability mechanism. The conclusions and the outline of future work are presented

in Section 4.5.

4.2 Setup

Figure 4.1 (b) shows our initial geometry, which is a flat strip with a rectangular-wave

edge perturbation similar to the one considered by [72]. The geometry consists of what

we refer to as a ‘central strip’ defined by

{(x, y, z)| y < h, z < w/2}

and ‘protrusions’ defined by

{(x, y, z)| y < h, |z| < (w/2 + Ap), |x− nλp| < wp/2, for n ∈ Z}

Throughout this chapter, we take the central strip to be specified by h = 10 nm

and w = 100 nm. As described above, experimental studies begin by depositing

metal in prescribed geometries such as a strip with an edge perturbation, and then

liquefying these structures with laser pulses. While in the experiments the metal

geometries may be going through repeated melting and solidification, in this study

we neglect the effects of phase change, and furthermore assume that temperature

variation of material parameters (viscosity, density, surface tension) is not crucial

for the purpose of understanding the main mechanisms leading to instability. In

addition to the experimental evidence discussed below, these approximations are

motivated by our desire to focus on the influence of the initial geometry on instability

development in a general setting. In the particular case of laser-irradiated metals,

thermal simulations [34] suggest that the phase change itself happens on a very fast
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time scale. A simplified model addressed by [90] also indicates that the heating of

nanometallic films takes place rapidly, leading to a sharp, short lived peak in the

temperature. In the present study, we are essentially assuming that during the time

metal is in liquid phase we can ignore temperature variations. This approach is

supported further by the fact that the constant temperature model has generally

been very successful in modeling the breakup of nanometallic films [34, 54, 72]. With

these simplifications, the evolution of the initial structure is thus governed by the

Navier–Stokes equations for an isothermal fluid. We consider an initial geometry

that is far from equilibrium, and rapidly evolves to what we refer to as its ‘end state’.

As discussed in more detail below, the computational solver we use requires

the presence of two fluids, and therefore we consider two phases that are immiscible

and incompressible, separated by an interface: metal in its liquid phase, and the

ambient phase. The governing equations under these assumptions become the two-

phase Navier-Stokes equations We model this system by means of two phases: the

liquid phase represents the liquid metal, and the vapor phase is an ambient phase

which is taken to be insignificant. The governing equations are the dimensional

Navier-Stokes equations, Eq. (2.1)-(2.2), For our simulations, we use the physical

values of liquid nickel (Ni) used in [72], so that ρl = 7905 Kg/m3, µl = 0.0047

Pa·s, and γ = 1.781 N/m. The values of µv and ρv are chosen to minimize the

effects of the ambient phase; we discuss these values further when the numerical

methods are described. We note that Eq. (2.1) does not include the effects of the

disjoining pressure. Previous models of similar problems, based on long–wave theory,

included the disjoining pressure to model partial wetting and the linear stability of

the interface, as discussed by [54]. In this chapter, partial wetting is introduced

by the method described for 3D in Chapter 2. Furthermore, we expect that the

interfacial instability due to the disjoining pressure effects is weak compared to other

effects; a rough estimate shows that the breakup time of a uniform 10 nm film by the
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disjoining pressure is considerably longer than the evolution time of the structures

we consider here (see the linear stability analysis in [24]). Our current model and

computational methods were previously shown to result in good qualitative agreement

when compared to the experimental results in [72].

On the solid substrate, we impose the Navier slip boundary condition given

by Eq. (2.4). Experimental results for various fluids and substrates have generally

reported significant slip on surfaces with large contact angles [16], with a range of

possible slip lengths depending on the surface topography and chemistry [65]. Often,

a slip length on the order of 100 nm is reported for systems with contact angles

ranging from 95◦ to 105◦ [16, 53, 65]. [3] also show that the slip is large in the

present system by comparing the Navier-Stokes solutions with molecular dynamics

simulations of nano-scale metal films by [37]. In this chapter, we briefly survey the

effects of varying slip, but unless noted otherwise, we take Λ = 60 nm. This particular

value of slip length is motivated by the work of [72], where good agreement between

the simulation results and the experimental data was obtained for this value of Λ. We

also set the contact angle to 90◦ for all the results, since this simplifies the numerical

implementation considerably. We note that in a previous study, very good agreement

with experiments was found when using this value of contact angle in the simulations

[72]. Furthermore, similar experiments reported in [34] show an equilibrium contact

angle of 88◦, very close to the value used in this chapter.

To present the considered model in a more general setting, we rewrite Eq. (2.1)-

(2.2) in a dimensionless form. We take the scales as L = w = 100 nm, and T = 1

ns, based on the typical in plane dimensions and the observed retraction times. We
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define the following dimensionless quantities

x̃ =
x

L
t̃ =

t

T
ρ̃ =

ρ

ρl
µ̃ =

µ

µl

ũ =
L

T u p̃ =
T
µl

p

κ̃ = κL δ̃s = δsL

Re =
ρlL

2

µlT
Ca =

µlL

γT

With these scales, our dimensionless equations are

Re ρ̃
(

∂t̃ũ+ ũ · ∇̃ũ
)

= −∇̃p̃+ ∇̃ ·
(

µ̃
(

∇̃ũ+ ∇̃ũT
))

+ Ca−1κ̃δ̃sn (4.2)

∇̃ · ũ = 0 (4.3)

For our choice of parameters, the Reynolds number and capillary number are,

respectively, Re ≈ 16.8, Ca ≈ 0.26, so the evolution takes place in a regime with

a moderate dominance of inertial and surface tension effects over viscosity. The

relevance of inertial effects, as well as the fact that contact angles involved are large,

support the use of the direct numerical modeling as described next.

We directly solve the Navier-Stokes equations using Gerris. Spatial discretization

is carried out using an adaptive octree; our adaptive mesh resolves the interface

at a resolution of approximately 1 nm, and regions of high curvature are resolved

to approximately 0.5 nm. The simulations that we present in Section 4.3-4.4 are

insensitive to any further refinements in the mesh. In order to minimize the effect

of the ambient phase, we set µv = 0.01µl and ρv = 0.2ρl. This choice of ρv

is a compromise between minimizing the influence of the ambient fluid and the

computational cost of having very large differences between the ρl and ρv. For all

the computations, we only simulate a half of the period due to symmetry, so that

0 ≤ x ≤ λp/2. Simulations with a computational domain of a full period were run for
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selected cases, and no difference was observed when compared with the half period

simulations. In subsequent figures, we will often mirror the domain when we plot the

simulations results, so that one or more periods are visible.

The partial wetting of Ni on the silicon dioxide (SiO2) substrate is modeled by

imposing a mirror condition on T , equivalent to a 90◦ contact angle. The limitation

of imposing a 90◦ contact angle is not intrinsic to the Volume of Fluid method [2],

however the numerical implementation of this contact angle is considerably simpler

(and also arbitrary contact angles are not currently implemented in Gerris). Since the

contact angle in the experiments [72] is very close (88◦), the use of this simplification

is well justified.

When a long strip of width w = 100 nm and height h = 10 nm is placed on

a surface, it rapidly retracts to a half cylinder, which we call a filament, of radius

r0 =
√

2wh/π ≈ 25 nm; we remind the reader that this value of r0 remains constant

throughout this chapter, since it describes the radius of the half cylinder corresponding

to the central strip alone (without perturbation). Eq. (4.1) therefore predicts that

the critical wavelength of the central strip is approximately 160 nm. This result

is consistent with the Volume of Fluid simulations; we find that a half-cylindrical

filament of radius r0 is unstable when perturbed by a sinusoidal mode of small

amplitude and a wavelength greater than approximately 160 nm, and stable for

smaller perturbation wavelengths. This result is insensitive to the slip length Λ;

we tested the critical wavelength of such filaments with Λ = 10 nm, Λ = 60 nm, and

a free slip boundary condition (equivalent to Λ → ∞ limit, and also to a standing

jet), and found the critical wavelength to be the same to an accuracy of about 1%. We

therefore use Eq. (4.1) to calculate the critical wavelength for filaments throughout

this chapter. While Eq. (4.1) strictly applies only to small perturbations, we will

show below that at least in the present setting it also describes stability of sinusoidal

perturbations, even if they are not small.
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4.3 Results

We first investigate the case λp = 150 nm, below the critical wavelength, λc = 2πr0 ≈

160 nm, which is predicted by the Rayleigh–Plateau analysis for the central strip.

Figure 4.2 (a) shows the breakup for Ap = 110 nm and wp = 75 nm. The cross

section shows the pressure distribution in the liquid as it breaks up. The initially

imposed shape quickly evolves, resulting in a low pressure bulge at the protrusion

centers, (x, z) = (nλp, 0), adjacent to which are higher pressure areas on all sides

(t = 0.5 ns). As the protrusions collapse, the bulge accumulates more liquid, while

higher pressure necks form between the bulges, (x, z) = (n+ 1/2)λp (t = 1.0 ns); we

note that at this point, the protrusions have collapsed to introduce a perturbation

with considerable negative curvature at the necks; in the present case the forces

leading to breakup overpower this stabilizing curvature. Eventually the necks pinch

off (t = 1.5 ns), and the bulges form separate drops with a center to center spacing

equal to λp, with each drop containing all of the liquid per λp (t = 10 ns).

We can contrast the described evolution with the one of a sinusoidal shape

perturbation, with the same λp and total liquid volume. Figure 4.2 (b) shows the

results at same times as shown in Figure 4.2 (a). For sinusoidal perturbations, the

evolution follows a similar path initially, with the protrusions retracting towards the

central strip, and the half-cylindrical necks forming between the bulges centered on

(x, z) = (nλp, 0). However, we see that the pressure gradient is smaller between

the bulges and the adjacent portions of the structure (t = 0.5 ns). The protrusions

collapse more quickly, resulting in a structure resembling a half-cylindrical filament

perturbed by a large amplitude sinusoidal perturbation of wavelength λp (t = 1 ns).

Ultimately, the mode decays, and the end state is a filament, as one would expect

based on the Rayleigh–Plateau stability predictions.

We can make a few broad rationalizations of the origin of the difference between

the results obtained using sinusoidal and rectangular-wave perturbations. First, we
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(a) (b)

Figure 4.2 Time evolution and the pressure distribution for the rectangular-wave
and sinusoidal geometries with a perturbation wavelength of 150 nm: (a) rectangular-
wave perturbed strip with Ap = 110 nm, wp = 75 nm (see also Movie (2) in
Supplementary Material) and (b) sinusoidally perturbed strip of the same volume
as in (a) with ws = 100 nm, As = 110 nm; see Figure 4.1 for the definition of all
geometric quantities. Each box is 75 nm by 75 nm, and the pressure scale is the same
for both figures.
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Figure 4.3 Time evolution of the velocity field in the z = 0 plane for times t = 0.5,
1.0, and 1.5 ns, for (a) the rectangular-wave, and (b) sinusoidal geometries. The
respective parameters are the same as in Figure 4.2. The solid curve shows the
interface. The arrows show the velocity in both the liquid and ambient phases.
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observe that the protrusion collapses more slowly for the rectangular-wave geometry,

as the liquid is distributed evenly along the protrusion, sustaining a lower relative

pressure in the bulge (compare t = 1 ns results in both cases). However, even before

the protrusion collapses, we see in Figure 4.2 that at 0.5 ns, there is a relatively

higher pressure near x = (n+ 1/2)λp. We conjecture that the difference between the

evolution of the two considered geometries is due to the different initial curvatures,

and consequently Laplace pressures, at x = (n + 1/2)λp. Ignoring the effects of

viscosity, the Laplace pressure gives the pressure jump across the interface as γκ.

For the rectangular-wave geometry, the initial curvature in the x-z plane is zero at

the midpoint between the protrusions; however, the sinusoidal geometry leads to

a negative curvature in the x-z plane, and therefore to a decrease in the Laplace

pressure, stabilizing the strip.

In addition to the rectangular waveform perturbation, we have considered the

breakup of other initial configurations, which we mention here only briefly. We

find that triangle waveform patterns (with a base attached to the central filament)

break up similarly to sinusoidal type geometries and so do not display the richness

of behavior as the rectangular waveform perturbation. If a vertex of a triangular

perturbation is connected to a filament, a breakup occurs at the vertex, without

influencing stability of the filament. Therefore, it appears that a rectangular waveform

perturbation is the most obvious one if the goal is to modify the stability properties

of the central filament.

Figure 4.3 plots the velocity field of each geometry from Figure 4.2 in the plane

z = 0, for x ∈ (−λp/2, λp/2), where again λp = 75 nm. For the rectangular-wave

geometry (Figure 4.3 (a)), at t = 0.5 ns, a vortex has developed at the interface

approximately midway between the origin and the centers of the necks, draining the

liquid away from x = ±75 nm and into the low pressure bulge centered at x = 0. This

trend continues for t = 1.0 ns, with the velocity being comparatively small outside
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of the necks. For t = 1.5 ns, the necks have almost completely vanished; however

small vortices near x = ±75 nm continue to drive the flow out of the neck regions

until rupture occurs. Meanwhile, for the sinusoidal geometry (Figure 4.3 (b)), at

t = 0.5, the vortex that is seen for rectangular-wave geometry is not observed; while

a small component of the velocity field towards x = 0 is present, the overall trend

is predominantly in the positive y-direction. The difference between the rectangular-

wave and the sinusoidal geometry is more stark for t = 1.0 ns, where the bulge that

has developed at x = 0 is expanding along the x-axis, while the velocity is relatively

small near x = ±75 nm. At t = 1.5 ns, the sinusoidal geometry shows a velocity

field directed in the negative y-direction, and away from x = 0, so that the system is

relaxing to a cylindrical geometry.

Next, we consider the evolution of the rectangular-wave structure when varying

the size of the protrusions. Figure 4.4 shows the structures characterized by the same

dimensions as in Figure 4.2, except that in Figure 4.4 (a), Ap = 100 nm, and in

Figure 4.4 (b), Ap = 300 nm. When Ap is too small, the structure does not break up,

meaning that there is a critical amplitude, Ac, below which breakup does not occur.

For small Ap, the protrusions collapse too quickly, so that the low pressure region

in the junction is not sustained long enough for breakup to occur. The existence of

Ac is consistent with the Rayleigh-Plateau stability predictions, since for sufficiently

small Ap, linear stability should hold independently of the perturbation shape. On

the other hand, when Ap is sufficiently large, a secondary breakup occurs, such that

the protrusions form separate side-drops that then recoalesce to form central drops

at x = nλp. A similar situation is observed in experiments [72]. We note (and discuss

further below) that for very large Ap, a set of side drops form as the particles do not

recoalesce, similar to the two-dimensional array of end drops observed in [72] (see

also Movies (1) and (3) in Supplementary Material). A more complete discussion of

possible breakup mechanisms is given next; as we will see, there is still a more diverse
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(a) (b)

Figure 4.4 Time evolution and the pressure distribution for λp = 150 nm, wp = 75
nm, showing a stable case and a case with secondary protrusion breakup: (a) Ap = 100
nm, and (b) Ap = 300 nm. Each box is 75 nm by 75 nm, and the pressure scale is
the same as in Figure 4.2. Movies (1) and (3) in the Supplementary Material show
(a) and (b), respectively.

51



(a) (b)

Figure 4.5 (a) Classification of end states resulting from the relaxation of the
rectangular-wave geometry defined in Figure 4.1 (b). Each symbol below a sketch of
a possible end state is used in the following figures to show that this particular end
state is observed. The end state consisting of three parallel filaments is not observed
for the parameters considered and is included for completeness. (b) Classification
of dynamics. Filled symbols show the cases when either the protrusion breaks, the
central strip breaks, or no breakup occurs at any time, and the color of each indicates
which of these cases is observed. Hollow symbols show cases when both the central
strip and the protrusions of the rectangular-wave break up, and the color shows the
order of the breakup scenarios.

range of end states to be described. Animations demonstrating some of the possible

dynamics and end states for the rectangular waveform perturbation are presented in

Supplementary Material. For now, it is important to emphasize the most interesting

point: although perturbations add to the total volume and may therefore be expected

to stabilize short wavelengths, their influence may be opposite, leading actually to

instability at perturbation wavelengths that would be expected to be stable based on

the classical Rayleigh–Plateau prediction.
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4.3.1 Parametric Dependence

In this section, we explore the dependence of the dynamics on the parameters Ap, wp,

and λp. To reduce the number of parameters, unless otherwise noted, we fix Λ = 60

nm, as well as w = 100 nm and h = 10 nm.

Figure 4.5 classifies the dependence of the breakup process on wp and Ap for two

wavelengths, λp. Figure 4.5 (a) shows the observed end configurations. As shown,

a diverse range of end states can be achieved by harnessing this initial geometry.

The one-dimensional arrays (circle) and arrays with side drops (square), as also

observed in [72], are accompanied by additional configurations such as a filament

(triangle), a filament with side drops (inverted triangle), and a one-dimensional array

with side filaments (diamond). Although not observed for these parameters, a sixth

state, consisting of three parallel filaments, is also possible. We note that within

the considered framework, any resulting filaments ultimately should destabilize due

to the Rayleigh–Plateau instability mechanism, and an array of drops should form

with a distribution according to the prediction of the Rayleigh–Plateau analysis as

discussed in [54]. However, this subsequent breakup takes place significantly later

than the formation of the filament; Eq. (4.1) suggests that a filament resulting from,

say, Ap = 110 nm, λp = 150 nm, wp = 75 nm, would take nearly twice as long to

break up when compared to the time the filament would take to form (2 ns versus

4.5 ns), and this second phase of the evolution is not considered in this chapter. In

the context of liquid metal films, that are in liquid state for a short time, any state

discussed here may as well be the final outcome.

Figure 4.5 (b) shows the relevant dynamics of the breakup; our goal is to classify

what type of breakup occurs, during any point in the evolution of the structure, even

if later on, there is recoalescence. We classify the evolution of this system according to

whether the protrusions and/or the central strip break up, and the order in which the

breakup occurs. Hollow symbols show that both the protrusion and the central strip
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rupture, and the color corresponds to whether the protrusions break off before the

central strip ruptures (red symbols), after the central strip ruptures (green symbols),

or at approximately the same time as the central strip ruptures (blue symbols). All

other cases are shown using filled symbols: blue indicates that no breakup occurs at

any time during the relaxation, red that only the protrusions break off, and green

that only the central strip ruptures. These breakup scenarios may be followed by a

secondary recoalescence of drops to produce the static states discussed above. The end

state is not independent of the dynamics; for example, when the end state includes

side drops and side filaments, indicated by an inverted triangle, a square, and a

diamond in Figure 4.5 (a), this must be accompanied by the protrusions breaking

off (filled green, hollow red, hollow green, and hollow blue symbols in Figure 4.5).

We find that decoupling the classification of the end states and dynamics will more

effectively facilitate discussion of the parametric dependence.

Figure 4.6 (a) summarizes the possible static and dynamic states for λp = 150

nm. Let us first consider an intermediate range of wp for which a breakup occurs.

Within this range, we find that there is a critical amplitude, Ac, below which there

will be no breakup and the end state is a filament, and above which the central strip

will rupture at some point, as indicated by the color. We find that this critical value,

Ac, is about 110 nm for larger values of wp, and it increases to between 150 and

200 nm as wp decreases. However, once Ap is above this critical value, there is no

further effect on the stability of the central strip. That is, once Ap is sufficiently

large, any further increase does not affect whether or not the central strip breaks up

at some point in time. For wp between 65 nm and 95 nm, side drops form when

Ap = 500 nm; for small wp (25 nm . wp . 45 nm), side drops form for smaller Ap,

although the strip does not rupture for wp = 25 nm. For large Ap, if side drops do not

form, the protrusions introduce a large amount of excess liquid which may prevent
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Figure 4.6 Phase plots classifying the dynamics and end states for the relaxation
of the geometry shown in Figure 4.1 (b), for two values of λp. The symbols shape
gives the end state produced by the breakup (Figure 4.5 (a)), while the symbol color
classifies the dynamics (Figure 4.5 (b)). (a) λp = 150 nm and (b) λp = 130 nm. The
dashed curves show constant effective cross sectional area, Ωeff . The area increases
from bottom left to top right.
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the formation of a central array, even though the central strip does break up (see for

example wp = 95 nm, Ap = 200 nm and 300 nm).

The stability of the central strip is also affected by the protrusion width, wp.

For small wp, such as 25 nm shown in Figure 4.6 (a), the central filament remains

stable for all values of Ap, and the protrusions may either not break at all for small

Ap, break off and coalesce for larger Ap, or break off and remain separated for even

larger values of Ap. For larger wp (greater than about 45 nm), there exists a critical

amplitude, Ac, such that the central filament ruptures. It is interesting to note that

for wp = 45 nm and Ap large, the protrusion breaks off first, yet the central strip still

ruptures. This may seem counterintuitive, as the protrusions drive the breakup of

the central strip. However, in these cases, the time at which the protrusions break is

comparable to the time when the central strip breaks, indicating that a sufficiently

large perturbation is still imparted to the strip that breakup could occur even in

the absence of the protrusion. For very large wp, such as wp = 125 nm, the central

filament remains stable; for large values of Ap, the protrusions break off from the

filament at some point of the evolution, but eventually recoalesce.

Figure 4.6 (b) shows the corresponding results for λp = 130 nm. For this smaller

λp, a much narrower range of parameters allows for the formation of arrays of drops.

Instead, we most often find either a filament of liquid, or a filament with side drops. To

explain this, first note that for the same value of Ap and wp, there is a larger effective

area, Ωeff , for λp = 130 nm than for λp = 150 nm. Larger Ωeff implies that any drops

resulting from breakup will not only be more closely spaced due to the smaller value

of λp, but also larger in radius, which will tend to lead to recoalescence. Second, as

the structure begins its retraction, smaller λp implies a larger negative curvature in

the x-z plane at x = (n+1/2)λp, which will tend to stabilize the structure. When the

central strip does rupture at some point during the retraction, increasing Ap to 500

nm, for large enough wp, leads to the unique case of a one-dimensional array of drops
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Figure 4.7 Parametric dependence on the slip length Λ for Λ = 10 nm, 60 nm,
and ∞ (free slip condition). Symbols and colors indicate the same static states and
dynamics as in Figure 4.5. The parameters λp and wp are fixed at 150 nm and 75
nm, respectively.

with side filaments on either side, as the large amount of liquid and narrower spacing

leads to the coalescence of the side drops produced by the protrusions breaking off.

We note that in addition to λp = 130 nm, we also considered λp = 110 nm, but

for such a small λ we did not find breakup of the central strip for any combination

of protrusion parameters. Also, geometries characterized by larger values of λp are

considered numerically and experimentally in [72]; drops resulting from the breakup

of large λp geometries tend not to recoalesce, leading to arrays of drops with spacing

exactly equal to λp, and as λp is increased further, further drops may form leading to

arrays with spacing of λp/2 or smaller.

Finally, we briefly consider the effects of slip length, Λ, on the results. We

consider the effect of Λ only for wp = 75 nm and λp = 150 nm, while permitting Ap

to vary; this parameter set is sufficient to demonstrate the main effects of slip on the
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dynamics of breakup. Figure 4.7 shows three important consequences of slip on both

the dynamic and static states. First, for small Ap, smaller Λ promotes breakup of

the central strip; this is due to the fact that, in order for the central strip to break

up, the protrusion must not collapse too quickly, so that a smaller slip delays the

collapse of the protrusion and allows breakup. Thus, the critical amplitude above

which breakup occurs, Ac, increases with Λ. Second, for large Ap, small Λ prevents

recoalescence of the side drops with the liquid near z = 0, so that an array with side

drops is possible for smaller Ap, as indicated by the square symbols. Lastly, large Λ

facilitates recoalescence of drops; for the free slip case, note that even when rupture

of the central strip occurs, the drops inevitably recoalesce when Ap > 175 nm.

4.4 Discussion

4.4.1 Relation to Rayleigh–Plateau Instability Mechanism

One important finding so far is that the chosen rectangular-wave geometry leads to

the formation of drops characterized by a spacing that is appreciably smaller than the

critical wavelength expected from the prediction of the Rayleigh–Plateau instability

analysis. This holds true even if only the cross sectional area of the central strip, Ω0, is

considered: of course, if the total area (including protrusions), Ωeff , is used, the result

leads to even higher efficiency when compared to the Rayleigh–Plateau prediction.

To be specific, the central strip considered so far has a critical Rayleigh–Plateau

wavelength of λc(Ω0) ≈ 160 nm, and our simulation results find particle formation

for λp = 130 and 150 nm. In particular, for λp = 150 nm, parameters leading to the

formation of a one-dimensional array of drops (indicated by a circle in Figure 4.6)

show λc(Ωeff ) to be 1.5-2 times larger than λp.
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4.4.2 Role of the Effective Area

Recall Figure 4.6, where we plot dashed curves showing constant Ωeff . Consider first

λp = 150 nm, plotted in Figure 4.6 (a). For relatively small Ωeff , (indicated by lines

in the lower left corner), it is impossible to destabilize a strip, as either the protrusions

must be so thin (small wp) that they break off without destabilizing effect, or Ap is

below the critical value. In the other extreme, for large Ωeff (top right corner), either

Ap must be so large that side drops form, or wp must be so large that no breakup

occurs. Thus, only strips with an intermediate range of Ωeff result in one-dimensional

arrays of drops. We also note that differing parameters lead to a variety of results

for the same Ωeff . Consider the line of constant Ωeff passing near wp = 45 nm and

Ap = 300 nm (plotted as a dash-dotted line in Figure 4.6 (a) ). Large amplitude

perturbations permit the formation of a two-dimensional array, as indicated by a

square. Moving rightwards along the line, decreasing Ap results in a one-dimensional

array (see, e.g., wp = 75 nm and Ap = 175 nm), while further reduction in Ap leads

to an end state which is a filament (see, e.g., wp = 125 nm and Ap = 100 nm).

Figure 4.6 (b) shows the corresponding results for λp = 130 nm. Similarly to

Figure 4.6 (a), perturbations of strips with small Ωeff (lower left corner) do not lead

to the formation of an array, while perturbations of strips with large Ωeff (upper right

corner) result in either a filament or an array of drops with side filaments. Only strips

with an intermediate range of Ωeff result in one and two-dimensional arrays. Just as

in the λp = 150 nm case, the end state for the same Ωeff depends on the choice of Ap

and wp. To show this, consider the line passing near wp = 65 nm and Ap = 175 nm

(plotted as a dash-dotted line); we see that only a small range of parameters permits

the formation of an array of drops. For larger wp, breakup of the central strip still

occurs, but these drops subsequently recoalesce. Thus, for both λp = 130 nm and

150 nm, Ωeff does not determine the end state, as varying wp and Ap can completely
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Figure 4.8 Parametric dependence on λp and wp for Ap = 150 nm. Symbols and
colors indicate the same end states and dynamics as in Figure 4.6. Dashed lines show
curves of constant effective cross sectional area, Ωeff . The area increases from bottom
right to top left.

change both the type of breakup that occurs, as well as whether or not recoalescence

occurs after any breakup.

Next, we discuss the effect of λp on the breakup. Figure 4.8 shows (λp, wp)

phase diagram for a fixed Ap = 150 nm, with curves of constant effective areas, Ωeff .

This plot shows that larger λp perturbations tend to promote breakup. This holds

when moving along lines of constant Ωeff from wp = 75 nm and λp = 150 nm, which

results in a one-dimensional array of drops, to wp = 65 nm and λp = 130 nm, where

no breakup occurs at all. Similarly, perturbed strips with Ωeff that break up for

λp = 130 nm (red symbols) do not break up for λp = 120 nm (blue symbols). As

noted above, small Ωeff results in strips that do not break up, so that no breakup

occurs for λp = 130 nm, and wp ≤ 65 nm. It is worth noting here that λp has little

effect on the behavior of the protrusions when wp is fixed. For wp ≤ 45 nm, Figure 4.8

shows that for all λp, the protrusions break off, as indicated by the green color. On
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the other hand, for wp ≥ 65 nm, the protrusions do not break off, as indicated by the

red and blue colors.

4.4.3 Summary of the Breakup

We are now in the position to summarize the mechanism by which the rectangular-

wave geometry breaks up. The primary driving mechanism of the breakup is based on

the fact that the cross-shaped geometry near x = nλp leads to an initial negative x-z

curvature, which, as the structure begins its initial retraction, results in the formation

of a low pressure bulge. Along the central strip, near x = (n + 1/2)λp, the liquid

retracts to a half-cylinder. A positive x-y curvature of magnitude 1/
√

2hw/π leads to

a large corresponding Laplace pressure at x = (n+ 1/2)λp between two low pressure

bulges at x = nλp, and so liquid drains out of the neck into the bulges, leading to

breakup.

Figures 4.6 (a) and 4.6 (b) show that neither the end state nor the dynamics

are entirely determined by the effective area Ωeff . For strips with a small Ωeff , either

the perturbation has a small Ap and it cannot break the strip up, or wp is so small

that the protrusions form side drops, and the strip still does not break up. Strips

with large Ωeff may break up, and then either a two-dimensional array forms, or the

drops will recoalesce into a filament. Only for strips with an intermediate range of

Ωeff is a one-dimensional array of drops a possible end state.

Since the dynamics of the retraction may vary with the same Ωeff , and changing

the amount of liquid per wavelength necessarily changes the possible end states, it is

necessary to consider any breakup in terms of the dynamics (classification shown by

color in Figure 4.6 (a) and Figure 4.6 (b)). The amplitude Ap is only important in

that it must be larger than a critical one, Ac, in order for the central strip to break up.

For larger values of Ap and a fixed wp, the central strip does not change its dynamics;
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that is, once breakup is possible, any further increase in Ap does not affect whether

or not the central strip breaks up at some point in time.

Whenever drops form, it is found that the resulting center to center spacing is

always equal to λp, and as discussed in Section 4.4.1, λp is generally smaller than

the smallest possible spacing that can be understood using the Rayleigh–Plateau

instability analysis. Thus, a rectangular-wave edge perturbation is a highly effective

way of generating arrays of closely spaced drops, far below what would be possible

when using the Rayleigh–Plateau driven breakup. However, if λp and Ωeff are

specified, determined by a desired drop size and spacing for a one-dimensional array,

then at least one of wp and Ap is a free parameter, which can completely change the

end state resulting from the breakup.

4.4.4 Formation of Satellite Drops

The end state for a variety of parameters for λp = 150 nm includes small satellite

drops between the drops in the central array; no satellite drops are present in the

end state when λp = 130 nm. Figure 4.9 (a) shows the snapshots of the drop, for

Ap = 150 nm, λp = 150 nm, and wp = 75 nm, just prior to breakup (left), and at the

end state (right). Prior to the breakup, a very thin filament connects the two drops;

after the breakup, there are small satellite drops located at x = (n + 1/2)λp. The

formation of these satellite drops is due to the fact that the thin filament breaks up

near its ends. Figure 4.9 (b) shows a close up of the connecting filament just prior

to (left) and after (right) the breakup. Just prior to the breakup, the connecting

filament begins to neck at a point close to the primary drop, which results in the

filament breaking up near its ends. After breakup, this filament retracts into a small

satellite drop. The size of the satellite drop is therefore determined by the amount

of liquid in the connecting filament. Figure 4.9 (c) shows the radius of the satellite

drops for all parameters when the central strip breaks up and a satellite drop results,
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Figure 4.9 (a) Satellite drops for wp = 75 nm and Ap = 150 nm. One box is 75 nm
by 75 nm. (b) Close up of the breakup of the filament connecting primary drops for
wp = 75 nm and Ap = 150 nm. Note that a mirror condition is applied at the solid
black line, so that this represents half of the filament. (c) Satellite drop radius for
wp = 65 nm (red), wp = 75 nm (green), wp = 85 nm (blue), and wp = 95 nm (hollow
red). Circles indicate that the equilibrium is a one-dimensional array, and squares
that the end state is an array with side drops. For these results, λp = 150 nm.
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for λp = 150 nm. In general, larger wp leads to larger satellite drops. Regarding the

influence of Ap, we find that the size of the satellite drop peaks for Ap = 150 nm, and

is approximately the same for larger values of Ap. We generally find that Ap and wp

influence the formation of different length filaments and consequently the formation

of satellite drops of different sizes. We note, however, that the size of satellite drops

depend on the nature of the evolution in a complicated manner, whether protrusions

break up or not, and/or when they break up. We leave the investigation of this issue

for future work.

4.5 Conclusions

In this chapter, we show that the initial geometry of a fluid deposited on a substrate

has a strong influence on the morphology of the final patterns that result due to the

fluid instability. In particular, we find that appropriate choices of the initial geometry

may lead to instabilities even in configurations that are expected to be stable based

on the analogy with the Rayleigh–Plateau instability mechanism. Our computational

results show that the initial liquid shape strongly influences the distribution of the

pressure in the liquid. Therefore, rectangular waveform perturbations, considered in

this chapter, lead to evolution that is considerably different from, for example, the

one resulting if sinusoidal waveform perturbations are applied.

While the methods that we use are of general validity, we concentrate

particularly on recent experiments carried out with liquid metals on nano-scale, where

the ability to control the location and size distribution of the resulting nanoparticles

is of fundamental interest in applications in the field of nano-assembly. We show that

a diverse range of nanoparticle arrays can be observed and that the rectangular-wave

geometries perturbed by short wavelengths (shorter than the critical wavelength

predicted by the Rayleigh–Plateau instability) exhibit a complex nonlinear evolution.

We classify the dynamic behavior as well as the end states for the perturbations that
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differ by their aspect ratio and the perturbation wavelengths, λp. We demonstrate

that it is possible to produce arrays of drops with the spacing, λp, as small as half

the critical wavelength predicted by the Rayleigh–Plateau instability mechanism.

Added complexity is introduced by the fact that the aspect ratio of the introduced

perturbations plays an important role: for example, given an ‘effective’ area, Ωeff

(total volume of the liquid per λp), a significantly different evolution can be observed

for different aspect ratios. Depending on the parameters, one-dimensional arrays

of drops for an intermediate range of Ωeff can then be obtained; larger Ωeff tends

to produce central arrays of drops with drop arrays on the sides (two-dimensional

arrays), while smaller Ωeff structures do not break up. Additional configurations are

possible as well, see Figure 4.5 for a complete classification.

One particular feature of the instabilities that are observed in this study is

the complex coupling between the dynamics and end configurations, with differing

dynamics leading to possibly the same end states, as illustrated in Figure 4.5.

Our study demonstrates some, perhaps not obvious, features of the instability

development. For example, we find that the perturbation amplitude, Ap, in general

has to be larger than a critical value, Ac, for breakup to occur, and for some

cases, increasing Ap results in the final state transitioning from a filament, to a

one-dimensional array, back to a filament, and into a two-dimensional array of drops.

Decreasing λp tends to prevent the formation of drops, and for a very small λp, the

central strip does not rupture at all. The slip length, Λ, is found to have a significant

effect on the formation of arrays and the stability of the structures, with a smaller Λ

associated with breakup and the formation of arrays, and a larger Λ either preventing

the breakup altogether, or leading to recoalescence of the resulting drops after the

breakup occurs. Therefore, by varying the geometry and slip, it is possible to obtain,

in a controllable manner, a large range of different dynamics, and a variety of end

states.
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In this chapter we consider a relatively simple liquid geometry, although the

evolution dynamics turns out to be far from simple. We leave the consideration of

the variation of the contact angle, Reynolds number, and capillary number, to future

work. Ongoing work in material science makes these future studies highly relevant.
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CHAPTER 5

A VOLUME OF FLUID METHOD FOR SIMULATING FLUID/FLUID

INTERFACES IN CONTACT WITH SOLID BOUNDARIES

5.1 Introduction

In the previous chapters, we have discussed the application of Gerris to specific

problems involving contact lines and film instabilities. However, as we previously

pointed out, a critical component of contact line physics has not previously been

taken into account by Volume of Fluid based solvers: the interaction between liquids

and solids, consisting of attraction at long ranges and repulsion at short ranges. In

this chapter, we present a computational framework for the inclusion of a general

fluid/solid interaction in the context of contact line simulation. This approach allows

for computing fluid wetting properties (such as equilibrium contact angle) based on

first principles, and without restriction to small contact angles.

The motivation for this work are the long–wave models that we have discussed

in detail in Chapter 3. By taking into account the liquid/solid interaction in the form

of disjoining pressure, in these models the contact angle is an emergent property of

the simulation of the underlying physics, and consequently also the film instability

that was discussed in Chapter 1. The disjoining pressure formulation which is

used includes the van der Waals or electrostatic interactions into the model in the

form of a local pressure contribution acting on the fluid/solid interface; however

in addition to the simplifying assumptions already embedded in the long–wave

model, this fluid/solid interaction term is derived under the assumption of a flat

film [14, 15, 20, 48]. Therefore these approaches cannot be trivially extended to the

configurations involving large contact angles.
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Here, we present a novel approach, based on a Volume of Fluid formulation,

which includes the fluid/solid interaction forces into the governing Navier-Stokes

equations, without limitations inherent in the long–wave model. This inclusion allows

for arbitrary contact angles to be incorporated based on modeling the underlying

physics, in contrast to conventional Volume of Fluid methods. The presented

approach also leads to the regularization of the viscous stress since the fluid film

thickness never becomes zero. Furthermore, our framework can account for additional

physical effects, such as instability and breakup of thin fluid films, that would not be

described if fluid/solid interaction forces were not explicitly included. We note here

that while film rupture can also occur in phase-field based approaches (as in [49]),

this seems to be due to the presence of a rather thick interface, and not due to the

explicit inclusion of destabilizing fluid/solid interaction forces.

In the present chapter we focus on formulating and discretizing the model, and

on discussing issues related to convergence and accuracy. To validate our proposed

numerical scheme, we consider two representative examples, involving relaxation

and spreading of sessile drops with various contact angles on a substrate. These

benchmark cases permit comparison of our results with well established analytical

solutions for a particular flow regime. The application of the method to the study of

thin film stability including dewetting will be considered in the sequel [56].

The rest of this chapter is organized as follows. We describe the details of the

fluid/solid interaction in Section 5.2. In Section 5.3, we describe two finite-volume

methods for the discretization of the considered fluid/solid interaction forces. The

presentation in these two sections applies to any generic fluids. In Section 5.4 we

present a comparison of the two considered discretization methods for equilibrium

and spreading drops, for a particular choice of material parameters. In Section 5.5,

we give an overview and future outlook.
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5.2 Model

Consider a perfectly flat solid substrate covered by two immiscible fluids. There

are three relevant interfacial energies: the liquid/solid, γls, the vapor/solid, γvs, and

the liquid/vapor, γ, energies. The contact angle is commonly defined as the angle

between the tangent plane of the interface between the liquid and vapor phases and

the solid substrate at the point where the interface meets the surface. At equilibrium,

the contact angle, θeq, and the surface energies are related by Young’s Equation [95]:

γvs = γls + γ cos θeq (5.1)

If there is a nonzero contact angle at equilibrium, the liquid partially wets the solid

surface; if the equilibrium configuration is a flat layer covering the whole substrate,

then it fully wets the solid surface. It is also possible for the liquid to be non-wetting,

where the liquid beads up into a sphere on the surface. The wetting behavior of the

system can be characterized by the equilibrium spreading coefficient, defined by:

Seq = γvs − (γls + γ) (5.2)

which expresses the difference in energy per unit area between a surface with no liquid,

and one with a layer of liquid (what we call ‘dry’ and ‘wet’ states, respectively).

Wetting is determined by the sign of Seq; partial wetting occurs for Seq < 0, and

complete wetting for Seq = 0 [10].

The above characterization of the contact angle is straightforward for static

configurations and at macroscopic length scales. If these assumptions are not satisfied,

definitions of contact angles become more complex. In the literature, a distinction

is made between the apparent contact angle, θap, and the microscopic contact angle,

θm, distinguished by the distance from the contact line at which the measurement is

made [28]. The contact angle resulting from measuring on macroscopic length scales

is θap, while θm is measured at short length scales which are still long enough so that
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the continuum limit is appropriate [10, 76, 92]. The microscopic contact angle, θm, is

often identified with θeq, which is commonly used in the derivation of spreading laws,

such as the classical Cox-Voinov law [92]. It should be noted that the details of the

fluid behavior on nano scales in the vicinity of the fluid fronts and associated contact

lines are far from being completely understood [10], and the way in which the contact

angle arises at small scales is a subject of ongoing research [78].

The surface energies entering Eq. (5.1) and Eq. (5.2) arise due to the van der

Waals interaction between the different phases that are relevant on short length scales.

Three kinds of van der Waals interactions are usually considered: interactions between

polar molecules, interaction of molecules that have an induced polarization, and the

dispersion forces [48]. The dispersion interaction is relevant for all molecules, and will

be the only one that we consider. A common model for approximating the dispersion

interaction of two particles, of phases i and j, centered at x0 and x1 is the 12-6

Lennard Jones potential [48]:

φLJ(r) = 4ǫij

(

(σ

r

)12

−
(σ

r

)6
)

(5.3)

This potential has a minimum, ǫij, at r = 21/6σ, and for simplicity we assume that σ

is a constant for any two interacting particles. The center distance between the two

particles is given by:

r =
√

(x0 − x1)2 + (y0 − y1)2 + (z0 − z1)2

The powers 12 and 6 in Eq. (5.3) correspond to short range repulsion and long range

attraction, respectively. For our purposes, we generalize this formulation and use the

following form:

φij(r) = K∗

ij

((σ

r

)p

−
(σ

r

)q)

(5.4)
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Here K∗
ij is the scale of the potential well, having units of energy per particle pair

interaction. In general, we require only that p > q are integers, such that q > 3, for

reasons that will become clear shortly.

Our model considers two fluid phases, a liquid phase and a vapor phase

occupying the region y > 0, interacting with a flat, half infinite, solid substrate

(subscript s) in the region y < 0. Consider now a particle located at x0 = (x0, y0, z0)

of phase i (where i is either l or v). The interaction energy between this particle and

the substrate per unit volume of the substrate is:

ψis(r) = nsφis(r) (5.5)

where ns is the particle density in the substrate.

We derive the force per unit volume following a similar procedure outlined

in [52]. Integrating Eq. (5.5) over the region y < 0 yields the following total interaction

of a particle in phase i with the substrate:

∫ 0

−∞

∫

∞

∞

∫

∞

−∞

ψis(r)dxdzdy = 2πnsK
∗

isσ
3

[

1

(2− p)(3− p)

(

σ

y0

)p−3

− 1

(2− q)(3− q)

(

σ

y0

)q−3
]

Although the van der Waals interaction is not strictly additive, the effects due to

non-additivity are usually weak [48], and we ignore them for simplicity.

Multiplying by ni, the particle density in phase i, we obtain the van der Waals

interaction per unit volume of phase i:

Φis(y0) = 2πninsK
∗

isσ
3

[

1

(2− p)(3− p)

(

σ

y0

)p−3

− 1

(2− q)(3− q)

(

σ

y0

)q−3
]

(5.6)
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We introduce the following parameters:

Kis = 2πninsK
∗

isσ
3

(

[(p− 2)(p− 3)]q−3

[(q − 2)(q − 3)]p−3

)
1

p−q

(5.7)

h∗ =

[

(q − 2)(q − 3)

(p− 2)(p− 3)

]
1

p−q

σ (5.8)

m = p− 3 n = q − 3

This simplifies Eq. (5.6) to:

Φis(y) = Kis

[(

h∗

y

)m

−
(

h∗

y

)n]

(5.9)

The quantity h∗ is referred to as the ‘equilibrium film thickness’ and will be considered

in more detail below. Note that Eq. (5.9) has an identical form as Eq. (5.4).

The force per unit volume on phase i that results from the potential is computed

by taking the gradient of Eq. (5.9):

Fis(y) = −∇Φis(y) =
Kis

h∗

[

m

(

h∗

y

)m+1

− n
(

h∗

y

)n+1
]

ŷ (5.10)

Here ŷ refers to the unit vector (0, 1, 0).

We proceed to derive an expression for θeq in terms of Kls and Kvs in Eq. (5.9)

according to the microscopic arguments outlined in [14]. Combining Eqs. (5.1) and

(5.2), we obtain the following expression for the equilibrium spreading coefficient:

Seq = γ(cos θeq − 1) (5.11)

where Seq is the difference in the energy per unit area between a dry system and a

wet system. The total energy required to remove a liquid layer originally occupying

δ0 < y <∞ and replace it with a layer of the vapor phase is given by:

∆E =

∫

∞

δ0

(φvs − φls)dy (5.12)
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If δ0 is the smallest distance between particles of the substrate and fluids when they

are in contact, Eq. (5.12) specifies the total energy required to completely remove

the liquid from the substrate. Even if δ0 takes a larger value, Eq. (5.12) consistently

describes the energy difference between a wet system, and a dry system which consists

of a fluid layer of thickness δ0 wetting the solid substrate.

Performing the integration in Eq. (5.12), we obtain:

Seq = (Kvs −Kls)h
∗

[

1

m− 1

(

h∗

δ0

)m−1

− 1

n− 1

(

h∗

δ0

)n−1
]

(5.13)

In order to be in a partial wetting regime, i.e. where there is a non-zero contact angle,

we require Seq < 0. Based on Eq. (5.13), we find:

1. δ0 >
(

n−1
m−1

)
1

m−n h∗: In this case, the attractive term in Eq. (5.13) dominates.

This leads to a negative spreading coefficient only if Kvs > Kls, so that the

vapor phase must experience a greater attraction than the liquid phase in order

to be in a partial wetting regime.

2. δ0 <
(

n−1
m−1

)
1

m−n h∗: In this case, the repulsive term in Eq. (5.13) dominates, and

partial wetting is possible when Kvs < Kls.

The first case states that when δ0 is large, the vapor phase must interact more strongly

with the substrate than the liquid phase; the reverse is true when δ0 is small. For

example, the second case must hold for partial wetting of a drop surrounded by a

vacuum.

For comparison, the method of imposing the contact angle in long–wave

described in Chapter 3 is very similar. In particular, it states that the pressure

jump across the flat interface of a film of thickness h is given by

pv − pl = Π(h) (5.14)
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where Π(h) is defined in Eq. (3.5), and pv and pl refer to the pressure in the vapor

and the liquid respectively. The definition of the parameter h∗ in Π(h) is identical to

that of Eq. (5.13).

Following the example of disjoining pressure, we consider situations such that

there is a layer of thickness h∗ completely covering the surface even when the fluid

is partially wetting. In particular, this means that we assume that δ0 = h∗, so that

in Eq. (5.12), the liquid is removed only to a thickness h∗. This value of δ0 has the

convenient property that it allows for Eq. (5.13) to be simplified, while the presence of

a wetting layer over the whole substrate removes the contact line singularity. Plugging

δ0 = h∗ into Eq. (5.13), and substituting in the expression for Seq from Eq. (5.11), we

obtain the following expression for the difference between Kvs and Kls as a function

of θeq:

Kvs −Kls =
γ(1− cos θeq)

h∗

(

(m− 1)(n− 1)

m− n

)

(5.15)

Therefore, only the difference Kvs−Kls is needed to specify θeq. Similar formulations

appear in the long–wave literature [24, 74]. Note that since Eq. (5.12) assumes that

the fluid occupies a half infinite domain in the wet state, Eq. (5.15) is satisfied exactly

only in the limit where h∗ is vanishingly small relative to the drop thickness.

To summarize, in this section we have formulated a method that allows for the

inclusion of fluid/solid interaction forces without the limitations inherent in long–wave

theory, such as negligible inertia and small interfacial slope. Next we proceed to

discuss numerical implementation.

5.3 Numerical Methods

Equations (5.9) and (5.10) present a difficulty in that they diverge as y → 0. This

can be dealt with by introducing a cutoff length, i.e. forcing Fis = 0 when y is less

than the cutoff. This method has the drawback of making the force discontinuous,
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and may lead to poor numerical convergence. For this reason, we introduce a shifted

potential:

Φ̂is = Kis

[(

h∗

y + hc

)m

−
(

h∗

y + hc

)n]

(5.16)

where hc is some parameter less than h∗. Equation (5.16) removes the singular portion

of the potential near y → 0 for a small hc, and is equal to zero at y = h∗ − hc, but

otherwise keeps the same functional form. We refer to films occupying 0 ≤ y ≤

h∗− hc as equilibrium films, and h∗− hc as the equilibrium film thickness. The force

corresponding to Eq. (5.16) is given by

F̂is =
Kis

h∗

[

m

(

h∗

y + hc

)m+1

− n
(

h∗

y + hc

)n+1
]

ŷ (5.17)

Recall the characteristic function χ defined in Chapter 2, which takes the value 1

inside the liquid phase and 0 elsewhere. We can write the total body force more

compactly as follows:

F̂B(y) = χF̂ls + (1− χ)F̂vs (5.18)

where the interaction strength explicitly depends on the phase through χ, so that

K(1) = Kls and K(0) = Kvs.

The governing equations for this chapter are Eq. (2.1), subject to an additional

force from Eq. (5.17):

ρ(χ)(∂tu+ u · ∇u) = −∇p+∇ ·
[

µ(χ)(∇u+∇uT )
]

+ γκδsn

+ F̂B(y) (5.19)

∇ · u = 0 (5.20)
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Letting L be the length scale, and T the time scale, we define the following

dimensionless variables:

x̃ =
x

L
ỹ =

y + hc
L

z̃ =
z

L
t̃ =

t

T
h̃∗ =

h∗

L
h̃c =

hc
L

ũ =
uT
L

p̃ =
L

γ
p

κ̃ = Lκ δ̃s = Lδs

With these scales, and dropping the tildes, the dimensionless Navier-Stokes equations

are as follows:

We(χ)(∂tu+ u · ∇u) = −∇p+∇ ·
[

Ca(χ)(∇u+∇uT )
]

+ κδsn

+ FB(y) (5.21)

∇ · u = 0 (5.22)

where

FB(y) = K(χ)F(y)ŷ = K(χ)

[

m

(

h∗

y

)m+1

− n
(

h∗

y

)n+1
]

ŷ (5.23)

Here, the dimensionless y-coordinate is translated, so that F(h∗) = 0, and the

equilibrium film occupies hc ≤ y ≤ h∗. The (phase-dependent) dimensionless numbers

are the Weber number, We, the capillary number, Ca, and the force scale for the van
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Figure 5.1 Illustration of the quad-tree used to discretize the computational
domain. The mesh resolution can be chosen adaptively, so that each cell C has a
corresponding size ∆C. The red curve shows the piecewise linear reconstruction of
the liquid/vapor interface obtained using the Volume of Fluid method.

der Waals interaction, K, given by the following:

We(χ) =
ρ(χ)L3

T 2γ
= χWel + (1− χ)Wev =

L3

T 2γ
(χρl + (1− χ)ρv) (5.24)

Ca(χ) =
µ(χ)L

γT = χCal + (1− χ)Cav =
L

γT (χµl + (1− χ)µv) (5.25)

K(χ) =
K(χ)L
h∗γ

= χKls + (1− χ)Kvs =
L

h∗γ
(χKls + (1− χ)Kvs) (5.26)

Upon nondimensionalization, Eq. (5.15) yields the following expression for θeq:

∆K(θeq) := Kvs −Kls =
(1− cos θeq)

h∗2

(

(m− 1)(n− 1)

(m− n)

)

(5.27)

Again, the system Eqs. (5.21)-(5.22) is solved using Gerris. A typical adaptive

mesh used by Gerris is illustrated in Figure. 5.1; note that we consider the

implementation in two spatial dimensions from now onward. In order to develop

our method, some more detail about the finite-volume approach is required. The

finite-volume method treats each cell C as a control volume, so that the variables

associated with C represent the volume averaged value of the variable over C. Each

cell has a size ∆C, and center coordinates (xc, yc). The Volume of Fluid method tracks

the interface implicitly by defining a volume fraction function, T (C), which gives the

fraction of the volume of C occupied by the liquid phase. T (C) is advected by the
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fluid flow according to the following equation:

∂tT +∇ · (uT ) = 0 (5.28)

The value of We and Ca in a cell C are then represented using an average:

We(C) = WelT (C) +Wev(1− T (C))

Ca(C) = CalT (C) + Cav(1− T (C))

Here, as before, subscript l corresponds to liquid, and v to the vapor phase.

The exact average of the force over the computational cell, C, is given by:

FB(C) =
1

∆2
C

∫ ∫

C

K(χ(x, y))F(y)dC ŷ

=
1

∆2
C

∫ ∫

C

[Klsχ(x, y) +Kvs(1− χ(x, y))]F(y)dC ŷ (5.29)

where F(y) is defined by Eq. (5.23). We detail two possibilities for the discretization

of the van der Waals force term in Eq. (5.21). For both of these methods, the force

is included explicitly in the predictor step of the projection method.

Method I:

Our first method proceeds by a simple second order discretization of Eq. (5.29):

FI(C) =
F(yc)
∆2

C

∫ ∫

C

[Klsχ(x, y) +Kvs(1− χ(x, y))] dC ŷ

=

[F(yc)
∆2

C

Kls

∫ ∫

C

χ(x, y)dC + F(yc)
∆2

C

Kvs

∫ ∫

C

(1− χ(x, y))dC
]

ŷ

We identify the average of χ over C with T (C), yielding the following expression:

FI(C) = [T (C)Kls + (1− T (C))Kvs]F(yc) ŷ (5.30)

However, we note that the accuracy of this simple method can deteriorate at low

mesh resolutions because F has a large gradient as y → 0. Consider a cell such that

78



T (C) = 1. To a first approximation, the error in Eq. (5.30) is given by:

E = |FB(C)− FI(C)| =
∣

∣

∣

∣

Kls
∆2

C

24
F ′′(yc) + o(∆2

C)

∣

∣

∣

∣

≈ ∆2
C

24

Kls

h∗2

∣

∣

∣

∣

∣

m(m+ 1)(m+ 2)

(

h∗

y

)m+3

−n(n+ 1)(n+ 2)

(

h∗

y

)n+3
∣

∣

∣

∣

∣

To show that this can lead to large errors, consider the error when ∆C = h∗ − hc, in

a cell with center at yc = (h∗ + hc)/2, i.e. for a cell along the bottom boundary when

h∗ is just barely resolved. The error in this cell is:

E1 =
(1− hc/h∗)2

24
Kls

∣

∣

∣

∣

∣

m(m+ 1)(m+ 2)

(

2

1 + hc/h∗

)m+3

−n(n+ 1)(n+ 2)

(

2

1 + hc/h∗

)n+3
∣

∣

∣

∣

∣

The lower bound of this error can be shown to be:

E1 >
(1− hc/h∗)2

24
Kls (m(m+ 1)(m+ 2)− n(n+ 1)(n+ 2))

Since m ≥ n+ 1, we can bound this further by:

E1 >
(1− hc/h∗)2

8
Klsm(m+ 1) (5.31)

Note that E1 is not the discretization error, but the error found for a fixed grid size.

Recalling that Eq. (5.27) implies that Kls is proportional to 1/(h∗)2, so if hc

is significantly smaller than h∗ the errors are quite large unless ∆C is much smaller

than h∗. Furthermore, h∗ is generally small relative to the length scale of the drop

considered in Eq. (5.13), so that the mesh size required to accurately resolve the right

hand side of Eq. (5.29) will increase the computational cost.

Method II:
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Cv

Cl

Cv

Cl

xa xb xd xe

(a) (b)

Figure 5.2 Illustration of a cell with 0 < T (C) < 1: (a) cut cell divided into regions
Cl and Cv entirely occupied by the liquid and vapor phases, respectively, and (b)
illustration of the regions of integration of a cut cell. The linear reconstruction of the
interface from the Volume of Fluid method is shown by the red line.

Since Eq. (5.23) gives an exact formula for the force per unit volume in a single

phase, much of the simplification used in deriving Eq. (5.30) is unnecessary. For

the second method, we take advantage of this fact to more accurately approximate

Eq. (5.29). First, note that it is trivial to integrate Eq. (5.29) when T (C) = 1 or

T (C) = 0. Moreover, the Volume of Fluid method gives additional information beyond

just the fraction of the cell occupied by the liquid phase; using the reconstructed

interface, we have an approximation of the portion of the cell which is occupied by

the liquid phase as well. Therefore, we introduce the following alternative method.

Consider a cell C with center (xc, yc), where 0 < T (C) < 1, so that the Volume of

Fluid method yields a linear reconstruction of the interface in the cell. This interface

divides the cell into a region occupied by the liquid phase, Cl, and a region occupied

by the vapor phase, Cv (see Figure 5.2). We can write a general algorithm to integrate

over these regions, yielding the following expression for the average force on cell C:

FII(C) =
[Kls

∆2
C

∫ ∫

Cl

F(y)dxdy + Kvs

∆2
C

∫ ∫

Cv

F(y)dxdy
]

ŷ (5.32)

We briefly outline the general process to perform the integrations over Cl and Cv.

Let the Volume of Fluid reconstructed interface in the cell be given by M · x = α,
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where M = (Mx,My) is a normal pointing into the liquid phase. We only present the

problem of integrating over Cl, since Cv involves an analogous procedure. If |Mx| < ξ,

for a small tolerance ξ, the interface is approximately horizontal; thus the integration

of F(y) over Cl becomes:

1

∆2
C

∫ ∫

Cl

F(y)dxdy =
1

∆

∫ yc−∆/2+T∆

yc−∆/2

F(y)dy

On the other hand, if |My| < ξ, the interface is approximately vertical, and the

integration over Cl becomes:

1

∆2
C

∫ ∫

Cl

F(y)dxdy =
T

∆

∫ yc+∆/2

yc−∆/2

F(y)dy

We can now proceed to provide general formulas when |My| > ξ and |Mx| > ξ. Since

F(y) is independent of x, the sign of the interfacial slope is irrelevant, so, without

loss of generality, suppose that Mx/My > 0. Define the following values:

xa = xc −∆C/2

xb = max

(−My(yc +∆C/2) + α

Mx

, xc −∆C/2

)

xd = min

(−My(yc −∆C/2) + α

Mx

, xc +∆C/2

)

xe = xc +∆C/2

If My < 0, the integration over Cl can be expressed as follows:

1

∆2
C

∫ ∫

Cl

F(y)dxdy =

1

∆2
C

[

(xb − xa)
∫ yc+∆/2

yc−∆/2

Fdy +
∫ xd

xb

∫

−Mx/Myx+α/My

yc−∆/2

Fdydx
]

(5.33)
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On the other hand, if My > 0, the integration over Cl is given by:

1

∆2
C

∫ ∫

Cl

F(y)dxdy =

1

∆2
C

[

∫ xd

xb

∫ yc+∆/2

−Mx/Myx+α/My

Fdydx+ (xe − xd)
∫ yc+∆/2

yc−∆/2

Fdy
]

(5.34)

Thus, in two dimensions, the general process of integration reduces to integration

over two regions. Note again that F(y) is known exactly, so that the integrals in

Eqs. (5.33)-(5.34) can be computed exactly, in contrast to the large error for Method

I in Eq. (5.31). Therefore, we conclude that regarding approximation of Eq. (5.29),

Method II is superior. For example, for a single phase fluid, or when the interface

is flat, Eq. (5.32) is exact. We will consider both Method I and Method II in what

follows and discuss their performance.

Our computational domain is rectangular, with x ∈ (0, xmax) and y ∈ (hc, ymax).

Throughout the remainder of the chapter, we will impose a homogeneous Neumann

boundary condition on all boundaries for the pressure, p. For the velocity field,

we will apply a homogeneous Neumann boundary condition at all boundaries except

y = hc, where we will apply one of the following two boundary conditions; the no-slip,

no-penetration condition by setting u to 0 on the substrate:

(u, v)|y=hc
= (0, 0)

or a free-slip condition by:

∂yu|y=hc
= 0 v|y=hc

= 0

The boundary condition for the van der Waals force is straightforward. At y = hc,

we set

FI,II |y=hc
= KlsF(hc)
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At y = ymax, we set

FI,II |y=ymax
= KvsF(ymax)

The boundary condition for the volume fraction, T , is again homogeneous Neumann

on all boundaries, except on the bottom boundary, where we apply

T |y=hc
= 1

which is equivalent to taking the bottom boundary to always be wetted with the

liquid phase.

5.4 Results

In this section, we consider simulations of the full Navier-Stokes equations in which

contact angles have been imposed using the van der Waals force, which is included

using Methods I and II described in Section 5.3. Our simulation setup consists of a

drop on an equilibrium film, initially at rest, which then relaxes to equilibrium under

the influence of the van der Waals force. We compare Methods I and II for a drop

which is initially close to its equilibrium contact angle, as predicted by Eq. (5.27), as

well as for a spreading drop which is initially far from its equilibrium. Furthermore,

we consider the effect of equilibrium film thickness for small, intermediate, and large

contact angles, using Method II.

In simulations, drops are surrounded by an equilibrium film of thickness h̄∗ :=

h∗ − hc defined by y < h∗, where hc is the amount the force is translated by in

Eq. (5.17). The initial profile is given by the following:

{

(x, y) : x2 + (y +R cos θi − h∗)2 < R2 or y < h∗
}

(5.35)

Here R is chosen so that the total area of the circular cap is equal to A0 = π0.752/2.

The quantity θi is the initial contact angle of the drop. In all simulations, we fix the
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ratio of these length scales so that h∗ = 2hc. Various values of the exponents m and n

in Eq. (5.23) can be found in the literature, in particular (m,n) = (9, 3), (4, 3), (3, 2)

have been used in the context of the disjoining pressure in thin films [18, 40], the

former corresponding to the 12-6 Lennard Jones potential. In this chapter we will

restrict our attention to (m,n) = (3, 2), which was shown to lead to favorable

agreement with experiments involving liquid metal films [40]. Different exponents

may affect the structure of the contact line region and the pressure distribution, but

do not impact significantly the results presented here.

There are four contact angles that we consider in this section. The initial

contact angle, θi, as in Eq. (5.35), specifies the angle formed by the tangent of the

initial circular profile with the equilibrium film at the point where they meet. The

(time dependent) apparent contact angle is denoted θ, and the numerical equilibrium

angle θnum is the value of θ when the system under consideration is in equilibrium;

θ is measured by a circle fit procedure described below. Finally, we refer to the

imposed contact angle, θeq, which we use to specify Kvs − Kls via Eq. (5.27); the

only relevant quantity is the difference between Kvs and Kls, but for definiteness, we

set Kvs = 1.1∆K(θeq) and Kls = 0.1∆K(θeq). The value of θeq differs from θnum

in simulations because h∗ is small but non negligible relative to the thickness of the

drop.

We measure θ according to the following procedure. A drop has a circular cap

shape that transitions smoothly to the equilibrium film. We define the contact angle

in this context in the following way: let ±xinf represent the points of inflection of the

drop profile. We perform a least squares fit of a circle to the profile over the interval

(−xinf , xinf ). The point at which the fitted circle intersects the equilibrium film is

called the contact point (in three dimensions, this is the contact line). θ is measured

as the angle the fitted circle makes with the equilibrium film at the contact point.
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Figure 5.3 Pressure distribution for a drop with θeq = π/2, h∗ = 0.03, at
equilibrium. The pressure is normalized by the (non-dimensional) capillary pressure
of the equilibrium drop, which is given by the curvature of the interface far from the
contact point, where it is approximately circular. The solid black curve shows the
Volume of Fluid reconstructed interface, and the dashed curve is the initial profile;
∆ = 1/256.

We first investigate a static drop, with h∗ = 0.03 and θi = π/2, which is then

allowed to relax to its equilibrium shape. The dimensionless numbers are set to

be Wel = Wev = Cal = Cav = 0.05. We set the material parameters to be the

same in both fluid phases in order to restrict our attention to a smaller parameter

space, so that we can focus on the properties of Methods I and II. Note that since

the expression determining θeq, Eq. (5.27), does not depend on the fluid parameters,

this choice does not affect the equilibrium shape. The computational domain is

(x, y) ∈ [0, 2]× [hc, 1+ hc]; the domain is resolved at a constant resolution. A no-slip

boundary condition is imposed on the solid boundary, y = hc.

Figure 5.3 shows such a drop at equilibrium (with the contact angle imposed

using Method II). The equilibrium film has negative pressure with very high absolute

value, and its thickness at equilibrium differs from h̄∗ by about 3%. With this h∗,

there is a noticeable difference between the true equilibrium contact angle found by

simulations, θnum, and the imposed angle θeq. The effect of h∗ on the equilibrium

drop shape will be considered below.
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Figure 5.4 The convergence of the L1 norm of the difference between T (C) at ∆
and ∆ = 1/256, for a drop at equilibrium with θeq = π/2, h∗ = 0.03, with a uniform
mesh size ∆.

Figure 5.4 shows the convergence for Methods I and II for a uniform mesh.

Simulations are run until time t = 1.75, with a constant time step of ∆t ≈ 2.8 ×

10−5; the stability constraint due to the explicit discretization of the surface tension

dominates in this velocity regime, and this time step ensures that this constraint is

satisfied for all resolutions we consider (see [67]). For two sets of volume fractions T1

and T2 such that T2 is computed on a quad-tree Q with mesh-size ∆Q, the L
1 norm

is computed according to the following formula:

||T1(C)− T2(C)|| =
∑

C∈Q

|T1(C)− T2(C)|∆2
Q (5.36)

In this case ∆Q = 1/256, and T1(C) is equal to T1 on the largest cell containing C. For

reference, ∆ = 1/32 is about h∗, so that the low resolution case is not even resolving

the equilibrium film. Both methods perform comparably well at ∆ = 1/64, 1/128,

with Method I converging slightly faster. However, at low resolutions, ∆ = 1/32,

Method II performs significantly better.

We now move onto the question of how a drop behaves when θi is far from

θnum. The initial shape of the drop is as above, with h∗ = 0.03, R = 0.75, so that

θi = π/2. At y = hc, we use free-slip since it allows the drop to reach its steady
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Figure 5.5 Pressure distribution for a drop at equilibrium with θeq = π/6. Initially,
θi = π/2, and the drop spreads to its equilibrium configuration, defined by θeq = π/6.
The initial profile is shown by the dashed curve. As in Figure 5.3, the pressure is
normalized by the capillary pressure of the equilibrium drop; ∆ = 1/256.

state more quickly, reducing computational time. The simulation domain is (x, y) ∈

[0, 4]× [hc, 1 + hc]. For these simulations, we will set Wel = Wev = Cal = Cav = 1.

We note that even with this choice of parameters, the dimensionless contact point

speed is sufficiently small so that surface tension effects still dominate over viscous

effects (or precisely speaking, the capillary number defined based on the speed of

the contact point is still small). As before, we use the same material parameters

for both phases, and note that, provided that the capillary number is small, varying

the ratios between the phases will only affect the relaxation time; we will expand

on this point below. Here, we impose a small contact angle of θeq = π/6. Unlike

the above, we use an adaptive mesh which refines regions to a level of ∆max near the

liquid/vapor interface, or if there is a high gradient in FB. We will vary ∆max in what

follows to study the convergence with respect to the maximum resolution. Figure 5.5

shows the initial and equilibrium profiles and pressure distribution when the drop

reaches equilibrium, computed using Method II. The pressure inside the liquid phase

is near unity, while the pressure in the vapor phase just above the equilibrium film
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Figure 5.6 Front location for the spreading drop for varying resolution for (a)
Methods I and (b) Method II. The maximum mesh resolution is ∆max = ∆.

Figure 5.7 Convergence of the front location of spreading drops, for Methods I and
II, where the error is estimated according to Eq. (5.37).
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is five times the capillary pressure. The equilibrium contact angle in Figure 5.5 is

θnum ≈ π/7.

Figure 5.8 Cox-Voinov law for the spreading drop. The blue (solid) curve shows
simulation results for a drop spreading from θi = π/2 to equilibrium, with an imposed
contact angle of θeq = π/6 using Method II. The black (dashed) line is proportional
to vf , and the agreement with the blue (solid) curve shows that the drop spreading
approximately satisfies the Cox-Voinov law.

Figure 5.6 shows the front locations for the spreading drops as a function of

time for Method I and Method II. Both methods show broadly similar results, with

Method II appearing to slightly outperform Method I in terms of convergence. In

order to compute the convergence, we calculate the error as:

E(∆)I,II =
1

100

∫ 100

0

|xf (t)∆ − xf (t)∆=1/256|dt (5.37)

Here xf (t)∆ is the front location computed with ∆max = ∆, and xf (t)∆=1/256 is the

front location computed with ∆max = 1/256. Figure 5.7 shows the errors. Method II

displays significantly better convergence for the front location as a function of time.

We briefly compare the qualitative behavior of the spreading drop to the well

known Cox-Voinov law [92], discussed in Chapter 3. For a drop displacing another
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Figure 5.9 Equilibrium profiles with θeq = θi = π/2 for various values of h∗. The
black (dotted) profile shows the initial condition for h∗ = 0.015. We plot ȳ = y − hc
so that for each curve the y range is (0, 1).

immiscible fluid on a solid surface, the speed of the contact point, vf , is related to θi

and θnum to leading order by [17]:

θ3 − θ3num ∝ vf (5.38)

Note that Eq. (5.38) is derived under the assumption that µlvf/σ ≪ 1, i.e. that

the capillary number defined using the front velocity is small. Provided that one

is in this regime, the choice of material parameters only impacts the constant of

proportionality in Eq. (5.38). Figure 5.8 shows vf versus θ3 − θ3num using Method

II, for ∆max = 1/256. The blue (solid) line shows the numerical results, and the

black (dashed) line shows the slope expected if the Cox-Voinov law is obeyed. We

see that after initial transients vf decreases with θ3 − θ3num, and the drop spreading

approximately satisfies the Cox-Voinov law for vf ∈ (10−2, 10−3).

Next, we turn our attention to the precise value of the contact angle. As shown

in Figure. 5.3 and 5.5, the actual equilibrium contact angle, θnum, is generally smaller

than the imposed angle θeq. This is due to the fact that Eq. (5.27) is derived under

the assumption of small h∗, while in our simulations the ratio of drop radius and h∗
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Table 5.1 Dependence of θnum on h∗. We Calculate θnum Using a Circle
Fit. The Third Column gives the Relative Difference Between θnum and θeq.
The Fourth Column is the L1 Norm of the Difference Between the Initial
Volume Fractions Ti(C) and the Equilibrium Tf (C).

h∗ θnum |θnum − θeq|/θeq ||Ti(C)− Tf (C)||

0.03 1.37 0.125 0.05

0.015 1.47 0.066 0.03

0.0075 1.53 0.025 0.009

is about 25. To confirm the above statement, we analyze in more detail the resulting

contact angles as h∗ is varied. We set θeq = π/2 using Method II, and the resolution

is fixed at a uniform ∆ = 1/256. The value of h∗ varies over 0.03, 0.015, and 0.0075.

The initial condition is imposed with θi = π/2 as in Eq. (5.35). The drop is again

permitted to relax to its equilibrium with a fixed time step for 1.75 units of time.

Figure 5.9 shows the equilibrium profiles for various values of h∗. The black (dotted)

profile is the initial condition for h∗ = 0.015, and is included as a reference. As h∗ is

decreased, the equilibrium profiles are characterized by contact angles closer to θeq.

We quantify the dependence of θnum on h∗ in Table 5.1. As before, we compute

the contact angle θnum using a circle fit of the drop after 1.75 units of time, at a

fixed time step for all simulations. As h∗ is reduced, the calculated θnum approaches

θeq = π/2. The relative difference between θnum and θeq reduces with h
∗ approximately

linearly. These measures however depend on the accuracy of the estimation of θnum; to

analyze the convergence more directly, we compare the volume fractions of the initial

condition, Ti(C), with the equilibrium state Tf (C), using an L1 norm computed as

Eq. (5.36). Initially, θi = θeq, so this comparison provides a measure of the difference

between θnum and θeq. This difference again decreases approximately linearly with

h∗.
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Figure 5.10 Dependence of the drop profile at equilibrium on h∗ for (a) θeq = π/4
and (b) θeq = 3π/4. The black (dotted) profile shows the initial condition for h∗ =
0.015. As in Figure 5.9, we plot ȳ = y−hc so that for each curve the y range is (0, 1).
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Finally, we consider the effects of varying h∗ for θeq other than π/2. Figure

5.10 (a) shows the equilibrium drop profiles for θeq = θi = π/4 and varying h∗,

and Figure 5.10 (b) shows the same for θeq = θi = 3π/4. For θeq = π/4, as h∗

decreases, the profile quickly converges to the initial condition and hence the contact

angle to θeq, as seen by the comparison of the black (dotted) curve with that of h∗ =

0.0075 in Figure 5.10 (a). For θeq = 3π/4, it can be seen that even for h∗ = 0.0075,

the drop profile still shows some difference between θnum and θeq. Nonetheless, this

plot demonstrates a central advantage of our methods: θnum larger than π/2 can be

simulated with the van der Waals force.

5.5 Conclusions

In this chapter, we have described a novel approach for including the fluid/solid

interaction forces, into a direct solver of the Navier-Stokes equations with a Volume

of Fluid interface tracking method. The model does not restrict the contact angles

to be small, and therefore, can be used to accurately model wetting and dewetting of

fluids on substrates characterized by arbitrary contact angles. We study the problem

of a two-dimensional drop on a substrate and compare the results with the Cox-Voinov

law for drop spreading. These validations and results illustrate the applicability of

our proposed method to model flow problems involving contact lines. Furthermore,

our approach has the desirable property of regularizing the viscous stress singularity

at a moving contact line since it naturally introduces an equilibrium fluid film.

We have considered two alternative finite-volume discretizations of the van

der Waals force term that enters the governing equations to include the fluid/solid

interaction forces. These two methods are complementary in terms of their accuracy

and the ease of use, and therefore the choice of the method could be governed by

the desired features of the results. In particular, Method I discretizations can be

straightforwardly extended to the third spatial dimension. However, we have shown
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that, when implementing Method I, to guarantee accurate results, sufficient spatial

resolution of the computational mesh must be used. We also show that Method

II does not suffer accuracy deterioration at low mesh resolutions, and is therefore,

superior to Method I, and furthermore outperforms Method I for spreading drops at

all resolutions, albeit being more involved to implement.

The presented approach opens the door for modeling problems that could not

be described so far, in particular dewetting and associated film breakup for fluids

characterized by large contact angles. Furthermore, the model permits the study of

the effects of additional mechanisms, such as inertia. We will consider these problems

in future work.
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CHAPTER 6

A REDUCED PRESSURE VOLUME OF FLUID METHOD FOR

FLUID/SOLID INTERACTION: CONTACT LINES AND FILM

RUPTURE

6.1 Model

In this chapter, we will return to the computational method which was presented

in Chapter 5, and develop and apply a significant improvement to it. The basis

of this method is to rewrite the governing equations (Eq. (5.19)) according to a

reduced pressure formulation, which permits the body force to be transformed into a

surface force. As we will demonstrate, this dramatically improves the computational

performance, and permits the study of systems, whose simulation would have been

impractical using the method in Chapter 5.

During the discussion in Chapter 5, an important drawback arose: while Gerris

permits the use of an adaptive mesh, the large pressure gradients in the vicinity of

the substrate required high resolutions. In all of the results in that chapter, the

computational mesh was either uniform, or resolved everything which was near the

substrate at higher resolutions, irrespective of whether there were any interesting

dynamics in those regions. A second, relatively minor, drawback was the introduction

of the cutoff height hc, below which the fluid/solid interaction was not computed in

order to avoid the singularity int the force term (Eq. (5.10)). Both of these problems

can be completely avoided through a refinement of the method.

Our setup closely follows the one considered in Chapter 5, consisting of two

fluid phases occupying the region y > 0, interacting with a solid substrate occupying

y < 0. Each particle of fluid phase i interacts with the solid substrate by means of
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Eq. (5.9), which we rewrite as follows for clarity:

Φis(y) = Kis

[(

h∗

y

)m

−
(

h∗

y

)n]

= KisF (y) (6.1)

The governing equations are the same as Eq. (5.19):

ρ(χ)
Du

Dt
= −∇p+∇ ·

[

µ(χ)
(

∇u+∇u⊤
)]

+ γκδsn−∇ (K(χ)F (y)) (6.2)

Equation (6.2) is subject to the incompressibility condition, Eq. (2.2). We apply the

no-slip, no-penetration condition, Eq. (2.3) at the solid surface, y = 0, throughout

this chapter. We have rewritten the interaction strength in terms of the characteristic

function according to the following:

K = Klsχ+Kvs(1− χ)

We pursue a different nondimensionalization of Eq. (6.2) than that used in

Chapter 5, In order to nondimensionalize, Eqs. (6.2)-(2.3), we introduce the length

scale L, and define the time scale as the capillary time:

T =
µL

γ

The dimensionless variables are defined as follows:

x̃ =
x

L
ỹ =

y

L

z̃ =
z

L
t̃ =

t

T
h̃∗ =

h∗

L
ũ =

uT
L

p̃ =
Lp

γ
κ̃ = Lκ

ρ̃ =
ρ

ρl
µ̃ =

µ

µl

δ̃s = Lδs
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With these scales, and dropping the tildes, the dimensionless Navier-Stokes equations

are as follows:

1

Oh2
ρ
Du

Dt
= −∇p+∇ ·

[

µ(∇u+∇uT )
]

+ κδsn−∇ (K(χ)F (y)) (6.3)

where

Oh =
µ√
ρlγL

and K(χ) is the same as in Eq. (5.26) Here, Oh is the Ohnesorge number, and the

length scale, L, is chosen according to the problem under consideration. The variables

ρ and µ take the value of 1 in the liquid phase, and ρv/ρl or µv/µl in the vapor phase,

respectively.

The solution of Eq. 6.3 was discussed extensively in Chapter 5. The two

methods described in that chapter we refer to here as “body force methods”, which

we abbreviate B–F throughout this chapter; although these methods discretized the

liquid/solid interaction term differently, they were found to be substantially similar

in their overall properties, and for our purposes here, may be treated interchangeably.

For definiteness, when we refer to the “body force method” in this chapter, we

exclusively refer to Method II from Chapter 5. In that chapter, we found that

the liquid/solid term presents a challenge owing to the fact that it diverges as

y → 0. Consequently, when using B–F methods, regions of the domain near the

substrate require high resolutions in order to obtain reasonably accurate results. This

significantly limits the use of adaptive meshes; adaptive meshes can dramatically

improve the performance of Navier-Stokes simulations by using higher resolution

meshes only in regions of the domain where such accuracy is necessary to capture

the dynamics. In two dimensions, simple problems are feasible, however in three

dimensions the computational cost of resolving so much of the domain is impractical.
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In this section, we show that the computational task is dramatically simplified

by reformulating the body force term in Eq. (6.3) as a force which acts only on the

interface. First, we define p∗ = p+KlχF (y) +Kv(1− χ)F (y), so that

−∇p∗ = −∇p− (Klχ+Kv(1− χ))∇F + (Kv −Kl)δsnF (y)

where δsn = ∇χ, in a distributional sense. Substituting into Eq. (6.3), we obtain

what we refer to as the reduced pressure formulation:

1

Oh2
ρ
Du

Dt
= −∇p∗ +∇ ·

[

µ(∇u+∇uT )
]

+ (κ+KF (y))δsn (6.4)

where K = (Kv−Kl) (note that only this difference is relevant, rather than individual

value of each K). We refer to numerical solutions of Eq. (6.4) as obtained using the

“reduced pressure method” throughout this chapter, and occasionally abbreviate this

as R–P. The liquid/solid interaction gives rise to the contact angle, as we discussed

at length in Chapter 5. Equation (5.15), in the present notation, becomes

K =
(1− cos θeq)

h∗

(

(m− 1)(n− 1)

m− n

)

(6.5)

As before, the contact angle is measured via a circle fit; at equilibrium, the contact

angle that is measured by this procedure is termed θnum. There is, in general, a

difference between θnum and θeq, however this difference tends to vanish with smaller

h∗.

In addition to the contact angle, the liquid/solid interaction gives rise to another

phenomenon that we consider in depth in this chapter, which is the spontaneous

rupture of a thin liquid film. Our account of film rupture comes from [24], which

studied the rupture of films in the context of long–wave theory. As discussed in more

detail in Chapter 3, the Navier-Stokes equations can be simplified into an equation

for the liquid film thickness under the following assumptions:
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1. The flow is characterized by a horizontal length scale, xc, and a vertical length

scale, hc, such that hc ≪ xc.

2. Interfacial slopes, ∇x,zh, are vanishingly small; here ∇x,z reduces to ∂/∂x in 2D,

and is the gradient in x and z in 3D.

3. Inertial effects are negligible (Re≪ 1.)

The second assumption has the important corollary that the contact angles are small.

We discussed the use of liquid/solid interaction terms in the long–wave model in

Chapters 3 and 5; the disjoining pressure term given by Eq. (3.5) in the notation of

this chapter takes the form

Π(h) = KF (h) (6.6)

The dimensionless long–wave equation corresponding to Eq. (6.3) is given by [74, 75]

3ht +∇x,z · (h3∇x,z∇2h) +∇x,z ·
[

h3∇x,zKF (y)
]

= 0 (6.7)

(note that Eq. (6.7) is formally identical to Eq. (3.4).) A linear stability analysis

shows that if the initial film thickness is h0, and this is perturbed by a mode with

infinitesimal amplitude, ǫ, of the form exp(i(kx + lz)), then the initial perturbation

will grow or decay with a growth rate

β =
h30(k

2 + l2)(k2c − (k2 + l2))

3
(6.8)

where kc is the critical wavenumber, given by

k2c = −
K

h0

[

m

(

h∗

h0

)m

− n
(

h∗

h0

)n]

(6.9)

Note that if k2c < 0, then β < 0, and there is no instability for any wavenumber. If

k2c > 0, all modes with wavenumber k < kc are unstable, and those with k > kc are
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stable. Associated with Eq. (6.8) is a wavenumber of maximum growth, kmax, and

the corresponding maximum growth rate, βmax, given by:

kmax =
kc√
2

(6.10)

βmax = β(k2 + l2 = k2max) =
k4c
12

(6.11)

We will frequently make reference to the wavelength of maximum growth, defined by

λmax = 2π/kmax. Equations (6.9) - (6.11) imply the following important features of

instability:

1. The wavenumber of maximum growth, kmax, scales with
√

1− cos θeq. Large

contact angles imply larger kmax, and a corresponding decrease in λmax.

2. The maximum growth rate, βmax, scales with (1−cos θeq)2. Large contact angles

dramatically increase the growth rate of the dominant mode, and thus reduce

the time it takes for films to break up.

In order to facilitate discussion, we will occasionally refer to the Reynolds number

and the Capillary numbers based on the timescale of the breakup; we define these as

Re =
ρL2βmax

µ
Ca =

µLβmax

γ
(6.12)

The reduced pressure method discussed in this chapter shows three important

strengths. First, it possesses the most important feature of the body force method

discussed in Chapter 5: that is, by including long range liquid/solid interactions,

spontaneous film breakup can occur, described by the LSA above. Such breakups

are particularly important at the nanoscale; see for example [40]. The second

major advantage of this method is that by absorbing the entire contribution of the

liquid/solid interaction into a surface force, the main weakness of the body force

method is avoided. That is, as discussed previously, B–F methods limit the usefulness
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of an adaptive mesh due to the singular liquid/solid interaction, while the reduced

pressure method effectively converts this force into a y dependent modification of the

curvature term, and thus no additional resolution is required away from the interface.

Full advantage may be taken of adaptive meshes, in contrast to body force methods.

Third, the reduced pressure method is relatively simple to implement, owing to the

fact that it is essentially a modification of the curvature term in the Navier-Stokes

equations.

Figure 6.1 Illustration of the adaptive mesh used throughout this chapter. The
interface is the only portion of the domain that it is necessary to resolve at high
resolution, due to the fact that the fluid/solid interaction is included as an interfacial
force.

We solve Eq. (6.4) using the software package Gerris [67], described in detail

in [66]. The mesh consists of a quad tree (in 2D) or an octree (in 3D), that decomposes

the domain into square control volumes, which we refer to as cells (see Figure 6.1).

We use an adaptive mesh for all simulations, refining the interface to a resolution

of ∆max, and lower resolutions far away from the interface. We implement the R–P

method in Gerris according to the following procedure: replace the interface curvature

κ, approximated at cell centers, by

κ← κ+KF (y)
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Table 6.1 Comparison of the Convergence in Mesh Between the Reduced
Pressure Method (R–P) and Method II Described in Chapter 5 (B–F). ∆ is
the Smallest Cell Size Used in the Simulations, and the Second and Third
Columns Give the Error Measured as the L1 Norm of the Difference Between
the Equilibrium Profile and the Profile Calculated with ∆ = 1/28.

∆ R–P B–F

1/25 6.1× 10−2 7.0× 10−3

1/26 2.6× 10−3 4.3× 10−3

1/27 8.0× 10−4 3.8× 10−4

Here y is the y-coordinate of the center of mass of the liquid in the computational

cell. Note that the R–P method is not specific to Volume of Fluid - it can be used

with any solver of the two phase Navier-Stokes equations.

6.2 Results

6.2.1 Contact Angles

We first demonstrate that the method under consideration can yield contact angles

as accurately as the methods presented in Chapter 5. To show that this is the case,

we reproduce simulations of drops in that chapter, by simulating 2D drops, with

Oh = (0.05)−1/2, and the initial fraction is set to be the following:

{(x, y) : x2 + (y +R cos θi − h∗)2 < R2 or y < h∗}

Thus the initial profile is a circular cap sitting on top of an equilibrium film, of

thickness h∗, such that it intersects this film with angle θi. The value of R is chosen

so that the total area of the circular cap is equal to A0 = π0.752/2. For simplicity, for

our first tests, we set θeq = θi = π/2. The drop is then allowed to relax to equilibrium,

and we measure θnum via the circle fit method described in Chapter 5.4. Since for
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Figure 6.2 Effect of h∗ on the profile when θi = θeq = π/2. The dotted line shows
the initial profile for h∗ = 0.015.

small h∗, θnum is close to θeq, the drop profile at this equilibrium is close to its initial

condition.

Table 6.1 compares the convergence of the equilibrium drop profile as a function

of the minimum mesh size, for drops simulated using the reduced pressure method

and the body force method of Chapter 5. The reduced pressure simulations are

resolved to a resolution ∆max = ∆ on an adaptive mesh as shown in Figure 6.1, while

the body force method simulations are refined uniformly with mesh size ∆. The

error is measured as the L1 norm of the error in the profile shape. The equilibrium

film thickness is h∗ = 0.03. Despite the fact that the body force simulations were

run with a uniform mesh, the reduced pressure method performs comparably well in

convergence in mesh to the body force method when ∆ is small.

Figure 6.2 shows simulation profiles obtained using the reduced pressure

method, again with θeq = θi = π/2. The profiles at equilibrium are shown for

h∗ = 0.03 in red , h∗ = 0.015 in green, and h∗ = 0.0075 in blue. The initial condition

for h∗ = 0.015 is shown by the black dotted line, showing the profile of a drop with
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Table 6.2 Comparison of the Influence of h∗ on θnum, Between the Reduced
Pressure Method (First Column) and Body Force Method (Second Column)
Described in Chapter 5. The Second and Third Columns are θnum Calculated
for the Respective Simulations. The Two Methods Similarly Approach the
Value of θeq = π/2.

h∗ R–P Body Force

0.03 1.36 1.37

0.015 1.45 1.47

0.0075 1.49 1.53

contact angle θeq. The smooth transition from the drop profile to the equilibrium film

is clearly visible; as h∗ is reduced, the equilibrium profiles approach those of a drop

with contact angle θeq.

Table 6.2 shows the measured values of θnum as h∗ is varied for the B–F and

R–P methods; as in Tab. 6.1, θeq = θi = π/2. While the values differ slightly between

the two methods, as h∗ is reduced, θnum becomes closer to θeq. The difference in

θnum between R–P and B–F methods is expected to be due to the fact that the R–P

simulations were run with an adaptive mesh, while the B–F simulations were run with

a uniform mesh.

The reduced pressure method behaves comparably to the body force method in

2D in its ability to model the contact angle. However, it comes with the potential

for dramatically improved performance, due to fact that the layer of fluid near the

substrate does not necessarily need to be highly resolved. For example, for the

drops simulated in Tab. 6.1, with the timestep fixed at 10−5, at ∆ = 1/26 the

reduced pressure method takes approximately 14% as much CPU time as the body

force method; at ∆ = 1/27, the reduced pressure method has approximately 5%

the runtime. This is because, for each timestep, the number of computations each

method incurs is O(N), where N is the number of cells. However, the adaptive mesh
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illustrated in Figure 6.1 involves approximately O(1/∆) cells, while a uniform mesh

has O(1/∆2) cells. Simple adaptive meshes were used in Chapter 5, improving the

performance of the body force method, however higher resolution is still required at

a layer of nonzero thickness near the substrate, and a similar complexity can still be

expected as with uniform meshes. The complexity difference is similar in 3D, where

the R–P method should scale as O(1/∆2) and a B–F method should scale as O(1/∆3).

The O(1/∆3) complexity of the B–F methods renders them impractical in terms

of the requisite computational time; for this reason, we do not consider a comparison

of the R–P and B–F methods in 3D. The reduced complexity of the R–P method

permits the study of more complicated phenomena. In the following sections, we will

study the breakup of films in two and three dimension.

6.2.2 Film Instability

As discussed in Section 6.1, the liquid/solid interaction can lead to the spontaneous

rupture of thin liquid films. We study this breakup by means of the LSA of Eq. (6.7).

Equation (6.7) itself is only expected to describe the flow in the regime satisfying the

assumptions outlined in Section 6.1, and the LSA only applies to the growth rate

of unstable, infinitesimally small modes for early times. In this section, we compare

the predictions of the LSA analysis to simulations of unstable films with low inertia

during the earliest stages of breakup, which is a regime where the LSA is expected

to apply. We quantify the boundaries of the regime where the LSA applies, and its

implication for using the LSA to describe these flows.

We vary h0 and θeq in order to investigate the effect on the instability. It is

important to note that Eq. (6.8) is valid even for large θeq, since θeq only enters into

Eq. (6.7) through the disjoining pressure; during the early stages of instability we

consider in this section, large values of θeq do not lead to large interfacial slopes, and

the LSA still applies. We set Oh = 0.45, which leads to Re ≈ 0.23 and Ca ≈ 0.09,
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(a)

(b)

Figure 6.3 Comparison between the dispersion curve predicted by LSA of the
long–wave model (blue solid curve) and the growth rate observed in R–P simulations
(symbols), with θeq = π/2, for (a) h0 = 0.25, and (b) h0 = 0.125. The plots on the
right are the same as the left plots, except the range is larger. Significant difference is
apparent except when k is small, and the disagreement increases with k. Reduction
in h0 does not reduce this difference.

so that the simulations are of flows with negligible inertia. All simulations in this

section are 2D, and the initial region occupied by the liquid phase (i.e., T = 1) is

between y = 0 and h = h(t = 0, x) = h0ǫ cos(kx), where ǫ = 0.02. For all simulations

in this section, we set h∗ = 0.12.
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In 2D, the dispersion relation (Eq. 6.8) is

β =
h30k

2 (k2c − k2)
3

(6.13)

We estimate the growth rate of a perturbation in the linear regime by first finding

the interval over which the growth is exponential. We then fit exponential growth

curves to the time dependent minimum and maximum of the interface profile, and

the approximate growth rate is taken to be the average of the growth rate of these

two curves. For early times, the interface of the film is a single-valued film thickness,

and we represent the piecewise linear reconstructed interface from the Volume of

Fluid method by y = h(t, x); this function is sampled at a discrete set of times and

points in space. We define the quantities ηmin(t) = ln(minx h(t, x)), and ηmax(t) =

ln(maxx h(t, x)). We then calculate an interval Ifit = (t0, t1) such that each of these

functions is approximately linear in t over Ifit. Finally, we calculate for each function

ηmin,max(t) a least squares fit

amin,maxt+ bmin,max,

and set the approximate growth rate as

βnum =
amin + amax

2
. (6.14)

Figure 6.3 compares two different initial thicknesses, h0 = 1 (Figure 6.3 (a))

and h0 = 0.5 (Figure 6.3 (b)), and the predicted (solid curve) growth rate with the

measured (blue circles) growth rates for each thickness. When the wavenumber k is

small, the LSA and the measured growth rate are very close; however for larger k,

there is a significant difference. This difference appears for both values of h0. We

conjecture that the differences is due to the fact that the long–wave assumption no

longer holds for larger k; Eq. (6.7) requires that the characteristic length scale xc and

the characteristic film thickness hc obey hc/xc ≪ 1. In Figure 6.3 (b), however, the
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relevant film thickness is h0 = 0.125, and the relevant length scale is 2π/kmax = λmax.

The “small parameter” then is h0/λmax, which in this case is O(0.1), which may not

be sufficiently small.

The results of Figure 6.3 suggest an important conclusion with regards to the

validity of the LSA: a reduction in the film thickness, all other things being equal, can

not transition the system to a long–wave regime, because the relevant length scales

become shorter as well. The ratio of the relevant film thickness, hc, and length scale,

xc is given by:

hc
xc

=
h0
λmax

=
1

2π

√

−Kh0
[

m

(

h∗

h0

)m

− n
(

h∗

h0

)n]

(6.15)

This expression is decreasing as h0 is increased when

h0 > h∗
[

m(m− 1)

n(n− 1)

]m−n

In particular, this means that reducing h0 actually implies that long–wave approxi-

mation is less accurate, except when h0 is nearly as small as h∗.

Equation (6.15) implies that a reduction in θeq can improve agreement with

long–wave theory. This is due to the fact that the parameter K is proportional to

(1 − cos θeq), so as θeq → 0 so does h0/λmax. We compare simulation results in the

linear regime with the LSA as θeq is varied in Figure 6.4. The solid curves show

the prediction of the LSA, while the blue circles show values from simulations. For

each θeq, we approximate the wavenumber of maximum growth, which is shown by

the vertical solid line in each figure. The vertical dash-dotted line shows kmax from

Eq. (6.10). As predicted by Eq. (6.15), a reduction in θeq improves agreement with

the LSA considerably. For larger θeq, the LSA predicts a faster growth rate, and

predicts a larger value of λmax.
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(a) (b)

(c)

Figure 6.4 Comparison between the dispersion curve predicted by LSA (blue solid
curve), and the growth rate observed in simulations (symbols) for θeq, for h0 = 1,
and (a) θeq = 3π/4, (b) θeq = π/2, and (c) θeq = π/6. The wavenumber of maximum
growth is approximated using a bisection method, and is shown by the solid vertical
lines; the vertical dash dotted lines show the value of kmax from Eq. (6.10). Smaller
θeq leads to significantly improved agreement between LSA and simulations.

6.3 Nonlinear Evolution: Film Breakup

In Section 6.2.2, we compared the predictions of the LSA with numerical simulations

of the full equations in the linear regime. In this section, we consider the process of

film rupture, and subsequent evolution into drops. Our goal is to describe the length

scales of the breakup, and their relationship with the value of λmax predicted by the

LSA. Moreover, we extend our study to 3D, and find differences in the breakup process

with respect to 2D simulations. We find that while the initial phase of breakup can
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(a)

(c)

Figure 6.5 Time evolution of a representative simulation of film breakup in 2D for
t = (a) 0, (b) 179, (c) 357, (d) 536, (e) 715, (f) 882. The parameters are h0 = 1,
Oh = 0.487, and θeq = 0.439π; the solid blue curve shows the fluid interface. The
associated Fourier spectrum, averaged over 20 instances, is shown below each image.
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be understood by the LSA, the end state, consisting of drops, is characterized by a

length scale different from that predicted by the LSA, and is influenced by the contact

angle, Ohnesorge number, and whether we consider 2D or 3D films.

The inspiration for our study is derived again from work on self assembly of

nanoparticles via the dewetting of a thin film. The particular geometry we initially

study is a flat metallic film liquefied by laser pulses, as considered in [40]. A film

such as this ruptures due to the liquid/solid interaction; consequently, the spacing

of the resulting drops is dictated by the length scales associated with this instability

mechanism. The simplest possibility is that the mode with the largest growth rate

in the linear regime, that is the mode with wavelength λmax, would dominate the

breakup, and consequently that the end drops would be spaced with a center to

center spacing roughly equal to λmax. Direct numerical simulations reveal that the

center to center drop spacing is generally larger than λmax.

In order to choose a reference parameter set, we simulate copper films, studied

experimentally and theoretically in [40]. The viscosity, density, and surface tension

are taken to be the values of liquid copper at its melting point. We set L to be

equal to the reference film thickness, taken to be 8 nm. The Ohnesorge number

is Oh = 0.487. The simulations that we present in this section are for a film of

thickness h0 = 1; we also simulated films with h0 = 0.5, and these behaved similarly.

The equilibrium film thickness is set to be h∗ = 0.1225, and θeq = 79◦ ≈ 0.439π. Note

for these parameters, the Reynolds and Capillary numbers defined in Eq. (6.12) are,

respectively, Re ≈ 0.04, Ca ≈ 0.009, and λmax ≈ 15.6, and λc ≈ 11.0.

We begin by studying the 2D film. The computational domain is (x, y) ∈

(0, 122.5)× (0, 43.125) (the exact value of the domain size is due to the fact that the

parameters used to run the simulation are scaled differently from the dimensionless

numbers described here, and the domain height and width are integers in the

simulation). The initial film thickness is h0 + ζ, where ζ is a perturbation of the
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(a)

(c)

Figure 6.6 Temporal evolution of a representative simulation of film breakup in
2D for t = (a) 0, (b) 357, (c) 536, (d) 715, (e) 1429, (f) 2858. The parameters are
h0 = 1, Oh = 0.0487, and θeq = 0.439π, and h∗ = 0.1225; the solid blue curve shows
the fluid interface. The associated Fourier spectrum, averaged over 20 instances, is
shown below each image.
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form

ζ(x) =
60
∑

i=1

ǫi cos

(

2πx

λi

)

(6.16)

where λi = 245/i, and ǫi is a random perturbation amplitude, uniformly distributed in

the range ±0.0125. The wavelength λ1 = 245 is twice the width of the computational

domain, and consequently the longest wavelength which can be resolved. We simulate

the breakup of this film with Ns = 20 sets of ǫi. For each simulation (numbered j),

a discrete height profile is produced, ĥj(t, x). We then compute the discrete Fourier

transform (DFT) of each height profile, Ĥj(t, k). Finally, we compute the average of

these as

H̄2D(t, k) =
1

Ns

Ns
∑

j=1

ĥj(t, k) (6.17)

In Figure 6.5, we plot the time evolution of the profile ĥ0(t, x) (the upper image in

each of Figure 6.5(a)-(f)), and the corresponding plot of H̄2D(t, k) along with the

dispersion curve from the LSA (bottom image in each of Figure 6.5(a)-(f), shown

smoothed with a 5 point average to smooth the curve). We see that as the initial

perturbations begin to grow, the H̄2D(t, x) is of similar shape to the dispersion curve

(Figure 6.5(a) - (c)). However, as the holes begin to form in the film, and consequently

drops begin to form, the peak in H̄2D(t, k) shifts towards smaller values of k, so that

the final distribution of drops is characterized by a larger length scale than λmax

predicted by the LSA (Figure 6.5(d) - (f)).

Next we consider different values of Oh. For Oh = 4.87, no significant difference

was observed. The results obtained with smaller values of Oh show several significant

differences. Figure 6.6 shows profiles and associated averaged Fourier spectra for a

film with Oh = 0.0487. In the simulations that use smaller Oh, the film takes an order

of magnitude longer to break up as compared to films with larger Oh. Otherwise,

prior to breakup, the evolution of the Fourier spectrum is quite similar. The long
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Figure 6.7 Comparison of knummax as a function of time for films of varying Oh.
Symbols show the approximate breakup times for each parameter set, and the solid
dashed line shows kmax predicted by the LSA. Note that Oh = 4.87 and Oh = 0.487
are visually nearly indistinguishable on this plot. The ticks on the y-axis are for
wavenumbers which can be resolved on the finite domain. h0 = 1, θeq = 0.439π,
h∗ = 0.1225.

term evolution of the Fourier spectrum shows a flatter peak when compared with

the larger Oh simulations, indicating that the preference for a specific wavenumber

is weaker in the late stages of evolution.

In order to study the effect of Oh on the evolution of the film, we define knummax (t)

to be the value of k for which H̄2D(t) attains its maximum. Figure 6.7 plots knummax

for various Oh as a function of time; note that due to the finite domain size, knummax

only takes discrete values, leading to the staircase appearance of these plots. The

symbols on each curve indicate the approximate time at which the film ruptures, and

the dashed line shows the value of kmax from the LSA. The overall behavior is similar

for all curves: knummax quickly takes a value as close to the kmax as can be resolved on a

finite domain; knummax then stays at this value until the film breaks up. Afterwards, it

becomes smaller, indicating that the length scale of the final drop distribution is larger

than kmax. For Oh = 4.87 and Oh = 0.487, the behavior is nearly indistinguishable,
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Figure 6.8 Plot of knummax for varying θeq. The green curve corresponds to Oh = 0.487
in Figure 6.7. The symbols show the approximate time of film rupture. Each dashed
line shows kmax from the LSA for the curve of the same color. h0 = 1, h∗ = 0.1225.

indicating that these films are in the large Oh limit. The most important effect of

Oh is that smaller Oh significantly increases the time it takes for the film to rupture.

For Oh = 4.87 × 10−3, the time of breakup is an order of magnitude larger than for

Oh = 4.87. The LSA does not capture this behavior, and instead predicts that the

breakup time is approximately 500 irrespective of Oh; this is consistent with the large

Oh simulations, which are insensitive to Oh.

Next, we investigate the effect of the contact angle on the rupture. We ran two

additional simulation sets, both with Oh = 0.487.

1. θeq = π/6, (x, y) ∈ (0, 367.5)× (0, 43.125).

2. θeq = 3π/4, (x, y) ∈ (0, 91.875)× (0, 43.125).

These computational domain widths are approximately the same multiple of the

respective λmax of each θeq as the simulations described above. For each set, the

form of the perturbation is the same as in Eq. (6.16), except that for θeq = π/6 we

set λi = 735/i, and for θeq = 3π/4, λi = 183.75/i. We plot knummax for these two contact
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angles, as well as for θeq = 79/180π ≈ 0.439π in Figure 6.8. For each curve, the

symbol of the same color indicates the breakup time, and the dashed line of the same

color shows kmax from the LSA; note that the breakup times predicted by the LSA

are ≈ 18000, 500, and 110, for θeq = π/6, 0.439π, and 3π/4, respectively, which is

roughly in line with the simulated breakup time for all cases. When θeq = 3π/4, the

behavior is similar to θeq = 79/180π. However, the evolution of θeq = π/6 is simpler

than for larger θ: almost immediately, knummax relaxes to near kmax, and remains at

approximately the same value for the considered simulation times. This indicates

that for small contact angles, the length scale associated with kmax dominates in

both the linear and nonlinear regimes of breakup, at least within the resolution of

our simulations.

The difference in evolution between the small θeq and the larger θeq results can

be understood as follows. We approximate the profile of a rupturing film of unit

initial thickness, perturbed by a mode of wavelength λmax, by

h(x) = 1 + A(t) cos

(

2πx

λmax

)

where A(t) is the time dependent amplitude. At the time of breakup, A(t) ≈ 1. We

approximate the instantaneous contact angle of the rupturing film by considering the

slope at the point of inflection, given by

tan θr =
2π

λmax

Substituting the expression for λmax, we obtain

tan θr = B
√

1− cos(θeq)

where B is a positive constant:

B =

√

−(mh∗m − nh∗n)
2
√
2h∗
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Consider the expression

|θr − θeq| = | tan−1
(

B
√

1− cos θeq

)

− θeq|

This expression is an increasing function of θeq for θeq ∈ (0, π/2). This suggests

that when films with larger θeq rupture, the contact angles near the initial holes are

further from θeq than for the films involving smaller θeq. This difference in contact

angles leads to a stronger tendency to retract from the initial hole for films with larger

θeq, and, correspondingly, the liquid between two holes (which we call a filament) will

tend to collapse. We conjecture that velocity field due to the collapse of the filament

interferes with any further rupture from the liquid/solid interaction.

Next, we consider film breakup in 3D. We have not previously considered 3D

simulations, owing to the large computational cost associated with the B–F method.

The setup is identical, except that the domain consists of (x, y, z) ∈ (0, 61.25) ×

(0, 31.25)× (0, 61.25). The initial condition is a perturbed film of the form y = h0+ ζ

where ζ is a perturbation of the form

ζ(x, y) =
30
∑

i=1

30
∑

j=1

ǫij cos

(

2πx

λi

)

cos

(

2πz

λj

)

(6.18)

where λi = 122.5/i, and ǫij are random perturbation amplitudes, uniformly

distributed in the range ±0.0125. Due to computational constraints, we simulate the

film for Ns = 10 sets of ǫij. As before, we produce a height profile for each simulation,

ĥj(t, x, z), and compute its DFT, Ĥj(t, k, l). We then compute the following average

H̄3D(t, k) =
1

Ns

Ns
∑

j=1

1

2

(

ĥj(t, k, 0) + ĥj(t, 0, k)
)

(6.19)

The summand in Eq. (6.19) represents the average of the DFTs of simulation j along

the x and z axes. Equation (6.8) is symmetric in k and l, so the DFT along k = 0

and l = 0 yields equivalent information about the evolution of the profile.
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(a) (b)

(c)

Figure 6.9 Time evolution a representative simulation of film breakup in 3D for
t = (a) 0, (b) 335, (c) 558, (d) 781. The parameters are Oh = 0.487, h0 = 1.0,
and θeq = 0.439π, h∗ = 0.1225. The color shows the logarithm of the height of
the interface above the substrate. The associated Fourier spectrum is shown below
each image; these data are averaged over 10 instances, and smoothed with a 5 point
running average.

Figure 6.9 plots the time evolution of ĥ0(t, x, z) (top image in each part of the

figure), and H̄3D along with the dispersion curve predicted by Eq. (6.8) (bottom

images). The plots of H̄3D have been smoothed by a five point average. A similar

118



Figure 6.10 Comparison of knummax as a function of time for 3D films (blue) and 2D
films (green). The green inverted triangle shows the approximate breakup time of
the 2D simulation. The blue triangle shows the approximate time at which the first
holes form in the 3D film; the inverted blue triangle shows the approximate time that
drops begin to form. The solid dashed line shows kmax predicted by the LSA. h0 = 1,
h∗ = 0.1225.

trend is observed as in Figure 6.5: the spectrum takes on a similar profile to the

dispersion curve from the LSA, and as breakup proceeds, its peak, knummax , shifts

towards smaller wavenumbers. Note that the peak in the spectrum is smoother for

3D (Figure 6.9) compared to 2D (Figure 6.5), suggesting that in 3D larger variability

of the drops spacing may be expected. However, more detailed analysis is needed to

confirm this finding, in particular since DFT in 3D contains fewer points, so that the

averaging procedure is not identical between 2D and 3D.

To contrast the evolution of the 3D film with the 2D one, in Figure 6.10 we plot

knummax (t), computed for both with the same parameters (Oh = 4.87). We mark two

important events for the 3D simulations in Figure 6.10: first, the appearance of holes

in the film (marked by a blue triangle), and second, the formation of drops (marked

by a blue inverted triangle). As in Figure 6.7, we mark time of breakup of the 2D film

with a triangle. For both 2D and 3D, knummax is close to kmax until the film ruptures,

119



after which knummax relaxes to a smaller values. However, once drops begin to form for

3D simulations, knummax relaxes to an even smaller value, characterizing the distribution

of drops at equilibrium.

To summarize, the DFT of the nonlinear film breakup shows that the dominant

length scales deviate from λmax from the LSA. The degree of deviation depends on θeq,

and whether the film is 2D or 3D; additionally, the time it takes for the film to rupture

depends strongly on Oh. For 2D simulations with small θeq, the DFT has a peak at

or close to kmax for the entirety of the film evolution. For larger θeq, the evolution

of the DFT shows two distinct phases: prior to breakup, when the peak in the DFT

is at kmax, and after breakup, when the peak shifts to smaller wavenumbers. For 3D

simulations, the evolution of the DFT shows three distinct phases, each associated

with a shift towards smaller wavenumbers: prior to breakup, after holes begin to

form, and after drops begin to form. A decrease in Oh is primarily associated with a

dramatic increase in the time it takes for the film to rupture.
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6.4 Conclusions

In this chapter, we demonstrate a computationally efficient method for including

fluid/solid interactions into direct numerical simulations. This method is found to

perform as well as the body force formulation of Chapter 5, while requiring only

a fraction of the computational cost. The advantages of the present method are

specifically demonstrated by comparing contact angles in 2D, where both methods

perform similarly in terms of convergence in mesh, and in terms of the behavior of

θnum as h∗ is reduced. The computational time required however is dramatically

simpler in the presented method.

Due to the improvement in computational performance, it is now possible to

study the instability of films due to fluid/solid interaction using direct numerical

simulation. We compare the results with the LSA of the long–wave equations, and

find that when θeq is larger, there is a significant difference with the predictions of

the LSA. We also demonstrate that a reduction in the film thickness does not reduce

the difference with the LSA, as the horizontal length scale decreases with the vertical

length scale.

Finally, we study breakup of a film in both 2D and 3D. We describe the evolution

of the length scales by computing the discrete Fourier transform of the fluid profile.

2D films are characterized by a two stage evolution, and 3D films by a three stage

evolution; for both cases, the initial phase exhibits a DFT with a peak, knummax , near

kmax from the LSA, and each successive stage is associated with a decrease in knummax ,

and correspondingly, an increase in the characteristic length scales.

The speed and simplicity of implementation of the method presented in this

chapter opens up the possibility of studying a variety of problems that have either

not been studied extensively in direct numerical simulations, or were impractical to

simulate previously. The method allows for the simulation of arbitrary contact angles

(including those greater than π/2), and film breakup, with full inertial effects for the
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first time. While we have studied the influence of varying θeq and Oh in 2D films, we

leave an exhaustive parameter of 3D films for a future work.
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CHAPTER 7

CONCLUSION

In this thesis we have studied the use of Volume of Fluid based, direct numerical

simulations of contact angle dynamics and dewetting problems. We have examined

the differences between the classical long–wave method and these direct numerical

simulations, and have quantified the disagreement that these two methods show at

larger contact angles.

A novel form of breakup was studied, which resulted from an initially

rectangular-wave liquid metallic shape on a substrate. This rectangular-wave

was found to result in drop spacings which are of unprecedentedly close spacing.

Moreover, several unique end states were observed as this geometry relaxed,

including combinations of drops and filaments; in practical applications these liquid

metallic configurations will solidify into patterns of nanoparticles and nanowires.

Experimental investigation into reproducing these configurations is an ongoing

project.

We developed a method that, for the first time, permits the inclusion of the

nanoscale interaction between liquid films and a solid substrate in Volume of Fluid

based simulations. This method leads to simulation of the underlying physics in

such a way that contact angles of arbitrary size arise naturally. We studied the

convergence properties of this method thoroughly, and demonstrated that it can be

used to simulate systems with large contact angles. Furthermore, we described an

improvement to this method that possesses comparable accuracy at greatly reduced

computational cost. This improvement in performance permitted the practical study

of diverse phenomena in 2D and 3D. We demonstrated the first direction numerical

simulations of film breakup due to the liquid/solid interaction with inertial effects and
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large contact angles. The limitations and applicability of long–wave linear stability

analysis were studied, and we described the effect of contact angle and inertia on the

process of film rupture.

While the long–wave model has shown considerable versatility in the study

of dewetting nanometallic films, our results have reinforced the need to use direct

numerical simulation, as these systems have large contact angles and potentially

significant inertia. At the same time, long–wave models have for a long time included

the interaction between the fluids and the solid substrate which has been essential

for studying certain kinds of film dewetting. By developing a new numerical method

for Volume of Fluid simulations with fluid/solid interactions, we can now simulate

these film breakups. This is an important step towards developing a more complete

continuum based theory of nanofilm breakup and directed nanoparticle assembly.

The liquid/solid interaction methods of Chapters 5 and 6 more generally permit

the study of a great variety of new problems. While we have discussed the influence

of inertia and contact angle in a limited parameter regime, an exhaustive study of

these effects for unstable thin films has not been possible previously. An important

future direction of this research is to develop a more complete theory characterizing

the influence these parameters in the temporal and spatial scales characterizing thin

film dewetting.

In the future, direct numerical simulation can be extended further to simulate

nanometallic film breakup in greater detail. A core feature of the model of Chapter 4

is that we treated the film as constant in temperature. In experiments such as [72],

however, multiple laser pulses are used, resulting in the nanostructure liquefying

and resolidifying multiple times, with the temperature varying significantly while

it is in the liquid phase. The viscosity during the liquid evolution, in particular,

may vary by a factor or two or more, leading to increased inertial effects. The

temperature may furthermore vary spatially, as discussed in [90]; such temperature
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variation leads to a corresponding spatially varying surface tension, and consequently,

to thermocapillarity effects which may promote breakup or dampen instabilities,

depending on the nature of the temperature profile. Finally, the solidification itself

may influence the breakup, by halting the evolution and consequently canceling out

some of the inertial effects that we found to be significant in Chapter 4.
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