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ABSTRACT

MATHEMATICAL MODELS FOR POLYMER-NEMATIC
INTERACTIONS

by
Ensela Mema

This dissertation considers a mathematical model that consists of a nematic liquid

crystal layer sandwiched between two parallel bounding plates, across which an

external field may be applied. Particular attention is paid to the effect of an applied

field on the layer as well as the interaction between the liquid crystal molecules and the

molecules of the substrate. The system studied may be considered as a simple model

of a Liquid Crystal Display (LCD) device, and the results obtained are discussed and

interpreted within this context.

The first part of this dissertation considers a study that investigates how the

number and type of solutions for the director orientation within the layer change as

the field strength, anchoring conditions and material properties of the nematic liquid

crystal layer vary. During this investigation, particular attention is paid to how the

inclusion of flexoelectric effects alters the Freedericksz and saturation thresholds.

In the second part of the dissertation, the interaction between nematic liquid

crystal (NLC) and polymer coated substrates with and without an external applied

field is considered. Under certain conditions, such polymeric substrates can interact

with the NLC molecules, exhibiting a phenomenon known as director gliding or

easy axis gliding. Mathematical models for gliding, inspired by the physics and

chemistry of the interaction between the NLC and polymer substrate are presented.

These models, though simple, lead to non-trivial results, including loss of bistability

under gliding. Perhaps surprisingly, it is observed that externally imposed switching

between the steady states of a bistable system may reverse the effect of gliding,

preventing loss of bistability if switching is sufficiently frequent. These findings may be



of relevance to a variety of technological applications involving liquid crystal devices,

and particularly to a new generation of flexible Liquid Crystal Displays (LCDs) that

implement polymeric substrates.

Finally, this dissertation considers how well the proposed models fit published

experimental data. The results of two experimental papers are discussed, and a

quantitative fit of the mathematical model to the data is made.
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CHAPTER 1

INTRODUCTION

Liquid crystals (LC) are used in many aspects of everyday life, ranging from the

development of high-strength plastics and mineral slurries to fat transport in our

bodies [36]. Such a wide variety of applications has piqued the interest of researchers

around the world and has led to the exploration of many aspects of liquid crystals.

An exciting direction over the past several decades has been the development of liquid

crystal display (LCD) devices [2]. These devices exploit the birefringence property of

nematic liquid crystals (NLCs), namely their ability to rotate the plane of polarized

light, to obtain two distinct optical configurations: the “bright” and “dark” pixels of

the display [46]. A typical LCD device consists of millions of pixels, each consisting

of a nematic liquid crystal layer sandwiched between two parallel plates, and crossed

polarizers. The amount of light passing through the layer depends on the orientation

of the NLC molecules, which in turn depends on the boundary conditions at the plates

(the preferred orientation of molecules at the boundaries, known as anchoring) and

the external forces (usually an applied electric field). When an electric field is applied

across the layer, the LC molecules align with the field and cannot rotate the polarized

light beam, so that it cannot pass the second polarizer and the pixel remains “dark”.

On the contrary, if no electric field is applied, the LC molecules have a preferred

orientation dictated by the boundary conditions that allows the polarized light beam

to be rotated so that it passes the second crossed polarizer, forming a “bright” pixel

in the display [46].

An electric field can change the molecular orientation because NLC materials

consist of rod-like molecules which have a dipole moment. As such, applying an

electric field causes the NLC molecules to align parallel or perpendicular to the electric

field direction according to the orientation of their dipole moment. If the dipole

1



moment is parallel to the long molecular axis then the molecules align parallel to the

electric field; in contrast, if it is perpendicular to the long axis then they will align

perpendicular to the electric field. In addition to this dielectric effect, the asymmetric

and polar nature of the molecules induces a distortion in the form of molecular splay

and bend; the so-called “flexoelectric” effect.

The effect of an applied external field on a confined NLC layer has been widely

investigated with particular attention paid to the Freedericksz transition cell [18,23].

A Freedericksz transition cell consists of a NLC layer bounded between two parallel

plates where an electric field is applied in a direction perpendicular to the layer. It

is observed that, when the anchoring at the bounding plates is strong and planar

(parallel to the plates), the nematic director field (representing the local average

molecular orientation) aligns parallel to the bounding plates throughout the entire

layer when the applied field strength is low. As the applied field increases past

a critical value (known as the Freedericksz threshold), a new director configuration,

which aligns partially with the applied field in the interior of the layer while respecting

the strong planar anchoring at the boundaries, is favored energetically [23]. In the

presence of weak planar surface anchoring, the same observations hold initially as the

field is increased. However now, as the electric field is increased further still, a second

critical value, known as the saturation threshold is reached. The saturation threshold

is the magnitude of the applied field at which the director aligns fully with the electric

field direction, breaking the anchoring of the director at the surfaces [16, 35]. This

is also often called the weak Freedericksz transition phenomenon. In this scenario

three steady-state director configurations exist: (i) the director aligns parallel to the

anchoring orientation at the boundary; (ii) the director aligns parallel to the electric

field; and (iii) the director adopts a nontrivial solution for which there is a balance

between surface anchoring and electric field effects.
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Previous investigations of the Freedericksz Transition account mostly for the

dielectric contribution to the bulk free energy, neglecting flexoelectric effects. Some

studies consider the effect of flexoelectricity in a Freedericksz transition cell with

strong and weak anchoring [17,19]. In Chapter 3, we consider a Freedericksz transition

cell accounting for both dielectric and flexoelectric contributions to the free energy,

with anchoring of arbitrary strength at both bounding surfaces. Particular attention

is paid to how the inclusion of flexoelectricity affects the Freedericksz and saturation

thresholds. We also consider systematically the effect of anchoring strength on the

results, and study how changes of the anchoring boundary conditions affect the results.

In a conventional LCD device, as outlined above, the application of an

electric field is required to obtain two optically distinct steady states and although

conventional LCD technology is widely used in modern electronic devices, such devices

have high power consumption (and hence short battery life). Bistable technology

offers a NLC layer (the pixel) that can sustain two optically distinct steady states

in the absence of an applied field [11, 13, 15, 17, 29]. Examples of bistable devices

include the Zenithal Bistable nematic Device (ZBD) [7], the Post-Aligned Bistable

nematic Device (PABD) [44], the Bistable Nematic (BiNem) device etc [15]. In the

ZBD and PABD, bistability is obtained by using a specially shaped cell where the

NLC is enclosed between two substrates of a given topography. Because the NLC

molecules have a preferred orientation at the boundaries, the shape of the substrate

will affect the director orientation throughout the layer; and if the shape is chosen

suitably, two stable configurations exist. The BiNem device uses an applied electric

field to break the weak anchoring at one of the substrates creating flow effects that

lead to a “uniform” and a “twisted” steady state [15]. In a bistable device, an applied

field is needed only to switch between states while in a conventional LCD device an

applied field is used to create and maintain two distinct states [13].
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Cummings et al. have investigated possible theoretical designs for bistable

nematic LCD devices in [12,13,15] based on the premise that both anchoring strength

and orientation can be controlled at a device boundary. Assuming that any chosen

combination of anchoring conditions can be engineered, these authors investigate

the design parameters that would allow for production of bistable LCD devices.

In Chapter 3, we rely on their investigation to tune the anchoring conditions to

permit bistability and study how flexoelectricity affects each director configuration in

a bistable system and how the Freedericksz and saturation thresholds are affected.

In most LCD technology the boundary surfaces are made out of glass, chosen

for its transparency and robust anchoring properties. With the increase in interest in

flexible electronic devices, polymer-based devices are now the subject of research.

Such devices have the potential to improve existing portable devices by offering

manufacturing cost reduction, energy savings and better product performance. Using

flexible bounding surfaces for a nematic layer to create a LCD device pixel poses

additional challenges however. One challenge is the interaction between the substrate

and the liquid crystal. Flexible substrates are often coated by polymeric materials

such as PVCN-F or polyimide Nissan SE3510 [9,28]. NLC molecules have a preferred

orientation (anchoring) at the boundary plates, often dictated by the coating material

and/or different mechanical and chemical treatments the substrate undergoes during

the manufacture process. Anchoring may be weak or strong. In both cases, the

substrate is characterized by an “easy axis”, the axis along which the interaction

energy between the substrate and liquid crystal molecules is minimized. If anchoring

is strong, the NLC molecules align nearly parallel to the easy axis at the boundary.

If anchoring is weak, the NLC molecules may deviate from the easy axis, generating

a surface and elastic torque, which balance one another. Experiments have shown

that if a strong applied torque exists for extended periods of time, the easy axis can

slowly rotate, a phenomenon known as easy axis gliding or director gliding [26–28].
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Director gliding may occur at the interface between a NLC and a polymeric

surface as a result of prolonged exposure to an external force (e.g., an electric

field) [26–28,38,39,42,43] or as a result of a bulk elastic distortion induced by different

anchoring conditions (specifically different anchoring angles). Each scenario leads to a

slow reorientation of the easy axis which can be observed in the form of image sticking

in LCD devices [31]. Image sticking is a phenomenon where an outline (ghost image)

of a previously displayed image remains visible on an LCD screen after the image has

been removed. This results in a polarization build-up within individual pixels which

affects the optical properties of the display.

Two mechanisms have been proposed to describe the gliding phenomenon

observed in experiments: the first, introduced by Vetter et al. in [42] describes

gliding in terms of adsorption/desorption of the LC molecules on the solid substrate

as follows: initially the LC molecules are absorbed along the initial direction of the

director in the cell. As an electric field is applied across the layer, the director reorients

according to the electric field, leading to the absorption of LC molecules along this

new direction. As a consequence, the symmetry axes of the angular distribution

function of the absorbed molecules reorients as well as the associated easy axis [9].

The second mechanism, proposed by Kurioz et al. in [30], describes gliding

as follows: due to weak anchoring imposed on the boundary, applying an electric

field reorients the director on the surface, which drags the flexible fragments of the

polymer surface. This results in the reorientation of both the liquid crystal molecules

and flexible fragments with the rate determined by the anchoring strength and the

liquid crystal-flexible fragment interaction. Both mechanisms describe the gliding

phenomenon in the most general way and to our knowledge the mathematical models

resulting from each mechanism have not been compared against the experimental

data observed [9].
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A principal goal of this dissertation is to present a mathematical model that

aims to capture both (i) the fast evolution of the NLC molecules within a NLC layer

as an electric field is applied perpendicular to the bounding plates and (ii) the slow

reorientation of the “easy axis” in the NLC-substrate interface. The dissertation is

laid out as follows: in Chapter 2, we derive the basic governing equations that describe

the evolution of a director field within an NLC layer in the absence of director gliding.

These equations will form the backbone of our subsequent work as we proceed to

investigate the effect of the applied field (in particular flexoelectric effects) on the

NLC layer (Chapter 3) and then extend the modeling to account for the effects of

director gliding (Chapters 4 and 5).

In Chapter 3, we investigate in detail how an applied electric field affects

the evolution of the director field, for both weak and strong boundary anchoring,

in a Freedericksz Transition cell. We categorize the three solutions that may exist,

and explore how the flexoelectric effect affects the stability of each solution (the

Freedericksz and saturation thresholds). We also investigate how changes in the

anchoring conditions (anchoring strength and orientation) affect solutions, in both

monostable and bistable simulations.

In Chapter 4, we move on to consider the director gliding phenomenon, first

in the absence of an applied field. We develop two mathematical models that aim to

capture the slow dynamics of the easy axis reorientation, driven here by the different

anchoring conditions imposed at the two bounding plates. This, together with our

neglect of the dielectric and flexoelectric contributions to the free-energy density,

permits an analytical solution for the director. In line with what is known about the

relative time scales of gliding and director reorientation in the bulk, we consider a

quasistatic model in which the director angle depends on time only via the changes

in anchoring angles on the long (gliding) time scale. The proposed model permits

bistability, and therefore we study this aspect of the system under gliding also.
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In Chapter 5, we expand the mathematical models developed in Chapter 4 to

capture the easy axis reorientation under prolonged application of an electric field

across the NLC layer. Here, we consider the experiments carried out by Joly et

al. [28] and Buluy et al. [9] which present experimental evidence for gliding of the

zenithal director angle. We compare the gliding data observed in each experiment

with the numerical results obtained from our gliding model and, with appropriate

fitting, observe very good agreement between model and data.

In Chapter 6, we summarize the present work and describe possible future

extensions of our gliding project.
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CHAPTER 2

BASIC MATHEMATICAL MODEL

Throughout this dissertation, a star superscript will be used to denote a dimensional

physical quantity (unstarred equivalents being dimensionless). We consider a layer of

nematic liquid crystal of thickness h∗, placed between two parallel bounding surfaces

at z∗ = 0 and z∗ = h∗ as shown in Figure 2.1. The local average molecular orientation

throughout the layer is described by a unit vector director field n , which we assume

lies in the (x∗, z∗) plane, with its properties varying in the z∗-direction only. Hence,

we consider a one-dimensional model where the director is expressed in terms of

a single angle, θ(z∗) ∈ (−π/2, π/2], the angle the director makes with the z∗-axis:

n = (sin θ, 0, cos θ). We assume that an electric field E ∗ = E∗(0, 0, 1) is applied in the

z∗-direction, perpendicular to the bounding plates. The generated field is assumed to

be uniform everywhere as if the field were applied in vacuo. In reality, the molecules

of the NLC layer contain electric dipoles that interact with the applied field, causing

it to deviate from its uniform state. However, it has been demonstrated [14] that the

uniform field approximation is good under certain conditions, which we will discuss

later in Chapter 3.

The mathematical model is based on the Ericksen-Leslie continuum theory for

nematics [21,32,33], where the total energy density of a liquid crystal layer comprises

bulk and surface energy densities, that are functions of the director orientation n .

To simplify the model, we make the common assumption that the bend and splay

elastic constants of the NLC are equal in magnitude [18, 41]. In the presence of a

uniform electric field, the bulk energy density consists of the elastic, dielectric and
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Figure 2.1 Sketch showing the setup and summarizing the key parameters in
dimensional coordinates.

flexoelectric contributions W ∗
e ,W

∗
d ,W

∗
f given by [10,18,41]

2W ∗
e = K∗[(∇∗ · n)2 + ((∇∗ × n)× n)2], (2.1)

2W ∗
d = −ε∗0(ε‖ − ε⊥)(n ·E ∗)2, (2.2)

W ∗
f = −E ∗ · (e∗1(∇∗ · n)n + e∗3(∇∗ × n)× n), (2.3)

where K∗ represents the single elastic constant for the NLC (i.e. K∗ = K∗1 = K∗3).

The constant ε∗0 = 8.854 × 10−12 C2N−1m−2 is the permittivity of free space and

ε‖ and ε⊥ are the relative dielectric permittivities parallel and perpendicular to the

long axis of the nematic molecules. We consider the common case in which the NLC

molecules align parallel with the electric field (rather than perpendicular to it) hence

ε‖−ε⊥ > 0. The constants e∗1 and e∗3 are the flexoelectric coefficients, different for each

liquid crystal type. The flexoelectric effect typically arises because NLC molecules

possess shape asymmetry [5,8]. A detailed investigation of the effect of flexoelectricity

on the NLC layer can be found in Chapter 3.

The total free energy of the system J∗ (per unit area of bounding plates) is

given by

J∗ =

∫ h∗

0

W ∗dz∗ + g∗0|z∗=0 + g∗h∗|z∗=h∗ (2.4)
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where g∗{0,h∗} are the surface anchoring energies at boundaries z∗ = 0, h∗ and, under

the assumptions outlined above, W ∗ = W ∗
e +W ∗

d +W ∗
f simplifies to

W ∗ =
K∗

2
θ2
z∗ −

E∗2ε∗0(ε‖ − ε⊥)

2
cos2 θ +

E∗(e∗1 + e∗3)

2
θz∗ sin 2θ. (2.5)

For the surface energy contributions, we use the Rapini-Papoular form [40]: g∗{0,h∗} =

(A∗{0,h∗}/2) sin2(θ − α{0,h∗}), where α{0,h∗} are the preferred anchoring angles at z∗ =

0, h∗, respectively, and A∗{0,h∗} are the associated anchoring strengths. From a formal

mathematical viewpoint, surface anchoring is strong if the molecules at each surface

align exactly with the preferred anchoring angles at the corresponding surfaces; and it

is weak if the molecules may deviate from the preferred orientation. Strictly speaking

therefore, strong anchoring is achieved only in the limit A∗ →∞.

We follow several authors (e.g., Kedney and Leslie [29], Davidson and Mottram

[17], Cummings et al. [13]) in assuming that the system evolves as a gradient flow to

its total free energy minimum. This process can be represented as follows:

〈µ∗θt∗ , η〉+ 〈W ∗
θ , η〉+ 〈W ∗

θz∗
, ηz∗〉+ [ν̃∗ηθt∗ + ηg∗h∗θ]|z=h∗ + [ην̃∗θt∗ + ηg∗0θ]|z=0 = 0,

where η is a sufficiently smooth test function and the parameters µ∗ and ν̃∗ represent

the bulk and surface rotational viscosities associated with the NLC molecules

(see [13, 17, 29]). The angle brackets here represent an inner product, 〈a, b〉 =∫ h∗
0
ab dz∗. Integration by parts leads to the following evolution equation and

boundary conditions:

µ∗θt∗ = K∗θz∗z∗ −
ε∗0(ε‖ − ε⊥)E∗2

2
sin 2θ, (2.6a)

ν̃∗θt∗ = K∗θz∗ −
A∗0
2

sin 2(θ − α0) +
E∗(e∗1 + e∗3)

2
sin 2θ

∣∣∣∣
z∗=0

, (2.6b)

−ν̃∗θt∗ = K∗θz∗ +
A∗h∗

2
sin 2(θ − αh∗) +

E∗(e∗1 + e∗3)

2
sin 2θ

∣∣∣∣
z∗=h∗

. (2.6c)
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So far, we have derived a mathematical model that describes the evolution

of the director field in a NLC layer bounded by two parallel plates where a uniform

electric field of strength E∗ can be applied across the layer. In the following chapters,

we build on this basic model to undertake several studies that focus on the effect

flexoelectricity and weak anchoring on a Freedericksz Transition cell (Chapter 3); the

effect of director gliding driven solely by different anchoring conditions at the two

cell boundaries (Chapter 4); and the effect of director gliding driven by prolonged

application of an electric field across the layer (Chapter 5). A combination of

analytical and numerical techniques will be used to address these problems.
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CHAPTER 3

EFFECTS OF FLEXOELECTRICITY AND WEAK ANCHORING ON

A FREEDERICKSZ TRANSITION CELL

3.1 Introduction

This chapter focuses on the effects of flexoelectricity and weak anchoring in a

Freedericksz Transition cell (Figure 2.1; in the classical case α0 = α1 = π/2 [6,19,35])

and when the anchoring conditions (anchoring strength and anchoring angles)

vary. The flexoelectric effect typically arises because NLC molecules possess shape

asymmetry [5, 8]. When they align in an electric field, distortions may be induced.

For example, if molecules are slightly pear-shaped, being fatter at one end than the

other, then when all the “pears” align in a field a splay distortion will be induced

due to the fat ends occupying more space than the thin ends. Similarly, if molecules

are slightly banana-shaped, and all the “bananas” align in an electric field, then

a net bend distortion results. Flexoelectricity is also possible in symmetric polar

liquid crystals such as 5CB. In this case, polar liquid crystals tend to form dimers

with antiparallel alignment between molecular dipoles. In the presence of an electric

field, the alignment is not completely antiparallel leading to a net polarization which

couples to a bend and splay distortion [5, 8].

In this chapter, we investigate the effects of flexoelectricity in a weak

Freedericksz transition cell, specifically as regards the number of available director

configurations and how transitions between them occur. It is well known that a

Freedericksz transition cell consists of three director configurations in the presence of

weak anchoring: the horizontal director configuration, observed to be stable when

the electric field strength is low (specifically lower than a threshold value called

the Freedericksz threshold), the director configuration which aligns parallel to the

applied field in the interior of the layer while respecting the anchoring conditions at
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the boundaries, observed to be stable when the electric field strength is moderate

(i.e., past the Freedericksz threshold value); and the director configuration that

aligns strictly parallel with the applied field direction, observed when the electric

field is increased further, past a second threshold value, known as the saturation

threshold [35].

The chapter is organized as follows: in Section 3.2, we discuss the nondimen-

sionalization of the governing equations (2.6) presented in Chapter 2. In Section 3.3,

we outline our solution strategy, and present selected numerical results, focusing

on the effect of flexoelectricity on the director solution. In Section 3.4, we explain

the Freedericksz and saturation thresholds and explore how flexoelectricity affects

these; and in Section 3.5, we briefly explore how changes in the anchoring conditions

affect the results. In our investigation, we focus on the stability of each director

configuration, augmenting our numerical results with analytical techniques such as

the calculus of variations, and Linear Stability Analysis (LSA), as described in

Appendix A. Section 3.6 summarizes our conclusions.

3.2 Nondimensionalization of Governing Equations

We nondimensionalize Equations (2.5)-(2.6c) as follows:

z =
z∗

h∗
, t =

t∗K∗

µ̃∗h∗2
, W =

h∗2W ∗

K∗
, (3.1)

g{0,1} =
g∗{0,h∗}h

∗

K∗
, A{0,1} =

h∗A∗{0,h∗}
K∗

,

(W plays an important role in the calculus of variations approach used in Appendix

A) obtaining the following dimensionless boundary value problem:

θt = θzz −D sin 2θ, (3.2a)

ν̃θt = θz −
A0

2
sin 2(θ − α0) +

F
2

sin 2θ on z = 0, (3.2b)

−ν̃θt = θz +
A1

2
sin 2(θ − α1) +

F
2

sin 2θ on z = 1, (3.2c)
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where ν̃ = ν̃∗/(µ∗h∗) represents the dimensionless surface viscosity and D and

F represent the relative strengths of dielectric anisotropy and elasticity; and of

flexoelectricity and elasticity, respectively:

D =
h∗2E∗2ε∗0(ε‖ − ε⊥)

2K∗
, F =

h∗E∗(e∗1 + e∗3)

K∗
. (3.3)

We consider the common case in which the molecules align parallel to the direction

of the electric field, rather than perpendicular to it (i.e, ε‖ − ε⊥ > 0), so D > 0

always in our model. The parameter F can change sign, if the electric field direction

is reversed. The ratio Υ = F2/D is independent of the applied electric field:

Υ =
2(e∗1 + e∗3)2

K∗ε∗0(ε‖ − ε⊥)
. (3.4)

Υ is thus a material parameter of the liquid crystal layer, independent of cell design

and constant for a specific liquid crystal material.

With characteristic values of h∗ ∼ 1 − 20µm, E∗ ∼ 1 Vµm−1, K∗ = 8 ×

10−12N, e∗1 + e∗3 ∼ 5 × 10−12Cm−1 − 280 × 10−12Cm−1 and ε‖ − ε⊥ ∼ 5 [8], the

dimensionless parameters F and D can take a wide range of values (|F| ∈ (5, 125)

and D ∈ (2, 1100)). Consistently with this range of values, in Section 3.3, we fix |F|

and D and vary anchoring strength and field direction (sign(F)) to determine the

influence on the director configuration throughout the layer. In Section 3.4, we vary

Υ (and inherently F) while keeping D = 10 to explore how flexoelectricity affects the

Freedericksz and saturation thresholds.

The presentation so far assumes a uniform electric field, but in reality the

applied field interacts with the NLC leading to some nonuniformity. Cummings et

al. [14] studied the validity of the uniform field approximation in our model. They

concluded that the approximation is valid in the large field limit, when |F| � 1

(with Υ,A0,A1 ∼ o(|F|)) as well as the small field limit (with Υ ∼ |F| � 1 and

Υ−1 ∼ |F| � 1). In the latter case, the director does not feel the nonlinearity that
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arises in the electric potential due to the small field strength. Caution should however

be exercised in using the uniform field approximation in the case where Υ� 1 (strong

flexoelectric effect) and |F| = O(1). We present simulation results both in the regime

where the uniform approximation is valid and where it may not be. For the latter

cases, we note that some corrections to the results may be needed.

The parameters A{0,1} in Equations (3.2) represent the dimensionless anchor-

ing strength at each boundary. In experiments, typical values for strong anchoring

hover around A∗ ∼ 10−3Jm−2 while A∗ ∼ 10−5 − 10−6Jm−2 for weak anchoring [37].

Depending on the thickness of the NLC layer, A{0,1} can take a wide range of values

A{0,1} ∈ (125, 2500) (strong anchoring) and A{0,1} ∈ (0.125, 25) (weak anchoring).

Intermediate anchoring strengths are also possible. Consistently with this range of

values, in our simulations we use A{0,1} = 0.1, 1, 5, 10, 20 to represent weak anchoring

and A{0,1} = 1000 for strong anchoring. For most of our work here, we consider

the case where anchoring is planar at both boundaries, α{0,1} = π/2, with equal

anchoring strengths (A0 = A1). This symmetry guarantees monostability (only

one stable director configuration for a given electric field strength). In cases where

asymmetry is introduced (through anchoring angles), the system can be bistable,

admitting two nontrivial director configurations θn,1 and θn,2 [13, 15]; such cases are

briefly considered in Section 3.5.2.

In the following sections, we use numerical and analytical methods to deter-

mine and investigate solutions to the boundary value problem given by Equations (3.2)

for various electric field strengths accounting for both dielectric and flexoelectric

contributions. In particular, we focus on how the stability of each director solution

changes with the electric field strength, and with the material parameter Υ, which

characterizes the strength of flexoelectricity relative to elasticity. We also extend our

investigation to determine the influence of variations in the anchoring strength and

angles at the boundaries in both monostable and bistable systems.
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3.3 Solution Scheme and Numerical Results

We begin by illustrating some key features of the director configurations in the

classical case where the anchoring at each boundary is planar (α{0,1} = π/2) and the

layer is subjected to an applied perpendicular electric field. Both “strong” and “weak”

anchoring are considered. In our numerical simulations, we solve the boundary value

problem given by Equations (3.2) using the Crank-Nicolson discretization scheme for

the linear parts of the equations. Nonlinear terms are treated explicitly using the

forward Euler discretization scheme [4]. A grid size ∆z = 10−3 and ∆t = 10−4 is

found sufficient to produce accurate results in all cases considered.

Except where explicitly stated otherwise, the initial condition on all of our

simulations is taken as θ(z, 0) = πz/4. We note, however, that except for some

simulations of Section 3.5.2 (where asymmetric anchoring conditions may lead to

bistability), all scenarios considered are monostable, and the final state reached is

independent of the initial condition used. Figure 3.1 shows the evolution of the

director field in time for two cases: (i) when no electric field is applied across the

layer, (ii) when an electric field of moderate strength characterized by |F| = 5 and

D = 25 is applied. Strong and weak planar anchoring represented by A{0,1} = 1000

(Figure 3.1(a)) and A{0,1} = 5 (Figures 3.1(b), 3.1(c)), with α{0,1} = π/2, are

considered; for both cases we observe that, in the absence of an electric field, the

director evolution is driven purely by the anchoring angles, hence we obtain a director

solution that is parallel to the bounding plates (θ(z, t) = π/2) throughout the domain

(black horizontal lines). In the presence of an electric field however, we expect the

molecules to tend to align parallel to the electric field direction since D > 0.

Consistently with our expectations, we observe that for a strongly anchored

system (Figure 3.1(a)), the director aligns nearly parallel to the applied field in

the interior of the layer and nearly parallel to the walls close to the boundaries

(See red lines in Figure 3.1(a)). Although our model includes both dielectric
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Figure 3.1 Evolution of director field in time for α{0,1} = π/2, with (a)A{0,1} = 1000
(strong anchoring), F = 5 and D = 25, (b) A{0,1} = 5 (weak anchoring), F = 5 and
D = 25 and (c) A{0,1} = 5 (weak anchoring), F = −5 and D = 25. All figures show
the director evolution in time when no electric field is applied, D = F = 0 (black
lines) and when an electric field of strength F = ±5 and D = 25 is applied (red lines).
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and flexoelectric contributions, the flexoelectricity is dominated by the surface

anchoring in this strongly-anchored case. This may be seen from the boundary

conditions, Equations (3.2b)–(3.2c), which are the only place in the model where the

flexoelectricity parameter F and the surface anchoring strengths A{0,1} appear. These

boundary conditions suggest that it is the ratio of these two parameters that is key

in determining whether flexoelectricity significantly affects the system behavior. We

also note from these conditions that, in the symmetric anchoring case considered here

(A0 = A1, α{0,1} = π/2), if F = 0, we anticipate symmetry about the layer’s centerline

z = 0.5, but asymmetry when F 6= 0. As the anchoring strength A increases for

fixed F , we would therefore expect that the director configuration observed becomes

increasingly symmetric about z = 0.5, and this is borne out by Figure 3.1(a), where

F = 5 and A{0,1} = 1000: the director configuration shown in this figure is almost

exactly the same as in the Freedericksz transition cell where the flexoelectric effects

are neglected and anchoring is strong [35] (and would be identical to the results of [35]

in the formal limit A{0,1} →∞).

For the weakly anchored system (A{0,1} = 5) shown in Figures 3.1(b), 3.1(c)

however, we observe significant asymmetry about the cell centerline: the molecules

now align parallel to the electric field at the upper boundary z = 1 as well as in

the interior (see red lines in Figure 3.1(b)). This is a consequence of the asymmetric

nature of the molecules discussed earlier which is reflected in the flexoelectric free

energy density, see Equation (2.3). Due to the weak anchoring conditions, the

flexoelectric distortion plays an important role in the director alignment and hence

in the response to the electric field [19, 34, 45]. The direction of the electric field

dictates the sign of F . Figure 3.1(c) confirms our expectations that if the sign of F is

reversed, then the director profile is simply reflected about the line z = 0.5. For this

simple monostable case of symmetric, planar, surface anchoring (α0 = α1 = π/2

and A0 = A1) we next investigate how flexoelectricity changes the steady-state
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Figure 3.2 Director solution θ(z) for different values of the material parameter
Υ while keeping D = 10. Υ = 0 corresponds to a NLC layer with no flexoelectric
contribution. Υ = 1 corresponds to the director configuration shown in Figure 3.1(b).

molecular orientation of the NLC layer with weak planar anchoring (α{0,1} = π/2,

A{0,1} = 5), when an electric field, above the Freedericksz threshold but below the

saturation threshold, is applied in the z direction. Neglecting flexoelectricity (F = 0

in Equations (3.2)), but accounting for the weak anchoring, Ref. [35] has shown that

a director solution symmetric about z = 0.5 is the minimum free energy solution.

To study the effects of flexoelectricity we vary the material parameter Υ (given by

Equation (3.4)) while keeping D fixed and observe how the director configuration

changes as Υ (and inherently F) is increased. Figure 3.2 shows the steady-state

director profiles obtained at large times after solving Equations (3.2) for different

values of Υ. When Υ = 0 (black solid curve), we recover the results of Ref. [35] for

weak anchoring but no flexoelectricity. The molecules align nearly parallel to the

electric field direction in the interior of the layer while at the boundaries there is a

tradeoff between the weak planar anchoring and the field-aligning dielectric effect.

As Υ increases (strong flexoelectric effect), the molecules will splay and bend causing

the director to align almost parallel to the electric field in the bulk and at the upper

boundary. Note that Υ = 10 (the largest value used in Figure 3.2) falls under the
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case where Υ � 1 and F = O(1), where the uniform field assumption may not

be valid [14]. However, assuming that the director solution we calculate here for

Υ = 10 is not significantly different than that for the true nonuniform field case,

we conclude that flexoelectricity plays an important role in the alignment of liquid

crystal molecules in the presence of an electric field and it affects the Freedericksz

and saturation thresholds.

3.4 Stability Analysis and Bifurcations for Symmetric Anchoring

Conditions

We now investigate how changing the flexoelectric strength affects the Freedericksz

and saturation thresholds in a nematic liquid crystal layer (these thresholds have

been extensively studied in the absence of flexoelectricity, see, e.g., [16,18,35,37,41]).

In order to do this, we first identify certain properties of Equations (3.2) as well

as introduce measures that allow us to quantify our findings. We observe that,

with α0 = α1 = π/2, in addition to nontrivial director solutions of the type

seen in Figures 3.1 and 3.2 (which we now call θn), the boundary value problem

(Equations (3.2)) admits two additional steady state solutions that exist for all values

of D, F : θv(z, t) = 0 (a vertical state) and θh(z, t) = π/2 (a horizontal state). These

solutions are linearly stable only if, when subjected to sufficiently small perturbations,

such perturbations die away and the steady state is recovered at large times. Linear

stability of each solution type depends on the choice of model parameters, and can

be determined either numerically or analytically (see Appendix A for details of our

analytical approach). Solutions gain or lose stability as model parameters are varied,

and this may be visualized by constructing bifurcation diagrams. In order to construct

such diagrams we plot the norm || · ||2, of the steady state director solution, defined
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as

||θ||2 =

√∫ 1

0

θ2 dz.

Since the three distinct solutions θh, θn, θv have different norms, bifurcations between

solution types are clearly visible. Figure 3.3 illustrates the bifurcation diagram

obtained by plotting ||θ||2 as a function of F for several different values of the material

parameter Υ, which characterizes the strength of the flexoelectric effect. The diagram

is obtained using the continuation method as follows: since we anticipate that the

horizontal state is a unique steady solution at zero field, we use a weakly perturbed

state, θ = π/2 − δ, as the initial condition when F = 0. We then slowly increase

F from F = 0, always using the solution obtained with the previously used smaller

value of F (forward continuation). We also carry out reverse continuation using a

similar process: since we anticipate that the vertical state is a unique steady solution

at electric field strengths above the saturation threshold (F > Fs), we use this state

with a small perturbation, θ = δ, as the initial condition for the largest value of F ,

and thereafter decrease F , at each stage using the previous large-time solution as the

new initial condition. When generating our bifurcation diagrams (Figures 3.3–3.9),

both forward and reverse continuations are carried out, to reveal any bistability

that might be present for a range of electric field strengths. In Figures 3.3 and 3.4

however, we show results for F ≥ 0 only (since changing the electric field direction,

F → −F , simply flips the director solution profile θ about the centerline z = 0.5

(see Figures 3.1(b) and 3.1(c)), leading to bifurcation diagrams symmetric about the

vertical axis); and for forward continuation only (since the system is found to be

monostable).

For the range of F -values considered here, Figure 3.3 shows that, for small

values of Υ (specifically Υ = 0.5 and Υ = 1), three director configurations are found:

the horizontal (||θh||2 = π/2) represented by the upper left portion of the graph for
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Figure 3.3 Bifurcation diagram showing ||θ(z)||2 vs F with A0 = A1 = 5 and
α0 = α1 = π/2 for different Υ, obtained using continuation in F . Ff denotes
the Freedericksz threshold and Fs denotes the saturation threshold with the arrows
pointing where the thresholds occur for each Υ.

all Υ, the nontrivial (0 < ||θn||2 < π/2) and the vertical (||θv||2 = 0) solutions. In

these two cases, the director configuration transitions as follows: at low F values the

horizontal solution θh is obtained. Then, if F passes a critical value Ff (Freedericksz

transition), the nontrivial solution θn is observed. As F is increased further still, past

a second critical value Fs (saturation threshold), the vertical solution θv is observed.

These observations are as expected, but the question of how flexoelectricity

affects these results has not yet been addressed. Looking at Figure 3.3, we observe

that both threshold values increase with Υ. While the Freedericksz threshold Ff is

present for all values of Υ considered, the saturation threshold is only seen for the

lowest two values of Υ, at least for the range of F -values considered here. In order

to determine whether the saturation threshold is present for all Υ ≥ 0, we use an

analytical approach based on the calculus of variations. We study specifically the

stability of the vertical solution, θv = 0. If it can be shown that θv is always stable

for sufficiently large F , then we may conclude that a saturation threshold, Fs, should

exist, for all Υ ≥ 0.
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The calculus of variations approach proceeds by directly seeking minimizers,

θ(z), of the total free energy J = h∗J∗/K∗ (where J∗ is defined in Equation (2.4)).

Small perturbations to a minimizer, θ(z)→ θ(z)+εη(z), (0 < ε� 1) induce variations

in J : J → J [θ+ εη] = J0 + εJ1 + ε2J2 +O(ε3). For θ(z) to be a free energy minimizer,

we require J1 = 0 and J2 > 0 for all admissible variations η (see Appendix A for

more details). Upon obtaining expressions for J1 and J2 (see Equation (A.6–A.8) in

Appendix A), it may be seen that, for θ(z) = θv = 0 and any Υ > 0, we have J1 = 0,

and for sufficiently large |F| the second variation J2 > 0, hence θ(z) = 0 is a stable

solution for such F . It may also be seen from Equation (A.8) that the larger the value

of Υ, the larger F must be to guarantee positivity of J2 for all admissible variations η.

Similarly, we are able to show that the horizontal solution θ(z) = θh = π/2 is stable

for sufficiently small |F|. Hence, the calculus of variations allows us to conclude

that inclusion of flexoelectric effects in the model does not affect the fundamental

mathematical structure of the system: with the weak anchoring considered here,

both Freedericksz and saturation thresholds (Ff and Fs) always exist, both being

increasing functions of Υ. We note, for completeness, that the Υ = 10 result in

Figure 3.3 may lie in the regime where the uniform field approximation begins to lose

validity [14].

We next investigate how the strength of the surface anchoring (here assumed

the same at both boundaries) affects results, for a fixed value of the material

parameter Υ. We consider a range of anchoring strength values from A0 = A1 = 0.1

to A0 = A1 = 1000 and obtain a bifurcation diagram by plotting ||θ||2 as a function

of F . As shown in Figure 3.4, we observe that both Freedericksz and saturation

thresholds are present for all except the largest value of A used, and both thresholds

increase with A. As before, where our numerics are inconclusive we may augment

with an analytical approach. The calculus of variations technique outlined earlier

again reveals that the vertical solution θv is stable for sufficiently large F and finite
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Figure 3.4 Bifurcation diagram showing ||θ(z)||2 vs F with Υ = 1 for different
anchoring strengths: A0 = A1 = 0.1, 1, 5, 10, 20, 1000 obtained using continuation
in F . The portion of the diagram where ||θ||2 = π/2 represents the horizontal
state (θh(z) = π/2), while ||θ||2 = 0 represents the vertical state (θv(z) = 0).
The intermediate portion (slowly decaying as |F| increases) represents the nontrivial
solution θn(z) found numerically.

A. Note that in the limit as A → ∞, positivity of the second variation J2 > 0 (see

Equation (A.8) in Appendix A) is not guaranteed, as we recover the Freedericksz

transition cell with strong anchoring where the saturation threshold and therefore

the vertical solution disappear.

We remind the reader that for the cases considered in Figures 3.3–3.4, the

system is monostable: only one steady director configuration is stable for a given

electric field strength. In the following section, we consider how breaking the

symmetry in the anchoring conditions, specifically, changing the anchoring strength

and anchoring angles at each boundary, affects the mathematical structure of the

system.
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3.5 Stability Analysis and Bifurcations for Asymmetric Anchoring

Conditions

The coexistence of two (or more) stable director configurations gives rise to the

potential for development of bistable LCD devices, noted in the introduction. If

two stable states exist at zero field then contrast between neighboring pixels could be

maintained without use of energy, with an electric field needed only to switch pixels

from one configuration to the other as needed [11, 13, 15, 17, 24, 29]. In our model

represented by Equations (3.2) we find that breaking the symmetry of the anchoring

conditions can lead to bistability. In this section, we see how such bistability arises,

and study the effect of flexoelectricity on director profiles, with particular attention

paid to how the Freedericksz and saturation threshold are affected.

3.5.1 Asymmetric Anchoring Strengths

We begin our investigation into anchoring asymmetry by maintaining planar anchor-

ing at both boundaries (α0 = α1 = π/2), but allowing anchoring strengths to differ.

We keep the lower anchoring strength constant at A0 = 10 and vary the upper

anchoring strength in the range 1 ≤ A1 ≤ 12. We expect the system to retain the

same qualitative features of a weak Freedericksz transition cell where all three director

configurations (θh, θn and θv) seen in Figure 3.4 persist despite the different anchoring

strengths at each boundary. However, due to the loss of symmetry in the anchoring

strength and the inherent dependence of the flexoelectric effect on the direction of

the electric field, we now anticipate results for F < 0 to differ from those for F > 0.

Figure 3.5 illustrates the bifurcation diagram, obtained by forward continu-

ation in |F| from F = 0, showing the stable director configurations for a range of

values of A1. Here, as in Figures 3.3 and 3.4, we use a slightly perturbed horizontal

state as an initial condition when F = 0, followed by the solution obtained with the

previous electric field strength when F 6= 0 (continuation). For this particular set of
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simulations the size of the Freedericksz threshold, |Ff | increases with A1 (see inset

of Figure 3.5). We also observe that the Freedericksz threshold at positive F , F+
f ,

is different than the Freedericksz threshold at negative F , |F−f | for each anchoring

strength considered.
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Figure 3.5 Bifurcation diagram showing ||θ(z)||2 vs F with Υ = 1 for A0 = 10.0
and 1 ≤ A1 ≤ 12 using continuation in F .

Figure 3.5 also shows that the saturation threshold at positive F , (F+
s ) appears

to be essentially independent of A1; but its value at negative F , (F−s ) depends

strongly on A1, with |F−s | being an increasing function of A1. The dependence of

the saturation threshold for positive and negative values of F , (denoted by F{+,−}s )

on A{0,1} can be understood by considering the behavior of the nontrivial director

solution θn with weak anchoring (recall that this solution exists only for F -values

between the Freedericksz and saturation thresholds; see, e.g., Figure 3.1 for the

symmetric weak anchoring case). Consider the case F > 0 first. It is clear from

Figure 3.1(b) that, where θn exists, the director behavior is very different at the two

boundaries, respecting the anchoring at z = 0 but aligning with the field at z = 1.

Since the director is already field-aligned at z = 1, we would not anticipate that the

anchoring strength at that boundary will have much effect on the saturation threshold
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value at which the director solution switches to the fully-aligned state – the value of

A0 will be more important. When F < 0 however, the situation is reversed: the

director is field-aligned at z = 0, while strongly influenced by the surface anchoring

at z = 1 (Figure 3.1(c)). In this case we expect the value of A1 to have a significant

effect on the saturation threshold, and this is borne out in Figure 3.5.

3.5.2 Asymmetric Anchoring Angles

We next investigate how perturbations in the anchoring angles can change the

structure of the system; in particular how the Freedericksz and saturation thresholds

are affected. We begin by considering a system that is somewhat special: anchoring

angles α0 = 0 and α1 = π/2 (we call this a semi-symmetric system). The anchoring

strengths are set to A0 = A1 = 5 throughout this subsection. Inspection of

Equations (3.2) reveals that in this case the horizontal and vertical solutions, θh = π/2

and θv = 0, are still steady solutions, but now we anticipate that θh may no longer be

stable at small nonzero fields, since it is favored by just one (not both) boundaries.

Hence we expect to see only a saturation threshold as |F| is increased from zero.
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Figure 3.6 Bifurcation diagram showing ||θ(z)||2 vs F with Υ = 1 for A0 = A1 = 5
and α0 = 0, α1 = π/2, obtained using continuation in F .
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Figure 3.6 shows the bifurcation diagram for this case. In obtaining the

director solutions for each F , we first use θ = π/2− δ as an initial guess when F = 0,

and thereafter use forward continuation in |F| (reverse continuation was also carried

out with identical results obtained; the system is monostable). We observe that, as

anticipated, the horizontal state is never stable. Instead, the system converges to a

nontrivial state θn, which is stable for small values of |F|. For large enough |F|, the

vertical state θv(z) = 0 becomes stable while the nontrivial steady state is unstable

(or ceases to exist). Therefore, this system does not have a Freedericksz threshold,

only a saturation threshold which occurs at F ≈ −12.5 for F < 0 and F ≈ 2.5 for

F > 0. This asymmetry in the saturation threshold is due to the flexoelectric effect.

For F > 0, flexoelectricity helps the director fully align with the electric field

at weaker field strength than for F < 0. This can be explained in terms of the

nontrivial director configuration for asymmetric anchoring conditions α0 = 0 and

α1 = π/2. In the absence of an electric field, the director configuration is linear in z,

satisfying the anchoring conditions Equations (3.2b)–(3.2c) at the boundaries. As an

electric field is applied in the positive z direction, the molecules in the bulk and at

the upper boundary align with the electric field (c.f. Figure 3.1(b)). Here, however,

the molecules at the lower boundary are already aligned with the applied field, hence

a fairly low field strength suffices to make the transition from nontrivial to vertical

state. On the other hand, when F < 0, the molecules at the upper boundary are

dominated by the planar anchoring (c.f. Figure 3.1(c)), and in this case a much higher

field is needed to effect the transition from nontrivial to vertical state, confirmed by

Figure 3.6.

With a clear picture of the system behavior for the two special cases of (i)

equal strength planar anchoring at both boundaries (α0 = α1 = π/2, symmetric

case); and (ii) equal strength anchoring that is homeotropic at one boundary and

planar at the other (α0 = 0, α1 = π/2, semi-symmetric case), we now investigate
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how small perturbations to such anchoring conditions change system behavior. We

maintain the anchoring strengths A0 = A1 = 5 at each boundary and introduce a

small perturbation ψ to the anchoring angles as follows: (i) α0 = π/2, α1 = π/2− ψ,

(ii) α0 = 0, α1 = π/2−ψ and (iii) α0 = ψ, α1 = π/2. We set ψ = 0.1 in all simulations

that follow.
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Figure 3.7 Bifurcation diagram showing ||θ(z)||2 vs F with Υ = 1 for A0 = A1 = 5
and α0 = π/2, α1 = π/2 − ψ (ψ = 0.1), obtained using forward continuation in F .
Inset located at the upper left corner shows the director configuration obtained when
F = 12.5. Inset located at the lower right corner shows a zoom of the bifurcation
diagram, to clarify the behavior in the range 12 ≤ F ≤ 13 region.

Figure 3.7 shows the bifurcation diagram where ||θ(z)||2 is plotted as a function

of F for α0 = π/2 and α1 = π/2 − ψ. As in the previous cases, we first use a

slightly perturbed horizontal state, θ = π/2 − δ, as initial condition when F = 0,

and thereafter use forward continuation in |F|. Since the system is monostable,

reverse continuation starting from |F| = 20 with initial condition θ = δ leads to

identical results. We note that θh and θv are no longer steady state solutions that

satisfy Equations (3.2) for the given anchoring angles, hence we do not expect to

observe true Freedericksz and saturation thresholds. At zero electric field strength,

a nontrivial director solution (nearly horizontal) satisfies the anchoring angles with

||θ(z)||2 = 1.52. As |F| increases, the nontrivial solution evolves, becoming rapidly
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more vertical. Observe that, for F ≈ 12, it appears that a saturation threshold is

reached, however closer examination (the inset located at the lower right corner in

Figure 3.7) reveals that in fact the director never fully breaks the surface anchoring

to reach the strictly vertical state θv = 0. A boundary layer near z = 1 persists

(see inset located at the upper left corner of Figure 3.7). Note that the bifurcation

diagram shown in Figure 3.7 is far from symmetric in F , being significantly altered

from its equivalent (shown in Figures 3.3 and 3.4, reflected about the vertical axis)

when ψ = 0. This asymmetry is induced purely by the flexoelectric effect. In the

absence of flexoelectricity, Υ = 0, the bifurcation diagram is symmetric in F .

We now consider perturbations to the system with homeotropic anchoring at

one boundary and planar anchoring at the other, with (ii) α0 = ψ, α1 = π/2 and (iii)

α0 = 0, α1 = π/2−ψ. Once more, θh and θv are no longer steady state solutions that

satisfy Equations (3.2) for the given anchoring angles. Hence we do not expect to

observe the Freedericksz or saturation thresholds. In fact, both cases (ii) and (iii) are

bistable [13, 15], admitting two nontrivial director configurations θn,1 and θn,2, hence

we must track both solutions in our bifurcation diagrams.

Figure 3.8 shows the bifurcation diagrams for cases (ii) and (iii), where ||θ(z)||2

is plotted as a function of F for each solution. Since two director configurations exist

in the absence of an electric field, we obtain two director solutions for each F by

using θn,1 and θn,2 as initial conditions, followed by forward continuation in |F|. In

addition, we use a perturbed vertical state θ(z) = δ as the initial condition for large

|F|, followed by reverse continuation.

Figure 3.8(a) shows the bifurcation diagram for α0 = ψ and α1 = π/2. We

observe that when |F| is small, two stable director configurations given by θn,1 and θn,2

exist (solid black line showing the norm of θn,1 and red dashed line showing the norm

of θn,2). As |F| increases, one of the solutions disappears; both director solutions

have the same norm. Reverse continuation (green dots) converges to the director

30



F
-20 -10 0 10 20

||θ
(z
)||

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
θn,1

θn,2

reverse cont.

F
-14 -13 -12

||θ
(z
)||

2

×10-3

2
4
6
8
10

(a)

F
-15 -10 -5 0 5 10 15

||θ
(z
)||

2

0

0.2

0.4

0.6

0.8

1
θn,1
θn,2
reverse cont.

Bistability
destroyed at
F = −7.4

System
bistable at
F = −5

(b)

Figure 3.8 Bifurcation diagram showing ||θ(z)||2 plotted vs F with Υ = 1 for (a)
α0 = ψ and α1 = π/2 and (b) α0 = 0, α1 = π/2 − ψ (with ψ = 0.1). Anchoring
strengths are set to A0 = A1 = 5. Black solid and red dashed curves are obtained
using forward continuation in |F| while the green dotted curve is obtained using
reverse continuation in |F|.

configuration given by θn,1 which means that one can switch from θn,2 → θn,1 by

increasing |F| but not vice versa. This poses an inconvenience from an applications

point of view since, to be useful, a bistable system must allow two-way switching

(see [13, 15] for a more detailed investigation of bistability and switching).

As already noted, since θh and θv are not solutions to this perturbed system,

there can be no true Freedericksz or saturation threshold. Similarly to Figure 3.7,

Figure 3.8(a) has an apparent bifurcation (at F ≈ −12.5) but again the inset reveals

that the solution is never fully vertical.

Figure 3.8(b) shows the bifurcation diagram for α0 = 0 and α1 = π/2 − ψ.

As above, we observe that two director configurations θn,1 and θn,2 exist for small

values of |F|, indicating that the system is bistable. As |F| increases, the system

loses its bistability. Note that for F ≈ −5 the two solutions have the same norm

in Figure 3.8(b): this does not, however, imply that the director configurations are

identical. In fact when F ≈ −5, θn,1 and θn,2 are distinct solutions, which just

happen to have the same ||θ(z)||2 norm, so the system is still bistable here. As F
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increases further, however, the system can no longer sustain two stable steady states.

Figure 3.8(b) shows that the system loses bistability at F ≈ −7.4 for F < 0 and

F ≈ 2 for F > 0. Beyond these two values the system is monostable. It is curious

to note how different the bifurcation structures in Figures 3.8(a) and 3.8(b) are, in

particular at negative F -values, while the underlying models are so close.
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Figure 3.9 Bifurcation diagram showing ||θ(z)||2 plotted vs F with Υ = 1 for
α0 = 0 and α1 = π/3. Anchoring strengths are set to A0 = A1 = 5 Black solid
and red dashed curves are obtained using forward continuation in |F| while the green
dotted curve is obtained using reverse continuation in |F|.

Finally, we present an example with fully asymmetric boundary conditions,

α0 = 0 and α1 = π/3. Here as in Figures 3.3–3.8, we plot ||θ(z)||2 as a function of

F by using forward and reverse continuation methods. The behavior of the system

is similar to the perturbed semi-symmetric cases shown in Figure 3.8: the system is

initially bistable with two director configurations, θn,1 and θn,2, and loses bistability

as |F| increases. Also, θh and θv again do not exist, hence there are no Freedericksz

and saturation thresholds. As in Figure 3.8, we observe that one can switch only

from θn,2 → θn,1 by increasing |F|. Since reverse continuation favors θn,1, we cannot

switch from θn,1 → θn,2 in the asymmetric cases shown here. This finding exemplifies

some of the difficulties inherent in designing bistable devices.
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Figures 3.5–3.9 have shown that changing the anchoring conditions, even

slightly, significantly alters the director configurations present in a Freedericksz

transition cell as well as its bifurcation properties (the Freedericksz and saturation

thresholds). In particular, we observe that changing the anchoring strength, A, simply

increases the Freedericksz and saturation threshold values. Breaking the symmetry

in the anchoring angles however, changes the structure of the cell, eliminating the

purely horizontal and vertical states present in a classic Freedericksz transition cell.

In doing so, one can eliminate both Freedericksz and saturation thresholds.

3.6 Conclusions

In this chapter, we use the mathematical model presented in Chapter 2 to describe the

evolution of the director field within a confined layer of nematic liquid crystal where

an electric field is applied in the z direction and the anchoring conditions vary. We

investigate in detail how an applied electric field affects the evolution of the director

field in the presence of both dielectric and flexoelectric effects for strong and weak

anchoring. We observe that for strong planar anchoring the director aligns vertically

in the direction of the electric field in the interior of the layer and aligns nearly parallel

to the anchoring angles close to the interface; flexoelectric effects are not observed.

In the case of weak planar anchoring, flexoelectricity significantly affects the system’s

behavior. We find that, at intermediate values of the electric field strength, the

director aligns parallel to the electric field in the interior of the layer and at one

of the boundaries (which boundary depends on the direction of the electric field).

The key characteristics of a weak Freedericksz transition cell persist, however: three

director solutions (which we call θh, θn and θv for horizontal, nontrivial and vertical

states) exist, only one of which is stable at a given electric field strength. Solution θh

is stable for 0 < F < Ff (the Freedericksz transition threshold); solution θn is stable

for Ff < F < Fs (the saturation threshold) and solution θv is stable for F > Fs.
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We pay particular attention to the above transition structure when increasing

the effect of flexoelectricity by varying the material parameter Υ = F2/D (see

Equation (3.4)). We observe that both Freedericksz and saturation thresholds increase

with Υ (stronger flexoelectric effect). In addition, we investigate how the Freedericksz

and saturation thresholds change as anchoring conditions are varied at each boundary.

We show that when the anchoring strength parameters (A{0,1}) are varied, the

stability of the director configurations does not change, but the Freedericksz and

saturation thresholds increase with A. When investigating a system with planar

anchoring angles (α0 = α1 = π/2) while varying the anchoring strength only at one

boundary, we show that the structure of the system and the saturation threshold

at positive F , F+
s , remain unchanged (three director configurations exist: θh, θn

and θv). The Freedericksz threshold for both positive and negative F , F{+,−}f ,

and the saturation threshold for negative F , F−s , increase in magnitude with A1.

Finally, changing the anchoring angles at the boundaries (nonplanar anchoring angles)

reveals that the structure and stability of the possible director configurations changes

fundamentally. Here, the horizontal and vertical states are no longer solutions. In

some cases bistability is observed, with more than one nontrivial director solution.

We find that, while bistability is preserved for weak applied fields, it is typically lost

for stronger fields. As the applied field is increased, the system tends to become

monostable.

Finally in Appendix A, we present two analytical approaches that help us

determine the stability of the director configurations for the weak Freedericksz

transition cells. We use the calculus of variations to minimize the total free

energy of the system and determine the stability of the horizontal and vertical

director configurations. We also carry out Linear Stability Analysis by linearizing

Equations (3.2) around the purely vertical and horizontal solutions and we determine
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whether perturbations to these solutions exhibit growth or decay in time. We find

that our numerical results are strongly supported by the analytical ones.
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CHAPTER 4

SUBSTRATE INDUCED GLIDING IN A NEMATIC LIQUID

CRYSTAL LAYER

4.1 Introduction

In this chapter, we present a mathematical model that describes a NLC layer

sandwiched between two parallel bounding plates, with different anchoring conditions

at each plate, where we assume gliding can occur. As mentioned in Chapter 1, director

gliding can occur due to prolonged application of an applied electric field across the

layer, or as a result of different anchoring conditions prescribed at each boundary.

Here, we focus on the latter case, in which the difference in anchoring angles can

lead to a bulk elastic distortion that causes the NLC molecules to deviate from their

preferred orientation, leading ultimately to director gliding.

We remark that, although the phenomenon of gliding may occur in both

strongly and weakly anchored systems, the model presented in this chapter focuses on

gliding in the presence of weak anchoring only, and may require modification before

applying to a system with strong anchoring. Furthermore, we focus on gliding of the

zenithal (or polar) director angle only, as observed by [28]. We introduce two possible

gliding sub-models, and study the effect of each on the director. Although the effect

of an applied electric field on gliding is clearly of relevance in applications, we believe

that gliding should be first understood precisely in the absence of the field, and that

is the focus of this chapter. The model we use permits bistability, and therefore we

study this aspect of the system under gliding also.

The chapter is laid out as follows: in Section 4.2 we discuss the modeling

assumptions and supplement the mathematical model described in Chapter 2 with two

equations used to govern the evolution of the anchoring angles at each surface. One

of our modeling assumptions for gliding is that, due to the properties of the polymeric
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bounding plates, the anchoring angle cannot change by an arbitrarily large amount

from its initial value [27,42]: hence, we limit the change by some prescribed tolerance

value, αtol. This assumption is supported by the experimental results reported by

Jánossy and Kósa [27], and Joly et al. [28]. Section 4.2.1 discusses two possible ways

to implement this: in the first, gliding is stopped abruptly when the tolerance is

reached; in the second, gliding stops smoothly as αtol is approached. In addition,

Section 4.2 outlines the nondimensionalization process while Section 4.3 presents the

results for the two models and Section 4.4 discusses conclusions to be drawn.

4.2 Mathematical Model

We will take as our starting point the model given by Equation (2.6) derived in

Chapter 2, where the director n is expressed in terms of a single angle, θ(z∗) ∈

(−π/2, π/2]). This assumption limits our investigation to gliding of the zenithal or

polar director angle only (as observed in [28]), though we note that gliding of the

director azimuthal angle may certainly occur in systems with twist, e.g., [27]. With

the assumption that the NLC layer is not subjected to any external fields (such as an

applied electric field), we can set the electric field strength E∗ = 0 in Equation (2.6)

and obtain the following evolution equations:

µ̃∗θt∗ = K∗θz∗z∗ ,

ν̃∗θt∗ = K∗θz∗ −
A0
∗

2
sin 2(θ − α0) on z∗ = 0, (4.1)

−ν̃∗θt∗ = K∗θz∗ +
A1
∗

2
sin 2(θ − αh∗) on z∗ = h∗.

Fundamentally, the anchoring properties of a given polymer surface are due to

the orientation of its molecules at the exposed polymer surface, and their interactions

with the molecules of the NLC. At a non-gliding surface, the preferred orientation

of the molecules is fixed, as dictated by the anchoring conditions. At a gliding
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surface, by contrast, the molecules can slowly reorient in time if there is a sustained

torque on them due to the molecules of the adjacent NLC. Such a torque arises,

for example, if the anchoring conditions within our NLC layer are different at the

two bounding surfaces, leading to a director orientation that changes across the

layer, with attendant elastic stress throughout the layer (including at the bounding

surfaces). Such molecular torques at the bounding surfaces lead to slow variation

of the anchoring angles in time: experimentally the anchoring angle is observed to

reorient towards the director angle at that surface [22, 25–28, 38, 42]. We introduce

two models to capture this gliding behavior. Both models assume that the rate of

anchoring reorientation at a surface depends on the difference between the anchoring

angle and the director angle at that surface.

The models also incorporate an additional feature, observed in experiments

such as those of Jánossy and Kósa [27], Joly et al. [28] and Buluy et al. [9]: gliding

does not continue indefinitely; rather, the anchoring angle stops reorienting after

some time under torque. The experimental setup used in [27] consist of a nematic

liquid crystal layer placed between two different substrates, only one of which exhibits

gliding (azimuthal gliding, rather than the zenithal or polar gliding that we model

here but we believe the same mechanisms apply). Anchoring is strong and planar,

aligned with a specific rubbing direction, at the upper (non-gliding) substrate; and

weak and planar at the lower substrate, where gliding occurs. The layer is exposed to

a magnetic field applied perpendicular to the rubbing direction. The anchoring angle

at the lower substrate rotates (glides) in time under the magnetic torque. The field

is removed after some time (before any steady state is reached, but after significant

gliding), and the system is then allowed to evolve under gliding alone. If gliding

were unlimited, the system should ultimately glide back to a fully-undistorted state

throughout the layer, this being the global energy minimizer. However, this does not

happen, indicating that there is some physical constraint on the degree of gliding
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that can occur. (Similar observations regarding limited gliding were made by Joly et

al. [28] and Buluy et al. [9] although with a slightly different setup; we discuss these

results in detail in Chapter 5.)

Jánossy and Kósa interpret their experimental results by developing a model

based on the Q-tensor formulation for nematics [18, 27]. Although their model gives

very good agreement with the experimental results over reasonable times, it does not

capture the fact that the surface director appears not to relax back to its original state

in the experiments. By contrast, we base our governing equations on the Ericksen-

Leslie theory for nematic liquid crystals. In addition, we account for the observed

limited gliding described above by introducing the parameter, αtol, as explained in

detail below.

4.2.1 Gliding

4.2.1.1 Gliding Model I: Abrupt Cessation. In the first gliding model, we

assume that the anchoring angle, α, changes at a rate directly proportional to its

deviation from the adjacent director angle. The anchoring reorientation (gliding)

persists until the anchoring angle has changed by a maximal amount αtol or until

θ(·, t∗) = α{0,h∗}(t
∗), at which point gliding stops abruptly. Mathematically, this is

represented as follows

dα{0,h∗}
dt∗

=

 λ∗{0,h∗}(θ(·, t∗)− α{0,h∗}(t∗)) if |α{0,h∗}(t∗)− α{0,h∗}(0)| < αtol,

0 if |α{0,h∗}(t∗)− α{0,h∗}(0)| = αtol,

(4.2)

where θ(·, t∗) indicates that θ(z∗, t∗) is evaluated at the appropriate boundary. Here,

λ∗{0,h∗} are the anchoring relaxation rates at z∗ = 0, h∗, respectively. When αtol = 0,

the interface exhibits no gliding, while as αtol → π/2, the gliding process occurs

indefinitely as in the model described in [27]. Unlimited gliding leads ultimately to a
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director that is uniform throughout the layer, though this uniform value is unknown a

priori and will depend on the relative values of the anchoring relaxation rate constants

at the two boundaries. The model given by Equation (4.2) introduces gliding in

perhaps the simplest possible manner; we will use this simplicity below to gain a

better understanding of the basic features of gliding. Before doing so, we introduce

our second gliding model.

4.2.1.2 Gliding Model II: Smooth Cessation. Model I has the advantage of

maximal simplicity, but has the perhaps unrealistic feature that gliding halts abruptly

once gliding through angle αtol has occurred. We therefore propose a second gliding

model (Model II) with the same essential features as Model I, but here we ensure

smooth cessation of gliding by specifying the rate of change of the anchoring angles

according to

dα{0,h∗}
dt∗

= λ∗{0,h∗}[θ(·, t∗)− α{0,h∗}(t∗)]
(

1−
|α{0,h∗}(t∗)− α{0,h∗}(0)|

αtol

)
. (4.3)

Note that the first factor on the right hand side is present in both models, ensuring

that the anchoring angle always reorients itself towards the director angle at that

interface. The second term leads however to a slowdown of the gliding process as the

maximum gliding angle is approached.

4.2.2 Scaling and Nondimensionalization

To simplify our models and to identify the important scales, we nondimensionalize.

We scale z∗ with the cell height h∗ and define t, the nondimensional time variable, as

t = t∗λ∗0 where λ∗0 is the relaxation rate associated with the lower substrate z∗ = 0.

Relaxation rates can be inferred from experimental data reported in the literature.

We use results of Janossy and Kosa [27] to estimate λ∗{0,h∗}. Their experiment consists

of a nematic liquid crystal layer sandwiched between two polymer plates where one

plate is treated chemically to ensure strong anchoring, while the other is left as a “soft”

40



plate, exhibiting weak anchoring with gliding. Modifying our model to account for

strong anchoring at the plate, z∗ = h∗, we are able to obtain good agreement between

the experimentally-observed evolution of the anchoring angle at the “soft” plate [27]

and our model by using λ∗0 ≈ 0.0031 s−1 as a relaxation rate in gliding Model I. Hence,

we assume this value in our nondimensionalization.

The surface energies g∗{0,h∗} (at z∗ = 0, h∗) are nondimensionalized by

g{0,1} = g∗{0,h∗}h
∗/K∗ leading to the non dimensional Rapini-Papoular surface energies:

g{0,1} = (A{0,1}/2) sin2(θ − α{0,1}), A{0,1} = (h∗A∗{0,h∗})/K∗, where α{0,1} ≡ α{0,h∗}.

Equations (4.1) in turn become:

δθt = θzz in 0 < z < 1,

δν̃θt = θz −
A0

2
sin 2(θ − α0) on z = 0, (4.4)

−δν̃θt = θz +
A1

2
sin 2(θ − α1) on z = 1,

where δ = h∗2µ̃∗λ∗0/K
∗ and ν̃ = ν̃∗/(µ̃∗h∗). Note that δ represents the ratio between

two timescales: h∗2µ̃∗/K∗ is the time scale of the bulk elastic response of the NLC,

while 1/λ∗0 is the timescale of the gliding response (the estimate above gives a little

over 5 minutes for the gliding response, but this timescale may range from a few

minutes to several hours depending on the properties of the liquid crystal and the

substrate [22, 25, 27, 28, 38]). Typical values of the dimensional parameters for an

LCD application are h∗ ∼ 1 × 10−6 m, K∗ ∼ 1 × 10−12 N, µ̃∗ ∼ 0.1 N s m−2,

A∗{0,h∗} ∼ 10−4− 10−6 N m−1, ν̃∗ ∼ 10−10 N s m−1 [17,20,26]. Hence the bulk elastic

response timescale of the NLC is of the order of a few milliseconds, and δ � 1, ν̃ � 1.

We therefore use a quasistatic approximation and set δ = 0 in Equations (4.4), giving
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0 = θzz, (4.5)

0 = θz −
A0

2
sin 2(θ − α0) on z = 0, (4.6)

0 = θz +
A1

2
sin 2(θ − α1) on z = 1. (4.7)

The dimensionless forms of the gliding Models I and II given by Equations (4.2) and

(4.3) are:

Model I:
dα{0,1}
dt

=

 λ{0,1}(θ(·, t)− α{0,1}(t)) if |α{0,1}(t)− α{0,1}(0)| < αtol,

0 if |α{0,1}(t)− α{0,1}(0)| = αtol;

(4.8)

Model II:
dα{0,1}
dt

= λ{0,1}[θ(·, t)− α{0,1}(t)]
(

1−
|α{0,1}(t)− α{0,1}(0)|

αtol

)
, (4.9)

where λ{0,1} = λ∗{0,h∗}/λ
∗
0 (so λ0 = 1 always; and in fact for all simulations

shown in this chapter we also set λ1 = 1). Equations (4.5)–(4.7) governing the

director orientation will be dynamic once supplemented with the gliding model

(Equations (4.8) or (4.9)) describing how α{0,1} change in time. Note that the actual

gliding timescale, 1/λ∗0, is important only if we wish to convert our dimensionless

results back to real time (see Chapter 5 later, where we refine our gliding models and

make a quantitative comparison to experimental data).

4.3 Analysis and Results

4.3.1 Solution Scheme

Equations (4.5)–(4.7) in conjunction with either Equation (4.8) or Equation (4.9)

constitute a complete model to describe the director field angle θ(z, t) within a

simple sandwich of NLC with gliding at both interfaces (dynamic evolution of α0(t),

α1(t)). Due to the quasistatic approximation, Equations (4.5)–(4.7) can be solved
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independently of the gliding model if the anchoring angles α{0,1} are assumed known:

θ = az + b where a and b are fixed by Equations (4.6) and (4.7). Following [13], the

director solution may be written as

θ = az +
1

2
sin−1

(
2a

A0

)
+ α0, (4.10)

where a satisfies a nonlinear algebraic equation

f(a) = a+ a
A1

A0

cos(2a+ 2(α0 − α1)) +
A1

√
A2

0 − 4a2

2A0

sin(2a+ 2(α0 − α1)) = 0

(4.11)

(here, the time dependence in a, α0, α1 is suppressed for brevity). Given initial

conditions α0(0), α1(0) for the anchoring angles and values A0, A1 for the anchoring

strengths, Equations (4.10) and (4.11) describe possible initial states for the system.

We choose values of A0 and A1 that correspond to “weak anchoring” (A∗{0,h∗} ∼

10−6N m−1). In addition, we expose any behavior due to different anchoring

conditions at each substrate by taking unequal values A0 6= A1: in all simulations

presented in this chapter, we take A0 = 5.0, A1 = 2.4, as used in [13].

Depending on the values of {α0(0), α1(0)}, Equation (4.11) may have multiple

solutions. For the chosen values of A0, A1, the number of solutions is always one or

three, and we will focus on this case in the rest of the chapter. Choosing different

values of A0 and A1, however, may lead to more than three solutions, each solution

associated with a root of Equation (4.11)). In such cases, the multiple roots of

larger amplitude correspond to complex director configurations where the director

bends through large angles (greater than π). These configurations are unlikely to be

observed in physical systems due to the associated high elastic energy, and will not be

considered further. [Such solutions may be considered an artifact of our assumption

of purely 2D geometry: real systems are 3D and the director can “escape” from a
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highly-bent 2D solution, unwinding into the third dimension.] When Equation (4.11)

has one root, the system has only one steady state (monostability); when it has three

roots, the system is bistable (one of the three roots always represents an unstable

solution for θ; a local maximum of the free energy).

The results that we present are obtained as follows. From our chosen initial

state, integrating either Equation (4.8) or Equation (4.9) through one time step using

the appropriate integrating factor, we compute the evolution of the anchoring angles

based on Models I and II. These anchoring angles are used to obtain a new director

solution using Equations (4.10) and (4.11) at the new time step. To ensure accuracy,

we use relatively small time step, dt = 10−3; we have verified that this choice of dt

leads to results that are accurate to 0.1%.

4.3.2 Effect of Gliding on a Monostable System

We focus first on an initially monostable system, and consider how the proposed

gliding Models I and II drive the evolution of the anchoring angles and director field

under unlimited (αtol = π/2) and limited (αtol < π/2) gliding (we use αtol = π/20 as a

representative example). We expect unlimited gliding to smooth the director solution

throughout the layer, leading to a uniform solution at large time, while limited gliding

may lead to a nonuniform steady state for the director.

Figure 4.1 shows a snapshot of f(a), defined in Equation (4.11), for a

monostable system. Figure 4.2(a) shows the evolution of the director field from

the initial state represented by the root in Figure 4.1, under unlimited gliding.

These results are computed using Model I; results obtained using Model II are

very similar and are therefore omitted. Figure 4.2(b) shows the accompanying

evolution of the anchoring angles α0, α1 for both gliding Models I and II. For both

models, with αtol = π/2, the director field evolves to a solution uniform throughout

the layer, with θ(z,∞) = α0(∞) = α1(∞). However, the steady states attained
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Figure 4.1 The location of the root of f(a), see Equation (4.11), for a monostable
system. The anchoring angles are α0(0) = 0 and α1(0) = π/6. The arrow
accompanying the root indicates its initial evolution under gliding (Model I). The
symbols on the curves shown in this and upcoming figures are purely for identification
with the legend, and bear no relation to the mesh-point used.
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Figure 4.2 Gliding effect for αtol = π/2 (unlimited gliding) using Models I and
II: α0(0) = 0, α1(0) = π/6 and λ0 = λ1 = 1.0 (these values for the dimensionless
relaxation constants are assumed throughout this paper). (a) Evolution of the director
field in time as result of gliding Model I. (b) Evolution of anchoring angles for Model
I: α0(t)–(?), α1(t)–(◦); and Model II: α0(t)–(�), α1(t)–(B).

by the two models are not the same in Figure 4.2(b): the additional smoothing

factor
(
1− |α{0,1}(t)− α{0,1}(0)|/αtol

)
in Equation (4.3) becomes important, leading
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to quantitatively different results. This observation highlights the importance of

accurately capturing the intermediate dynamics in any gliding model (in Chapter 5

later, we present a model with more complicated dynamics, capable of capturing

quantitatively the gliding behavior observed in experiments). Note also that,

regardless of the model used, α1(t) varies more from its initial value than does α0(t)

due to the lower associated anchoring strength (A0 = 5.0, A1 = 2.4).
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Figure 4.3 Gliding effect for αtol = π/20 (limited gliding) using Models I and II:
α0(0) = 0, α1(0) = π/6 and λ0 = λ1 = 1.0. (a) Evolution of the director field in time
as result of gliding Model I. (b) Evolution of anchoring angles for Model I: α0(t)–(?),
α1(t)–(◦); and Model II: α0(t)–(�), α1(t)–(B).

Figure 4.3 shows the evolution of the director solution and the anchoring

angles under gliding Models I and II for αtol = π/20, with all other parameters as in

Figure 4.2. We note that the anchoring angles at the two boundaries no longer settle

at the same steady state value: α0(∞) 6= α1(∞) leading to a director solution that is

nonuniform throughout the layer at large times. In addition we observe that, unlike

the unlimited gliding example of Figure 4.2, under limited gliding the two models lead

to the same steady state solution at large times, at least for sufficiently small αtol as

used here. This is due to the fact that, for sufficiently small αtol, gliding stops (for both
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models) due to the maximum gliding angle being reached: |α{0,1}(t)−α{0,1}(0)| = αtol

at finite time (see Equation (4.8) or Equation (4.9)).

4.3.3 Effect of Gliding on a Bistable System

The existence of two (or more) stable field-free steady states that are optically distinct

is of relevance to applications, since in this case, contrast can be maintained in a

display without an externally applied electric field (a field is required only to switch

the device from one state to the other). Theoretical investigations of bistable devices

have been carried out by many authors: see, eg. [13,15,17,29] and references therein.

In [15], bistability is obtained in a special case where the anchoring angles are π/2

out of phase and the anchoring strengths are the same at both boundaries; switching

between the states is obtained through the application of a transient electric field

and in particular, two-way switching is possible for weak anchoring only. In [13],

Cummings et al. generalize the study by treating the anchoring conditions as

adjustable parameters, providing the values of A{0,1}, α{0,1}, for which bistability

and switching are possible. In the same spirit, bistability may be achieved in the

simple model considered here by appropriate choice of (initial) anchoring conditions:

whether the system remains bistable over long times depends on how the anchoring

angles evolve under gliding. In this subsection, we consider the effect of gliding on

bistable systems by means of specific examples.

Figure 4.4(a) shows an example of the function f(a), defined in Equation (4.11),

for a bistable system. The roots of this function determine director solutions as

in Equation (4.10); here f(a) has three roots, only two of which represent stable

solutions, as discussed below. With anchoring strengths fixed, we find that whether

the system specified by Equations (4.5)–(4.7) is bistable (three roots of f(a)) or

monostable (one root of f(a)) depends primarily on the difference of the initial

anchoring angles, ∆α(0) = α1(0) − α0(0), with only weak dependence on individual
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Figure 4.4 (a) Location of the roots of f(a) for a bistable system with α0(0) = 0,
α1(0) = π/3. The arrows accompanying the stable roots indicate their initial
evolution under gliding. Two steady state configurations n1 and n2 are shown,
corresponding to a1 ≈ 0.63 and a2 ≈ −1.17. (b) Dependence of solution multiplicity
on ∆α = α1(0) − α0(0) where ∆α varies from 0 to π/2 with α0(0) = 0. When
f(a) (defined by Equation (4.11)) has three roots, two correspond to stable steady
states (4), and one to an unstable steady state (◦). The vertical line is drawn at
∆α(0) = π/3, the state shown in (a).

values of the two anchoring angles; therefore for purposes of illustration we fix

α0(0) = 0 and vary α1(0). Figure 4.4(b) shows how the number of solutions

of Equations (4.5)–(4.7) then depends on ∆α(0). We observe that if ∆α(0) =

α1(0) − α0(0) < ∆αc ≈ 0.82, the function f(a), defined by Equation (4.11), has

only one root, corresponding to a single solution n = (sin θ, 0, cos θ), where θ is given

by Equation (4.10). Two stable steady states emerge if ∆α(0) > ∆αc: in this case,

f(a) has three roots, two corresponding to stable solutions given by Equation (4.10)

(local minima of the free energy given in Equation (2.4)), and one corresponding to

an unstable solution (local maximum of the free energy). Note that the particular

value of ∆αc in a given system depends also on the anchoring strengths, A{0,1}; in

Figure 4.4, as elsewhere, these are set at A0 = 5.0, A1 = 2.4.
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4.3.3.1 Effect of Unlimited Gliding on a Bistable System. The discussion

presented so far in this section pertains to the initial states of a system before any

gliding dynamics are seen. Since gliding can affect the structure of an initially bistable

system, we explore its effect below, discussing a specific example. Before doing so, we

observe that as the anchoring angles α0(t), α1(t) vary under gliding, the function f(a)

defined by Equation (4.11) evolves in time as well. In the following, we say that we

“track” n1/n2 when the director solution (given by Equation (4.10)) whose behavior

is dictated by the evolution of the largest/smallest root of f(a), evolves under gliding.

It is important to emphasize that this evolution under gliding is totally different for

each steady state, as we now discuss.

Given values for the surface energies A0, A1, and initial values for the

anchoring angles, α0(0), α1(0), the system has a choice of two steady states, n1 or

n2, corresponding to two distinct roots of Equation (4.11). If we start with state n1

and track it under gliding, the anchoring angles will evolve according to the solution

of Equation (4.8) or Equation (4.9). Since each of these equations depends on the

director solution n1 itself, the evolution here is quite different than if we started from

the solution n2.

Note also that, when we track solution n1, the solution n2 corresponding to

the other (stable) root of f(a) exists “in the background”, but is not manifested.

This “background” evolution of n2, when tracking n1, is again quite different from

the evolution of n2 when it is the solution being tracked. The following explicit

examples should clarify these remarks.

Consider the two possible scenarios for the evolution of f(a) in Figure 4.4(a)

with ∆α(0) = π/3. Initially this system has two stable steady states, n1 and n2,

corresponding to the roots of f(a) as shown in Figure 4.4(a). Figures 4.5(a) and 4.6(a)

show the evolution of the director field when tracking n1 and n2 (respectively) under

unlimited gliding using Model I. Similarly to the monostable case, independently of
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which gliding model we choose, for αtol = π/2 gliding smooths the solution θ(z, t)

as time progresses, leading ultimately to a director solution uniform throughout the

domain. Note however that, in line with our remarks above, the large-time uniform

solution obtained depends on which solution was tracked; compare the final states in

Figures 4.5(a) and 4.6(a).
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Figure 4.5 (a) The evolution of director solution n1 under gliding Model I for
α0(0) = 0, α1(0) = π/3 and αtol = π/2. (b) The evolution of f(a) under gliding
(same parameters) when tracking n1. Bistability is lost at t ≈ 0.6. (c) The free
energy J(t) for n1 (solution tracked, solid curve) and n2 (“background” solution,
dashed curve). The dashed curve stops where the background solution disappears.

As the steady states n1 and n2 evolve under gliding towards the uniform state,

in either case, the system switches from bistable to monostable. To illustrate how

bistability is lost, we show early time evolution of f(a) in Figures 4.5(b) and 4.6(b).
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Figure 4.6 (a) The evolution of director solution n2 under gliding Model I for
α0(0) = 0, α1(0) = π/3 and αtol = π/2. (b) The evolution of f(a) under gliding
(same parameters) when tracking n2. Bistability is lost at t ≈ 2.5. (c) The free
energy J(t) for n2 (solution tracked, solid curve) and n1 (“background” solution,
dashed curve). The dashed curve stops where the background solution disappears.

We see that in both cases, f(a) evolves in a way that leads to the loss of two roots

under gliding, leaving only a single root, corresponding to one stable steady state.

Figure 4.5(b) shows that, while tracking n1, the root corresponding to n1 persists

in time while the root corresponding to n2 disappears at t ≈ 0.6 (f(a) moves to

the left and down). Similarly Figure 4.6(b) shows that, when tracking n2, the root

corresponding to n2 persists in time while the root corresponding to n1 disappears

at t ≈ 2.5 (f(a) moves to the right and up). These figures also illustrate that the
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time at which bistability is destroyed, tb, depends on which state we are tracking, n1

or n2.

As the director solution n1 (or n2) is tracked under gliding, the director begins

to relax and smooth towards a uniform state, as in Figure 4.5(a) (or Figure 4.6(a)). As

this happens, the total energy associated with n1 (or n2) decreases. At the same time,

however, the total energy associated with the other “background” stable state n2 (or

n1) increases as shown in Figure 4.5(c) (or 4.6(c)). If, as is the case in Figures 4.5

and 4.6, gliding is not halted, the energy of that background state n2 (or n1) will

ultimately increase to a stage where that solution is no longer a local minimum of the

free energy (at which point that steady state ceases to exist, simultaneously with the

loss of roots of f(a)).

In the particular case considered in Figures 4.5 and 4.6, bistability is destroyed

faster when tracking n1. This seems to be a consequence of the higher bulk energy

associated with the director solution for n2. This solution n2 represents a shallower

local minimum of the free energy for this parameter set, so that it is destroyed sooner

under gliding. Figures 4.5(c) and 4.6(c) show the total free energies (given by J =

J∗h∗/K∗; see Equation (2.4)) of both the solution being tracked (solid line) and

the “background” solution (dashed line): we see that in both cases the solution

being tracked decreases its total free energy under gliding, while the energy of the

background solution increases. In these unlimited gliding examples, the dashed line

stops abruptly in both cases, corresponding to the loss of the background solution (its

free energy at that point ceases to be a local minimum in the energy landscape and the

solution disappears). Note that it is never the solution being tracked that disappears

under gliding but always the other solution, resulting in a continuous evolution of

a. The tracked solution always decreases its total free energy, becoming more stable

with time, while the reverse applies to the background solution. Gliding Model II

leads to similar results: although the time at which bistability is destroyed varies
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slightly from gliding Model I, it too ultimately destroys bistability provided that αtol

is sufficiently large, as in Model I.

4.3.3.2 Effect of Limited Gliding in Model I. To determine how limited

gliding, using Model I, affects the structure of an initially bistable system in time, we

solve Equations (4.5)–(4.8) for a range of values of αtol. Figure 4.7 shows the times, tb,

at which bistability is destroyed, for different values of αtol and ∆α(0). Both steady

states n1 and n2 are considered separately. We first discuss the general properties

of the behavior of the gliding system, and then discuss the specific properties of each

steady state separately. We observe that if αtol is small, then gliding lasts for a short
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Figure 4.7 The time, tb, at which bistability of a system is destroyed, vs αtol given
a steady state n1 or n2 and various ∆α(0) = α1(0)− α0(0) with α0(0) = 0. Gliding
Model I is used here.

time only, and the system will retain its bistability independently of which solution

we track, while if αtol is sufficiently large, then the system will glide until bistability

is destroyed. Figure 4.7 shows four different bistable cases, characterized by different

values of ∆α(0) and, while results are quantitatively different between these four

cases, three common key features are observed. First, if αtol is sufficiently small, then

gliding always stops before bistability is destroyed, hence tb = ∞. Second, if αtol is
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sufficiently large, then bistability will be lost before either anchoring angle has glided

through the tolerance value; therefore in such situations tb is independent of αtol (the

horizontal portions of the graphs). Third, the horizontal and vertical portions of

the graphs are connected by intermediate sloped portions. These relate to situations

where, depending on the value of αtol and the initial anchoring conditions, gliding

may stop first at one boundary but continue at the other, leading to ultimate loss of

bistability.

The transitions between the different portions of the (αtol, tb) graphs depend

on which solution is considered (n1 or n2), and on the initial state, characterized by

∆α(0). Due to the special symmetry of the case ∆α(0) = π/2, where n1 and n2

are simple mirror images, these two curves are the same in Figures 4.7(a), 4.7(b).

However, for other values of ∆α(0), the two corresponding steady states, n1 and n2,

give rise to different behavior. We find that, in line with our observations about

energetics in the unlimited gliding case at the end of Section 4.3.3.1, in general when

tracking n2 we require larger values of αtol to destroy bistability (compare Figures 4.5

and 4.6: the solution n1 is associated with a relatively deep free energy minimum

and takes longer to eliminate under gliding). Therefore, when tracking solution n2,

gliding must proceed for a longer time in order to eliminate the stable steady state

n1 and destroy bistability, hence higher values of αtol are required for this to happen.

Since the number of steady states (at any given time) in an initially bistable

system depends on both αtol and the difference in initial anchoring angles ∆α(0), we

now further investigate how ∆α(0) influences bistability under gliding. We define

αmin
tol to be the smallest value of αtol that leads to loss of bistability under gliding,

for each value of ∆α(0). Figure 4.8 plots αmin
tol versus ∆α(0) for both initial steady

states n1 and n2. We observe that αmin
tol increases (very nearly linearly) with ∆α(0)

for n1, but decreases (again almost linearly) with ∆α(0) for n2. The two curves in
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Figure 4.8 αmin
tol (representing the smallest value of αtol that leads to loss of

bistability under gliding) plotted as a function of ∆α(0) for each steady state (n1

(�) and n2 (◦)). These plots identify three regions in (αtol,∆α(0)) parameter space
with initial steady states n1 and n2: Region I: bistability is not destroyed regardless
of which steady state is tracked; Region II: bistability is lost when tracking n1 but
not for n2; and Region III: bistability is lost independently of which steady state we
start from.

Figure 4.8 meet where ∆α(0) = π/2: this is again due to the mirror-image symmetry

of n1 and n2 in this situation (with α0(0) = 0).

We can use these results to identify regions in (∆α(0), αtol) space where the

system retains its bistability, depending on which director solution is tracked. With

the chosen values of anchoring strengths and α0(0) = 0, we distinguish three such

regions in Figure 4.8: Region I, in which bistability is never destroyed regardless of

which steady state is tracked; Region II, in which bistability is lost when tracking n1

but not when tracking n2; and Region III, in which bistability is lost regardless of

whether n1 or n2 is tracked.

4.3.3.3 Effect of Limited Gliding in Model II. We now briefly outline

results analogous to those of Subsection 4.3.3.2 for gliding Model II, Equations (4.5)–

(4.7) and Equation (4.9). Figure 4.9 (analogous to Figure 4.7) shows time tb at which

bistability is destroyed, as a function of αtol. The behavior is qualitatively similar
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to that of Model I, but smoothed. In the regions to the left of the nearly vertical

portion of the curves, αtol is sufficiently small that bistability is never destroyed. When

tracking n2 under gliding, larger values of αtol are needed to destroy bistability than

when tracking n1 (see also Figures 4.5 and 4.6). Also, for sufficiently large (but

fixed) αtol, tb decreases with ∆α(0) for n1 and increases as ∆α(0) decreases for n2.

Again the results for the symmetric case ∆α(0) = π/2, in which n1 and n2 are

mirror-images, are identical in Figures 4.9(a) and 4.9(b), as anticipated.
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Figure 4.9 The time at which bistability of a system is destroyed, tb vs αtol given
a steady state n1 or n2 and various ∆α(0) using gliding Model II. Compare with
Figure 4.7 for Model I.

Unsurprisingly, Models I and II generate quantitatively different results.

Comparing the plots of tb for n1 in both models (see Figures 4.7(a) and 4.9(a)),

we observe that when αtol is small, tb is larger for Model II, with the reverse trend

for large αtol. Similarly, when tracking n2 in Model II (see Figure 4.9(b)), bistability

is destroyed faster for large values of αtol and slower for small values of αtol (see

Figure 4.7(b)).
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4.3.4 Effect of Switching and Unlimited Gliding in a Bistable System

Switching between the two stable steady states in an initially bistable system is

possible in the absence of gliding [13,15]: with the application of a suitable transient

electric field, one can achieve two way switching in the appropriate parameter regimes.

Motivated by the relevance of switching in devices that are both flexible and bistable,

and by our results in Section 4.3.3, we now examine a bistable system in which both

unlimited gliding (αtol = π/2) and switching act sequentially, and we investigate the

effect that such switching has on the system dynamics.

As an illustrative example, we consider an initially bistable system with

anchoring conditions α0(0) = 0, α1(0) = π/3. As noted above, in practice two

way switching would be obtained through transient application of an electric field;

however in the present work, we simply impose the switch between states at specified

times: we switch the system instantaneously from one stable state to the other by

selecting the alternative (stable) root of Equation (4.11) at the chosen switching time

to obtain the new director solution (in any practical application, switching would

occur on a timescale much faster than gliding, so from the point of view of the gliding

dynamics this instantaneous switch is reasonable). Gliding is then continued, but now

with the new steady state. For the example, illustrated in Figure 4.10, we initially

track n2, and then impose a series of switches at chosen switching times t = 1, 2, 3, 4,

etc. Note that the initial steady state influences only the details of the results that

follow; similar results are obtained if we initially track n1.

Figure 4.10(a) shows the evolution of the director field over four successive

switches. Figure 4.10(b) shows the evolution over many more successive switches,

via the plot of the root, a(t), of Equation (4.11) that corresponds to the director

solution being tracked under gliding; and via the corresponding total free energy

J(t) = J∗h∗/K∗ (see Equation (2.4)) of that solution. We observe that, in contrast

to the case of unlimited gliding without switching, bistability is not destroyed, even
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Figure 4.10 (a) Switching from n2 → n1 → n2 → n1 → n2 for α0(0) = 0,
α1(0) = π/3 using gliding Model I. (b) Switching and gliding dynamics for the same
system over long times, monitored by plotting the selected root a (solid curve) of
Equation (4.10) and the free energy J (dashed curve) of the corresponding solution.

though gliding occurs continuously throughout. If switching had not been imposed,

then bistability would have been lost at tb ≈ 2.3, see Figure 4.7.

Figure 4.10(b) shows that, except at switching events, where energy is put

into the system to make the switch, |a(t)| (the total director bending angle across

the layer) and J(t) (the system free energy) are always decreasing under gliding, no

matter which state we track. The director is always relaxing towards a uniform state

between switches, lowering its energy as it does so. However, recalling the results

of Figures 4.5 and 4.6, we know that as this happens, the “background” solution is

simultaneously increasing its free energy.

Consider the behavior of |a(t)| and J(t) at the switching times t = 1, 2, 3, 4, ..., n.

At each switching time, both |a(t)| and J(t) jump (the states before and after the

switch have different energies). Consider, for example, the switch from n2 → n1 at

t = 2. Here, |a(2+)| > |a(2−)| (the± superscripts denote right- and left-handed limits,

respectively), and J(2+) > J(2−), indicating that (i) the solution after switching (n2

here) has a greater elastic bend across the layer than the solution before the switch

58



(n1), and that (ii) energy input is required to effect the switch (which in practice

would most likely come from transient application of an electric field). Figure 4.10(b)

reveals that, though the initial behavior of the system is irregular, after many

regularly-spaced switches both J(t) and |a(t)| fall into a periodic behavior. This

implies that regular switching can sustain bistability indefinitely: while gliding acts

to dissipate elastic energy from the bulk, the act of switching puts new energy into

the system. Providing that switching takes place sufficiently often, the bulk elastic

energy can be maintained at a high enough level to retain the bistability. Another

way to view this periodic behavior is that the regular switching reverses the effect

of the gliding. Consider times t = n sufficiently large that we are in the periodic

regime. Immediately after a switch (to solution n1|t=n+ , say) this solution begins to

glide, evolving eventually to n1|t=(n+1)− . We can undo this gliding exactly, if we now

switch to solution n2|t=(n+1)+ , allow it to glide for one time unit to n2|t=(n+2)− , and

then switch to n1|t=(n+2)+ ≡ n1|t=n+ .

The example shown in Figure 4.10 raises an interesting question: Since

switching reverses the gliding effect in a bistable system, and we know that indefinite

gliding with no switching leads inevitably to loss of bistability, how often must we

switch to retain bistability? To answer this question (at least for our specific example),

we modify the previous procedure: instead of switching between steady states at the

chosen fixed times, we now let the system glide until it is about to lose bistability,

then switch, ensuring that switching occurs at tlb, which we define as the last time

for which the system is bistable. Figure 4.11 shows an example of this procedure,

applied repetitively. Figure 4.11(a) shows the director field and Figure 4.11(b) plots

a(t) and J(t) as switching between the states occurs. As above, bistability can be

maintained indefinitely with this approach. In addition, with this switching strategy

we observe that |a(t)| and J(t) both fall into a periodic behavior immediately after

the first switch occurs.
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Figure 4.11 (a) Switching from n2 → n1 → n2 → n1 for α0(0) = 0 and α1(0) =
π/3 using gliding Model I, with all switches imposed when the system is about to
lose bistability. (b) Switching and gliding dynamics for the same system over long
times, monitored by plotting the selected root a (solid curve) of Equation (4.10) and
the free energy J (dashed curve) of the corresponding solution.
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Figure 4.12 Evolution of f(a), Equation (4.11), close to the root and the switching
time t = 1.650 from n2 → n1 when α0 = 0, α1(0) = π/34. The switch takes place
just before bistability would have been lost, as may be seen in (b).

It is curious that this particular switching strategy changes the dynamics of

the director solution immediately after the switch. For t = t+lb, |a(t)| starts to increase

briefly, before the anticipated decrease under gliding. This behavior is reflected both

in the plot of the director in Figure 4.11(a), and in the plot of a(t) in Figure 4.11(b).

60



Plotting the evolution of f(a) before and after the first switching time tlb = 2.335

(shown in Figure 4.12), we observe that when tracking the initial solution n2, f(a)

(and the corresponding root) moves to the right (see Figure 4.12(a)) while after

switching to n1, f(a) moves to the left and down (see Figure 4.12(b)). A transition

phase occurs at t = 2.335+ immediately following the switch where the root |a(t)|

continues to increase despite the change in evolution of f(a) at the switch time

(see profiles of f(a) at t = 2.335 and t = 2.400 in Figure 4.12(b)). Note however

that, though this non-monotone behavior of a(t) under gliding immediately following

switching is curious, the total energy following the switch immediately begins to

decrease in time under the gliding, as anticipated.

Another interesting question to ask is how the energy lost due to gliding

(compensated by the energy input in switching) depends on the switching interval,

and whether there is an “optimum” switching strategy minimizing total energy

expenditure. To answer this question, we consider a general periodic switching

strategy, and compute the total energy lost due to gliding, ∆Jn+1 = J(t)|t+n−J(t)|t−n+1
,

for different switching intervals ∆t = t−n+1 − t+n . Table 4.1 shows the total energy

expenditure, S∆J , for the period t = 20 to t = 100, during which the system has

settled into a periodic behavior. We observe that, at least for the case considered here,

the total energy input needed to maintain bistability decreases as the time interval

at which switching is applied increases (even though more energy is lost during each

gliding cycle as its length increases). We conjecture that the most energy-efficient

approach to maintaining the bistability is to switch as late as possible.

Although in this section we have used specific examples to illustrate our

results, we believe that certain conclusions apply quite generally. To summarize:

(i) If an initially bistable system undergoes unlimited gliding, and no switching

between states occurs, then loss of bistability is inevitable (the system will approach a

uniform director solution); (ii) if switching between the states is imposed sufficiently
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Table 4.1 Total Energy Input as a Result of Switching Measured
from t = 20 until t = 100

Switching Interval Total Energy Input S∆J

t = 0.5 47.34

t = 1.0 46.79

t = 1.5 44.71

t = 2.0 44.58

t = 2.3 42.67

t = tlb 42.39

often (specifically, one must always switch to the “background” solution before it

disappears) then bistability can be retained indefinitely; (iii) if the switching is

imposed periodically then the whole system will approach a periodic state at large

times; and (iv) if we always wait the maximum time before switching (waiting until

the background state is about to disappear) then the periodic behavior is attained

immediately (possibly with some anomalous behavior in a(t)).

Finally, we remark that these examples and observations represent a worst-case

scenario in which gliding is unlimited, so that loss of bistability is inevitable with

no switching. Introduction of limited gliding αtol < π/2 will only improve matters

since, as we already know, if αtol is sufficiently small then bistability can be retained

indefinitely even with no switching.

4.4 Conclusions

We present two Models (I and II) that describe the evolution of the director field

within a confined layer of nematic liquid crystal, bounded by two infinite polymeric

plates, at each of which anchoring is weak. At these plates, director gliding may occur:
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the anchoring angle or easy axis undergoes a continuous realignment under the torque

due to the bulk elasticity of the nematic layer. In Model I, gliding occurs at a rate

proportional to the difference between the anchoring angle and the director angle

at the interface considered, but stops abruptly once the deviation of the anchoring

angle from its initial value reaches some tolerance value, αtol (abrupt cessation).

In Model II, gliding is halted smoothly as αtol is approached (smooth cessation).

Both models exploit the separation in timescales between gliding (long timescale)

and elastic response (short timescale) to justify a quasistatic approximation for the

director field orientation within the layer, with the model dynamics driven purely by

the gliding. We investigate in detail how director gliding, governed by each model,

affects the evolution of the director field, as αtol, and the initial anchoring angles,

vary. For large αtol, gliding leads to a director solution that is uniform throughout

the domain, for both gliding models.

We pay particular attention to the behavior under gliding of an initially

bistable system. For large values of αtol, gliding destroys bistability independently

of the model chosen. However, the time at which bistability is destroyed is model

dependent. Furthermore, we investigate how switching between stable steady states,

in the presence of gliding, can affect the number of available steady states at a given

time. We conclude that switching can retain bistability, even under unlimited gliding,

as long as it occurs sufficiently often. Furthermore, we find that if retention of

bistability is the sole aim, then it is advantageous to switch as late as possible (just

before the system is about to lose bistability): such a strategy minimizes the energy

lost due to gliding.
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CHAPTER 5

ELECTRIC FIELD INDUCED GLIDING IN A NEMATIC LIQUID

CRYSTAL LAYER: COMPARISON WITH EXPERIMENTAL DATA

5.1 Introduction

Chapter 4 focused on the phenomenon of director gliding in NLC layers that consist

of different anchoring orientations at each boundary. In this chapter, we expand the

investigation to include a study that focuses on director gliding in the presence of

an electric field. Multiple experiments have observed both azimuthal and zenithal

gliding [26–28, 38, 39, 42, 43] in nematic liquid crystals. In this chapter, we focus on

the experiments carried out by Joly et al. [28] and Buluy et al. [9] which present

experimental evidence for zenithal gliding.

The experiment in [28] consists of a NLC layer (5CB) confined between two

substrates with different anchoring properties: the lower substrate is spin-coated

with polyimide Nissan SE 3510 and treated mechanically to give weak, nearly planar

anchoring, while the upper substrate is treated to obtain strong planar anchoring (see

[28] for details). An electric field is applied perpendicular to the layer for 140 hours,

during which time the zenithal anchoring angle at the lower substrate is observed

to increase by 2.2◦ (the strong anchoring at the upper substrate is unaffected). The

electric field is then permanently shut off and the system starts to relax back to its

initial state. After 13 days, the authors observe that the easy axis has glided back

almost to its initial position. This behavior is schematized in Figure 5.1.

The experiment in [9] provides evidence of both azimuthal and zenithal gliding.

We focus on the zenithal gliding, which was observed in the following setup, very

similar to that of [28]; a layer of 5CB was confined between two parallel bounding

surfaces, one coated with a polymer (PVCN-F) at which gliding occurs; the other

treated to obtain strong planar anchoring. Anchoring at the polymer-coated surface
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is weak and very nearly planar, with a pretilt angle of just 0.8◦. An electric field is

applied perpendicular to the PVCN-F surface for 16 hours, followed by an electric

field shut off. Zenithal gliding is observed in the PVCN-F coated layer after the

electric field is removed (see the schematic in Figure 5.2).

Both investigations present simple models that they use to obtain the best

fit to each experiment. In Ref. [28], the authors argue that the director angle at the

gliding substrate can be fitted by a sum of no fewer than three exponential terms, with

the three exponents determined independently for field on and off cases (six exponents

total). Buluy et al. [9] present a similar model but consisting of two exponential terms,

chosen specifically to best fit the experimental data. In this chapter, we develop a

mathematical model that aims to capture the mechanics of the interaction between

NLC molecules and the adjacent polymer coated boundary, and that fits the gliding

data observed in both sets of experiments. This investigation is structured as follows:

in Section 5.2, we supplement the mathematical model that governs the evolution of

the director field (presented in Chapter 2) with a gliding model that captures the

slow reorientation of the easy axis. Section 5.3 summarizes the experimental data

observed in [9] and [28] respectively and discusses how our results compare with the

observed gliding data. Section 5.4 discusses the conclusions.

5.2 Mathematical Model

As in the previous chapters, we rely on the mathematical model developed in

Chapter 2 to describe the evolution of the director field in a NLC layer bounded

by two parallel plates where a uniform electric field can be applied. We supplement

these equations with a gliding model (in the form of an ordinary differential equation)

that aims to capture the gliding behavior observed in [9] and [28]. Before we dive

into the details of our gliding model, we briefly schematize the key features of the two

experimental systems.
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Figure 5.1 summarizes the gliding evolution observed by Joly et al. [28]. Under

prolonged application of an applied field (140 hours) and with an initial preferred

anchoring angle of 6.7◦ at the gliding surface, these authors tracked the evolution of

the easy axis, observing that it reaches a plateau value of 8.9◦. After the electric field

is turned off, the easy axis is tracked again, and it is observed to glide back almost

to its initial position, but not quite. The experimental data show that the easy axis

glides back to a value of approximately 7.3◦ after 13 days (0.6◦ higher than its initial

preferred position), indicating that gliding is only partially reversible.

0◦0◦

E∗

6.7◦ 8.9◦

Nissan SE 3510

1.5 µm NLC
Gliding under EF

140 hours

SiO film

(a)

8.9◦

0◦

1.5 µm
Gliding after EF turned off

13 days
7.3◦

0◦

SiO film

Nissan SE 3510

NLC

(b)

Figure 5.1 Schematic summarizing the drift of the easy axis (gliding) in [28] (a)
during the time of application of an electric field; and (b) after the electric field is
turned off. Anchoring angles are not drawn to scale.

Similarly, Figure 5.2 schematizes the experimental procedure of Buluy et al. [9].

An electric field is applied continuously for 16 hours across a layer of NLC bounded

by two parallel plates, only one of which experiences gliding. A preferred anchoring

angle of 0.8◦ was measured before the electric field is applied; and at the time the field

is removed, the anchoring angle has increased (via gliding) to 3.0◦. After the electric

field is removed, the authors track the relaxation of the easy axis back towards its

initial position.
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(a)
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1000 mins

NLC

PVCN-F

10 µm

3.0◦

Gliding after EF turned off0◦

0.8◦

0◦

(b)

Figure 5.2 Schematic summarizing the drift of the easy axis (gliding) in [9] (a)
during the time of application of an electric field; and (b) after the electric field is
turned off. Anchoring angles are not drawn to scale.

In order to fit our model results directly to the data of [9,28], we introduce two

important notational changes in this chapter: both anchoring angles α and director

angle θ are here measured from the horizontal direction, as is indicated in Figures 5.1

and 5.2. This modifies the governing equations given by Equations (2.6) slightly; the

new (dimensionless) versions are given in Equations (5.3)-(3.2c) below. Our model

assumes that the gliding rate is proportional to the difference between the anchoring

angle and the director angle at the gliding surface. In addition we assume, consistent

with the data and with our model in Chapter 4, that gliding is not unlimited. Instead,

we hypothesize that it persists until the anchoring angle has changed by a maximal

amount, αtol, or until the director takes the same value as the anchoring angle at

the gliding boundary: θ(0, t∗) = α0(t∗). Mathematically, our proposed model (which

generalizes that of Chapter 4 takes the form of an ordinary differential equation for

the anchoring angle, α0(t∗), at the gliding boundary z∗ = 0:
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dα0

dt∗
= λ∗0[α0(t∗)− θ(0, t∗)]

(
1− |α0(t∗)− α0(0)|

αtol

)n
, (5.1)

where λ∗0 is a relaxation rate of the anchoring angle at z∗ = 0 and n > 0 is an

exponent that we introduce to capture the nonlinear dynamics that are observed in

the experiments. Since no gliding occurs at the boundary z∗ = h∗, the anchoring

angle αh∗ remains fixed. When αtol = 0, no gliding occurs while as αtol → π/2,

gliding is unlimited. The model of Chapter 4 is recovered by setting n = 1.

5.2.1 Scaling and Nondimensionalization

We nondimensionalize the modified versions of Equations (2.6) as follows:

z =
z∗

h∗
, t = λ∗0t

∗ A0 =
h∗A∗0
K∗

, (5.2)

where h∗ is the thickness of the NLC layer which varies depending on the experimental

setup. Note that time is scaled using the gliding timescale, (λ∗0)−1. This parameter

will depend on system characteristics such as substrate material and treatment, and

the NLC used. Due to the polar nature of the molecules in the polymeric coatings

used in the experiments, λ∗0 may also depend on the strength of the applied electric

field. We believe that the applied field affects not only the orientation of the NLC

molecules, but may also influence directly the orientation of the polymer molecules

in the coating layer. (The material used to coat the gliding surface in [28] is the

polyimide Nissan SE 3510, which has a small dielectric constant of approximately

3.0 [1].) Therefore, we use different values (based on the experimental data) for λ∗0 in

“field on” and “field off” cases.
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After nondimensionalization, the modified versions of Equations (2.6) become:

δθt = θzz +D sin 2θ, (5.3)

δν̃θt = θz −
A0

2
sin 2(θ − α0)− F

2
sin 2θ on z = 0, (5.4)

−δν̃θt = θz +
A1

2
sin 2(θ − α1)− F

2
sin 2θ on z = 1. (5.5)

Here, as in Chapter 4, δ = (h∗2µ∗λ∗0)/K∗ represents the ratio between the timescales

of the bulk elastic response of the NLC, given by h∗2µ∗/K∗ and the gliding response,

1/λ∗0. The parameters ν̃, D and F are the dimensionless surface viscosity, dielectric

and flexoelectric strengths respectively, as in Chapter 2. With the following parameter

values: h = 1.5 µm in [28], h = 10µm in [9] (K∗, µ̃∗, ν̃∗ defined as in Chapters 3

and 4) and relaxation rates in the range of 0.15− 20 hr−1 (based on the experimental

data [9, 28]; see later), we observe that δ � 1 and ν̃ � 1. Since we believe the

anchoring strength at the upper (non-gliding) boundary is much stronger than the

lower (gliding boundary) in both experiments, we assume strong anchoring at the

upper boundary, leading to the following equations:

0 = θzz +D sin 2θ, (5.6)

0 = θz −
A0

2
sin 2(θ − α0)− F

2
sin 2θ on z = 0, (5.7)

θ = α1 on z = 1, (5.8)

where the weak anchoring boundary condition at z = 1 is replaced by the Dirichlet

condition (Equation (5.8)) appropriate in the limit δ → 0, A1 → ∞. The

dimensionless form of Equation (5.1) can be written as

dα0

dt
= [α0(t)− θ(0, t)]

(
1− |α0(t)− α0(0)|

αtol

)n
. (5.9)

Equations (5.6)–(5.9) make up the complete model that describes the evo-

lution of the easy axis within a NLC layer where gliding can occur at the lower
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interface. Given the preferred anchoring conditions at both boundaries, we solve

Equations (5.6)–(5.8) using the built-in MATLAB program BVP4c and obtain a

solution for the director angle θ(z). We use this solution in Equation (5.9) to compute

the anchoring angle α0 at the next time step, which is then used to obtain a new

director solution using Equations (5.6)–(5.8) at the new time step. This process is

repeated until θ(0, t) = α0(t) or until |α0(t) − α0(0)| = αtol, at which point gliding

stops.

5.3 Analysis and Results

In this section, we first summarize briefly the experimental results presented in [9,28]

and give a brief discussion of the models the authors use to describe the gliding

process. Then, we present our numerical results from Equations (5.6)–(5.9) and make

a direct comparison with the experimental data.

5.3.1 Overview of Experimental Results Presented in Ref. [28]

The experimental setup considered in [28] consists of a NLC layer bounded between

two substrates treated such that only the lower substrate exhibits gliding with

anchoring strong and planar at the upper boundary. The preferred anchoring

orientation at the gliding boundary is α0 = 6.7◦, measured from the horizontal axis

(Figure 5.1). Joly et al. [28] state that anchoring is “strong” at this gliding boundary

but do not provide precise values for anchoring strength, only a lower bound on

anchoring extrapolation length at the boundary. In the absence of firm data, we take

A0 = 1000 for the dimensionless anchoring strength at the gliding boundary, an order

of magnitude larger than their lower bound on this quantity.

Based on the values reported in [8,17,28], we solve our model with the following

parameter values: h = 1.5 µm, ε‖ − ε⊥ ∼ 5 and e∗1 + e∗3 ∼ 5 × 10−12C m−1 for the

dielectric and flexoelectric coefficients respectively, and obtain F = 31.21 and D = 69
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when E∗ = 5V µm−1. Note that αtol and n cannot be estimated directly from [28]

and they are chosen suitably to obtain the best fit to the data (Section 5.3.2).

Joly et al. [28] observe the easy axis to glide (zenithally) through an angle of

2.2◦ over the 150 hours during which the electric field is applied, increasing from its

initial angle of 6.7◦ to 8.9◦. On removal of the electric field, they observe that the

easy axis direction glides back towards its initial position. After 13 days, its angle has

decreased to 7.3◦, 0.6◦ larger than its value before the electric field was first applied.

The experimental data observed in [28] are produced using [3].

5.3.2 Comparison of Model Results with Data of [28]

We solve Equations (5.6)–(5.9) to obtain the evolution of the anchoring angle, α0(t∗),

at the gliding substrate, and the director angle, θ(0, t∗) there. As discussed in

Section 5.3.1 above, the values of several model parameters have already been fixed. In

order to obtain a good quantitative fit to the data in dimensional time, we investigate

the model behavior as parameters αtol and n are varied. The remaining parameter,

the relaxation rate λ∗0, set to λ∗0 = 0.15 hr−1 when the electric field is turned on and

λ∗0 = 20 hr−1 when the electric field is turned off, is obtained by fitting the early

time behavior; the values of αtol and n mainly affect the intermediate-to-late time

behavior.

To quantify how well our mathematical model predicts the gliding behavior

in [28], we introduce a measure, ||θexp − θnum||2, the L2 norm of the difference of

the experimental data and numerical results. The norm ||θexp − θnum||2 is calculated

for each value of n and αtol for both gliding scenarios: (a) when an electric field is

turned on; and (b) after the electric field is turned off. In each scenario (plots of

||θexp − θnum||2 vs. αtol not shown here), we observe that for each value of n, there

exists an optimal value of αopt
tol that produces the best global fit i.e., the gliding curve

with the lowest error.
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Figure 5.3 Best global fit: min(||θexp − θnum||2) vs αopt
tol for electric field on and

electric field off. Each data point represents different n values in each case.

Figure 5.3 presents the lowest norm min||θexp − θnum||2 for each n plotted

against the optimal value, αopt
tol , when an electric field is applied (shown in black)

and after the electric field is shut off (shown in green). We observe that the norm,

min||θexp − θnum||2 decreases as n increases, for both electric field on and off cases,

reaching a plateau value of 0.075 for n > 6. Hence, we can say that a highly nonlinear

model (higher values of n in Equation (5.9)) predicts better the gliding behavior in

both electric field on and off scenarios.

We note that so far we have assumed that we vary two parameters indepen-

dently, αtol and n, to obtain a good quantitative fit to the experimental results shown

in [28]. Taking a closer look at Figure 5.3 however, we observe that this is not

necessary: there exist solutions to our gliding model with min||θexp − θnum||2 < 0.1

in both electric field on and off gliding scenarios when αopt
tol = 2.1◦, αopt

tol = 2.7◦ and

αopt
tol = 4.1◦. Taking αtol = 4.1◦ together with n = 5 (electric field on) and n = 12

(electric field off) leads to a gliding curve with error norm min||θexp − θnum||2 = 0.06,

for both electric field on and off cases. These values however imply a highly nonlinear

gliding model (see Equation (5.9)). Note that one can lower the values of n for both

electric field on and off cases by choosing αtol = 2.7◦ or αtol = 2.1◦. In each case,
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we obtain a global fit that is in good quantitative agreement with the experimental

data, but now the norm is slightly higher for both electric field on and off cases with

||θexp − θnum||2 ≈ 0.07 for αtol = 2.1◦ and ||θexp − θnum||2 ≈ 0.08 for αtol = 2.7◦

respectively. If we wish to obtain a good fit while limiting the nonlinearity of the

model (keeping n small) we may choose αtol = 2.1 (with n = 2 for field on and n = 5

for field off) to describe the gliding behavior observed in [28] (See Figure 5.3).

We now expand our investigation to obtain the best gliding fit by fixing n

while varying αtol. Figure 5.4 presents the diagram illustrating the lowest norm

min||θexp − θnum||2 vs. n for the two gliding scenarios depicted in [28]. We observe

that in both cases, as the value of n increases, the error measured by the norm

min||θexp − θnum||2 decreases, reaching a plateau value of less than 0.06 when n = 12.

Here, we can obtain the best fit to the experimental data observed when n = 12 and

αtol = 8.9◦ for the electric field on and αtol = 4.1◦ for the electric field off case (see

Equation (5.9)). As in the previous case, one can consider lower values of n at the

expense of decreasing the accuracy of the numerical results. Indeed, taking n = 2

leads to the norm ||θexp − θnum||2 ≈ 0.08 and ||θexp − θnum||2 ≈ 0.14 for the electric

field on (with αopt
tol = 2.1◦) and electric field off (with αopt

tol = 1.4◦) case, respectively.
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Figure 5.4 Best global fit: min(||θexp − θnum||2) vs n for electric field on and electric
field off.
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We now show explicitly how our model, with these parameter values, compares

to the experimental data of [28]. Figure 5.5 shows the gliding evolution of θ(0, t∗)

plotted on the same graph with the experimental gliding data obtained in [28]

(a) when an electric field is turned on and (b) after the electric field is turned off.

In the first case, we use n = 12 and αtol = 8.9◦ while in the latter case, we use

n = 12 and αtol = 4.1◦; these parameters produce gliding curves with the lowest error

||θexp− θnum||2 < 0.06. We observe that our results provide excellent fit to the gliding

evolution shown in [28].
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Figure 5.5 Evolution of θ(0, t∗) and the experimental zenithal easy axis gliding
in [28] for n = 12 when (a) an electric field is turned on and αopt

tol = 8.9◦ and (b) after
the electric field is turned off and αopt

tol = 4.1◦.

5.3.3 Overview of Experimental Results Presented in Ref. [9]

Buluy et al. [9] consider a setup similar to that of [28], where a layer of 5CB is

bounded between two parallel plates, 10 µm apart, treated such that only the lower

substrate exhibits gliding. The initial preferred anchoring orientation is measured to

be α0 = 0.8◦ from the horizontal axis, with anchoring strength A∗0 ∼ 0.25×10−3Jm−2,

corresponding to A0 = 312 (Equation (5.2) with h = 10 µm). An electric field of

magnitude 1Vµm−1 is applied perpendicularly to the substrate for a period of 16

hours, during which gliding occurs. The field is then removed and the new easy axis
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orientation is measured: 3.0◦. The easy axis then begins to glide back towards its

original orientation, and its evolution is tracked over a period of 1000 minutes. The

experimental data are reproduced using [3].

5.3.4 Comparison of Model Results with Data of [9]

We compare the experimental results obtained in [9] under zenithal gliding with

the numerical results obtained by solving Equation (5.6)–(5.9). We use the same

technique as described at the end of Section 5.2.1 to obtain the gliding evolution of

θ(0, t∗). Given the following parameters: A0 = 312, α0 = 0.8◦, F = D = 0, we obtain

good quantitative agreement with the experimental data provided that we choose the

values of αtol and n that minimize the norm ||θexp− θnum||2. As in [28], the relaxation

rate λ∗0 is obtained by fitting the early time behavior of the numerical results to the

experimental ones and it is set to λ∗0 = 3.7 min−1.
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Figure 5.6 Best global fit: min(||θexp − θnum||2) vs αopt
tol for electric field off. Each

data point represents different n values (see legend).

Here, as in Section 5.3.2, we observe that for each value of n, there exists

an optimal value of αopt
tol that produces the best global fit to the experimental data,

hence we plot the lowest norm min||θexp − θnum||2 against the optimal value of αopt
tol

for each n. Figure 5.6 illustrates that as n increases, the error between the numerical
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Figure 5.7 Evolution of θ(0, t∗) and the experimental zenithal easy axis gliding
in [9] after the electric field is turned off when n = 6 and αopt

tol = 5.4◦.

results and experimental data decreases at first (when n < 6), reaching its lowest

norm (||θexp − θnum||2 < 0.05) when n = 6 (and αtol = 5.4◦), followed by a slow

increase when n > 6. Due to the lack of data in the electric field on scenario in [9], we

cannot compare gliding in the presence of an electric field. In this case then, we may

conclude that the choice n = 6 and αtol = 5.4◦ leads to the best global approximation

of the results reported in Ref. [9]. As shown in Figure 5.7, we compare the gliding

evolution of θ(0, t∗) after an electric field is turned off (n = 6 and αtol = 5.4◦) with

the gliding data shown in [9] and observe that these parameters lead to a good global

fit to the experimental data, with an error norm ||θexp − θnum||2 ≈ 0.04.

5.4 Conclusions

We present a mathematical model that describes the evolution of the director field

within a NLC layer bounded between two parallel plates where an electric field is

applied perpendicularly to the plates and zenithal gliding occurs only at one boundary.

We investigate in detail the long term evolution of the easy axis on the gliding

surface when the layer is subjected to an electric field and after the electric field
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is turned off. Our gliding model assumes that the anchoring angle, α0, reorients at

a rate that is proportional to the difference between the anchoring angle and the

surface director at the gliding surface. Gliding persists until the anchoring angle has

changed by a maximal amount, αtol, or until the director takes the same value as the

preferred anchoring angle at the boundary. We take advantage of the separation of the

time scales between gliding and the elastic response, and assume a quasistatic model

(using Ericksen-Leslie continuum theory for nematics) to describe the evolution of the

director field within the layer. We investigate in detail how the easy axis evolves in

time under the gliding model described by Equation (5.9) and compare our numerical

results with the experimental data observed in Ref. [9, 28].

Both [9] and [28] consider a NLC layer bounded between two parallel plates,

such that one substrate is treated to have a preferred anchoring orientation (0.8◦

in [9] and 6.7◦ in [28]) while the upper substrate is treated to obtain strong planar

anchoring. An electric field is applied parallel to the z direction for a set amount of

time (16 hours in [9] and 140 hours in [28]). During the electric field on part of the

experiment, Ref. [28] reports zenithal gliding reorientation of 2.2◦ while Ref. [9] does

not provide any information on the gliding evolution of the easy axis. The electric

field is then permanently shut off and both experiments measure the reorientation of

the easy axis: both experiments observe the easy axis reorientation back almost to

its initial position.

Each experiment uses an exponential function comprised of multiple exponen-

tials to find the best fitting curve to the observed data. In this chapter, we use the

experimental evidence provided in [9] and [28] and compare the numerical results

obtained by solving Equations (5.6)–(5.9). We observe that given the appropriate

parameter values A0, α0, λ
∗
0,F ,D for each experiment, our gliding model predicts the

gliding data observed in [9, 28] extremely well; our best global fit has an error norm:

||θexp − θnum||2 < 0.05 for both electric field on and off scenarios in [28] and electric
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field off scenario in [9]. We note that the “best fit” provided by our model for Ref. [28]

is obtained using a highly nonlinear gliding model (large value of n) . Smaller values

of n can be used to capture the gliding dynamics, at the expense of somewhat higher

error norms.
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CHAPTER 6

CONCLUSION

In this dissertation, we develop a mathematical model that describes the evolution

of a director field within a layer of nematic liquid crystal bounded between two

parallel plates, where an external field may be applied across the layer. Such setup

is important in LCD technology since it is representative of a single pixel in an LCD

display. As such, we study the effect of an applied field and the effect of director

gliding on a NLC layer.

In Chapter 3 we investigate how flexoelectricity affects the evolution of the

director field for strong and weak anchoring, as well as the number and type of director

configurations present in a NLC layer. We initially consider a special type of NLC

layer (a Freedericksz Transition cell) and investigate how flexoelectricity affects the

solution structure of the cell. We observe that the solution θh is stable for 0 < F < Ff

(the Freedericksz transition threshold); solution θn is stable for Ff < F < Fs (the

saturation threshold) and solution θv is stable for F > Fs. Also, the Freedericksz

and saturation thresholds (Ff and Fs) increase with stronger flexoelectric effect. We

extend the investigation to include the effect of flexoelectricity on a general NLC

layer, by allowing the anchoring conditions to vary at each boundary. We observe

that varying the anchoring conditions can change the structure and stability of the

possible director configurations. In some cases, the horizontal and vertical states are

no longer solutions; in other cases, the system permits bistability (two stable director

configurations). In cases where bistability is observed, we find that the system remains

bistable for weak electric fields and loses bistability as the electric field is increased.

In Chapters 4 and 5, we describe the evolution of the director field within a

confined NLC layer, bounded by two polymer-coated plates where director gliding

may occur. Director gliding can occur due to a prolonged exposure of the NLC layer
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to an external field or as result of the NLC layer having different anchoring conditions

(specifically different anchoring angles) at each boundary. Each case may lead to the

formation of “ghost images” that can form over a long period of time in LCD displays.

These images would be more prominent in the case of flexible (polymer-based) LCD

displays.

In Chapter 4, we present two models in the form of two ordinary differential

equations that aim to capture the gliding dynamics that may arise due to different

anchoring conditions prescribed at each substrate. Both models assume that gliding

occurs at a rate proportional to the difference between the anchoring angle and the

director angle at the interface and that gliding does not occur indefinitely; instead

gliding stops after some time, as shown in [27] and [28]. The main difference between

the presented models is the way they describe the intermediate dynamics of director

gliding: in Model I, gliding stops abruptly as the anchoring angle reaches its allowed

maximal amount of deviation (dictated by a parameter αtol) while in Model II, gliding

is halted smoothly as αtol is approached. Using both models, we investigate how

director gliding affects the evolution of the director field, as model parameters vary.

Particular attention is paid to the behavior under gliding of an initially bistable

system. In this case, we find that gliding may destroy bistability.

In Chapter 5, we consider the experimental evidence of zenithal gliding in

the presence of an electric field [9, 28] and develop a mathematical model (similar

to Model II presented in Chapter 4) to describe the slow orientation of the easy

axis under gliding. We investigate in detail how the easy axis evolves in time under

the gliding model and compare our numerical results with the experimental data

observed in Ref. [9, 28]. We observe that given the appropriate parameter values for

each experiment, our gliding model predicts the zenithal gliding observed in [9, 28]

very well for both electric field on and off scenarios.
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In the future, our models can be extended to a more realistic three-dimensional

geometry. Our current models, while useful, are restrictive since they do not allow for

the director field to “twist” out of its bounding plane (to a potentially lower energy,

more stable, configuration). Thus, it is possible that some of the states that are

allowable within our current framework may not be stable to perturbations within

a more general 3D framework. In 3D, two angles are required to characterize the

director field: the polar angle θ introduced in this work, and additional azimuthal

angle φ, not considered here. The energetics of this director field are well-known;

however a study into the effect of director gliding in 3D geometry has not been carried

out. An important future direction of this research is to develop a mathematical model

that accurately describes the phenomenon of director gliding in 3D geometry while

addressing possible challenges that arise in this setup.
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APPENDIX A

ANALYTICAL APPROACH

We augment our numerical approach in Chapter 3 by two analytical approaches to

determine the stability of the steady solutions to Equation (3.2). The first consists of

using the calculus of variations to calculate the first and second variation of the total

free energy of the system. In certain cases we can show that the second variation of

a particular solution θ (a zero of the first variation) is either strictly positive (energy

minimum; stable) or strictly negative (energy maximum; unstable).

We also use linear stability analysis (LSA) as our second approach where we

linearize Equations (3.2) around the two solutions that are known explicitly (θv(z, t) =

0, θh(z, t) = π/2) and seek to determine whether perturbations to these solutions

exhibit growth or decay in time.

A.1 Calculus of Variations

We determine the stability of the steady solutions θv(z) = 0 and θh(z) = π/2 in the

presence of an external field. Since we will consider only the equilibrium solutions,

we omit the t dependence. The total free energy for our system is given by

J =

∫ 1

0

W (θ, θz) dz + g0(θ)|z=0 + g1(θ)|z=1, (A.1)

where W , g0 and g1 are the dimensionless bulk and surface energy densities obtained

by nondimensionalizing Equation (2.4) using the scales in Equations (3.1):

W =
θ2
z

2
−D cos2 θ +

Fθz
2

sin 2θ, (A.2)

g{0,1} =
A{0,1}

2
sin2(θ − α{0,1}). (A.3)
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We look for equilibrium solutions θ(z) that minimize J as follows: let θ(z)→ θ(z) +

εη(z) (0 < ε� 1): this assumption leads to J → J [θ+ εη] = J0 + εJ1 + ε2J2 +O(ε3).

For θ(z) to be a minimizer of J (a stable solution), we require J1 = 0 and J2 > 0

for all admissible variations η. If on the other hand J2 < 0 then we have a local

maximum of the free energy, and hence an unstable steady solution. After Taylor

expansion, the expression for J1 takes the following form:

J1 =
∫ 1

0
η(Wθ − (Wθz)z) dz + η(g1θ +Wθz)|z=1 + η(g0θ −Wθz)|z=0. (A.4)

After integration by parts, the second variation J2 can be expressed as follows:

J2 = 1
2

∫ 1

0
{η2[Wθθ − (Wθθz)z] + ηz

2Wθzθz} dz + η2(g1θθ +Wθθz)|z=1

+η2(g1θθ −Wθθz)|z=0. (A.5)

We check the stability of the director solution θv(z) = 0 and θh(z) = π/2 by evaluating

J2 when α{0,1} = π/2 (J1 must always vanish for any steady solution).

A.1.1 Stability of Director Solution θv(z) = 0

Substituting W and g{0,1} given by Equations (A.2)–(A.3) into J1 and J2 (see

Equations (A.4-A.5)) and manipulating the expressions, we first verify that J1 = 0

for θ(z) = 0, and that J2 > 0 for sufficiently large F . The first and second variations

are evaluated as:

J1 =

∫ 1

0

η[D sin 2θ − θzz]dz + η

(
A1

2
sin 2(θ − α1) + θz +

F
2

sin 2θ

)
|z=1 (A.6)

+ η

(
A0

2
sin 2(θ − α0)− θz −

F
2

sin 2θ

)
|z=0,
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J2 =
1

2

∫ 1

0

η2[2D cos 2θ − 2Fθz sin 2θ − 2Fθz cos 2θ] dz

+
1

2

∫ 1

0

η2
z dz + η2(A1 cos 2(θ − α1) + F cos 2θ)|z=1 (A.7)

+ η2(A0 cos 2(θ − α0)−F cos 2θ)|z=0.

We assume that the two surface energies are equal, A0 = A1. Setting θ = θv =

0, J1 = 0 and J2 simplifies to:

J2 =
1

2

∫ 1

0

{2F
2

Υ
η2 + η2

z} dz −
A
2

(η2|z=1 + η2|z=0) +
F
2

(η2|z=1 − η2|z=0). (A.8)

Observe that the first term in Equation (A.8) dominates for larger |F| and we

conclude the following: when |F| is sufficiently large and for finite anchoring strength

A and finite values of Υ, J2 > 0. This establishes that θ(z) = 0 is a minimum energy

solution and therefore stable.

Similarly, we can determine the sign of J2 in the limiting case when F → 0

and anchoring is sufficiently strong. We obtain:

J2 ≈
1

2

∫ 1

0

η2
z dz + η2(−A+ F)|z=1 + η2(−A−F)|z=0

for |F| � A, which leads to the following result: when |F| is sufficiently small and

simultaneously A is sufficiently large, J2 < 0 and θ(z) = 0 is a solution locally

maximizing the free energy and therefore unstable.

A.1.2 Stability of Director Solution θh(z) = π/2

A similar approach is taken to determine the stability of θh(z) = π/2 for large |F|.

We first check that J1 = 0 for θh(z) = π/2, which a glance at Equation (A.6) confirms.

Calculating the second variation J2 for θh(z) = π/2 by lettingD = F2/Υ andA0 = A1

in Equation (A.7), we obtain:

J2 = 1
2
(
∫ 1

0
−2F

2

Υ
η2 dz +

∫ 1

0
η2
z dz + η2(A−F)|z=1 + η2(A+ F)|z=0). (A.9)
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As before we conclude that when |F| is sufficiently large and A is finite, J2 < 0,

establishing that θh(z) = π/2 is a local energy maximizer and therefore unstable.

Similarly we can determine the sign of J2 for θ(z) = π/2 in the limiting case

when F → 0. We obtain from Equation (A.9),

J2 ≈
∫ 1

0
η2
z dz + η2(A−F)|z=1 + η2(A+ F)|z=0

and we conclude: when |F| is sufficiently small and simultaneously A is sufficiently

large, J2 > 0 and θh(z) = π/2 is a solution locally minimizing the free energy and

therefore stable.

Together with the numerical results, we can conclude that in the presence of a

strong electric field (|F| sufficiently large), θv(z) = 0 is a stable solution while θh(z) =

π/2 is unstable. If stronger anchoring is imposed on the boundaries, then a larger

value of |F| is needed for θv(z) = 0 to become stable. In addition, in the presence

of a weak electric field (|F| sufficiently small), and A sufficiently large, the director

solution θv(z) = 0 is an unstable solution while θh(z) = π/2 is stable. We observed

numerically that in the presence of weak anchoring, the saturation threshold increased

with A and Υ and although we cannot arrive to the same conclusion analytically, we

observe that the sign of J2 depends heavily on the anchoring and electric field strength

indicating that the stability of the solutions depends strongly on the parameters A,F .

A.2 Linear Stability Analysis

We now use linear stability analysis (LSA) to determine if the director solutions

θv(z) = 0 and θh(z) = π/2 pertaining to a system with weak anchoring (A{0,1} = 5.0)

are stable or unstable. We consider planar anchoring angles α0 = α1 = π/2 and

various electric field strengths, always keeping Υ = 1. We approach the problem as

follows: consider a perturbation of the steady state solution θ0 of the following form:

θ = θ0 + εω(z, t), (A.10)
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where ε � 1. Substituting Equation (A.10) into Equations (3.2) and retaining only

the order ε terms, we obtain the following linear system:

ν̃ωt(z, t) = ωzz(z, t)− 2D cos 2θ0ω(z, t),

ν̃ωt(0, t) = ωz(0, t) + (−A0 cos 2(θ0 − α0) + F cos 2θ0)ω(0, t), (A.11)

−ν̃ωt(1, t) = ωz(1, t) + (A1 cos 2(θ0 − α1) + F cos 2θ0)ω(1, t).

We solve the linear boundary value problem given by Equations (A.11) for θ0 =

θv,h(z) = 0, π/2 and determine whether perturbations to each solution θ0(z) grow or

decay in time. Specifically, we look for solutions of the following form:

ω1(z, t) = e(k2−2D cos 2θ0)t[A cosh kz +B sinh kz], (A.12)

ω2(z, t) = e(−k2−2D cos 2θ0)t[A cos kz +B sin kz]. (A.13)

Each solution ωi(z, t), i = 1, 2 satisfies the linear system given by Equation (A.11)

provided that the coefficients A and B are chosen to satisfy the boundary conditions.

We now consider each case in detail.

A.2.1 Perturbation of Hyperbolic Type, Equation (A.12)

To obtain a nontrivial solution of type (A.12), we need to solve the following

expression:

D1 ≡ Det(ω1) = [k2 − 2D cos 2θ0 +A0 cos 2(θ0 − α0)−F cos 2θ0)] (A.14)

× [(k2 − 2D cos 2θ0) tanh(k) + k + (A1 + cos 2(θ0 − α1) + F cos 2θ0) tanh(k)]

+ k[(k2 − 2D cos 2θ0 +A1 cos 2(θ0 − α1) + F cos 2θ0 + k tanh(k)] = 0

and find nonzero values of k that correspond to nontrivial solutions of Equation (A.11).

We find the values of k using the bisection method and observe that the evolution

of ω1(z, t) in time is driven by the exponential term e(k2−2D cos 2θ0)t. Specifically, if

k2 − 2D cos 2θ0 < 0 for nonzero values of k that satisfy Equation (A.14) then the
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perturbation ω1(z, t) → 0 as t → ∞. Similarly, if k2 − 2D cos 2θ0 > 0 for nonzero k

satisfying Equation (A.14) then ω1(z, t)→∞ as t→∞. Note that when k = 0, the

perturbation ω1(z, t) = Ae(−2D cos 2θ0)t does not satisfy the boundary value problem

given by Equation (A.11) unless the coefficient A is zero, giving the zero solution.

Before we can draw any conclusions about the stability of each director solution, we

must also consider perturbations given by Equation (A.13).

A.2.2 Perturbation of Oscillatory Type, Equation (A.13)

Similarly, to obtain a nonzero solution for Equation (A.13), we need to solve the

following expression:

D2 ≡ Det(ω2) = [k2 + 2D cos 2θ0 −A0 cos 2(θ0 − α0) + F cos 2θ0]

× [(k2 + 2D cos 2θ0 −A1 cos 2(θ0 − α1) + F cos 2θ0) sin(k)− k cos(k)]

− k[(k2 + 2D cos 2θ0 −A1 cos 2(θ0 − α1) + F cos 2θ0) cos(k) + k sin(k)] = 0.

(A.15)

Again, Equation (A.15) is solved numerically using the bisection method to determine

the nonzero values of k that allow for nontrivial solutions for Equation (A.11). Now

the evolution of ω2(z, t) in time is driven by the exponential term e(−k2−2D cos 2θ0)t. If

−k2 − 2D cos 2θ0 > 0 for nonzero values of k that satisfy Equation (A.15) then the

perturbation ω2(z, t) → ∞ as t → ∞. Similarly, if −k2 − 2D cos 2θ0 < 0 then the

perturbation ω2(z, t)→ 0 as t→∞.

A.2.3 Stability of Solutions θv(z) = 0 and θh(z) = π/2 using Linear Stability

Analysis

We determine the stability of the steady solutions θv(z) = 0 and θh(z) = π/2 by

combining the results obtained for both perturbations ωi(z, t), i = 1, 2 as follows: if

both exponents in ωi(z, t) are negative (i.e., k2−2D cos 2θ0 < 0 and−k2−2D cos 2θ0 <

0) for nontrivial values of k that satisfy Equations (A.14) and (A.15) respectively, then
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the perturbations ωi(z, t) decay in time leading to a stable steady state θ(z). If at

least one expression is positive, then at least one perturbation ωi(z, t) grows in time

leading to an unstable steady state. We now present two tables that display the

values of k that satisfy Equation (A.11) for each perturbation ωi(z, t), i = 1, 2. In

addition, we present the evolution of each perturbation as t → ∞ to determine the

stability of each director solutions: θv(z) = 0 and θh(z) = π/2 for different electric

field strengths.

Table A.1 Evolution of ω1(z, t) = e(k2−2D cos 2θ0)t[A cosh kz+B sinh kz]
for θ0 = 0 and θ0 = π/2 for Weak Anchoring A0 = A1 = 5 and Different
Electric Field Strengths, Always with Υ = 1

θ(z) α0 α1 F D k limt→∞ ω1(z, t)

0 π/2 π/2 1 1 ±1.9538, ±2.3815 ∞, ∞

π/2 π/2 π/2 1 1 0 N/A

0 π/2 π/2 5 25 ±6.5887, ±7.2620 0, ∞

π/2 π/2 π/2 5 25 0 N/A

0 π/2 π/2 9 81 ±12.0797, ±12.7759 0, ∞

π/2 π/2 π/2 9 81 0 N/A

0 π/2 π/2 20 400 ±27.5223, ±28.2271 0, 0

π/2 π/2 π/2 20 400 0 N/A

Based on our LSA results shown in Tables (A.1–A.2), for parameter values

F = D = 1 and symmetric anchoring conditions, we conclude that θv(z) = 0 is an

unstable steady state and θh(z, t) = π/2 a stable state. As we increase the electric

field strength to F = 5, D = 25 and F = 9, D = 81, we observe that neither
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θv(z) = 0 nor θh(z) = π/2 are stable. In fact our numerical results show that θn(z) is

the stable solution in this case. Moreover, for a higher electric field strength F = 20

and D = 400, LSA shows that θv(z) = 0 is a stable state while θh(z) is unstable.

Note that for all choices of F , D used here, the material parameter Υ = 1.

Table A.2 Evolution of ω2(z, t) = e(−k2−2D cos 2θ0)t[A cos kz + B sin kz]
for θ0 = 0 and θ0 = π/2 for Weak Anchoring A0 = A = 1 = 5 and
Different Electric Field Strengths, with Υ = 1

θ(z) α0 α1 F D k limt→∞ ω2(z, t)

0 π/2 π/2 1 1 ±3.4842, ±6.5394, others 0, 0, 0

π/2 π/2 π/2 1 1 ±2.0930, ±2.8918, others 0, 0, 0

0 π/2 π/2 5 25 ±3.2333, ±6.4098, others 0, 0, 0

π/2 π/2 π/2 5 25 ±3.0228, ±5.8396, others ∞, ∞, 0

0 π/2 π/2 9 81 ±13.1757, ±6.3418, others 0, 0, 0

π/2 π/2 π/2 9 81 ±3.1704, ±6.1932, others ∞, ∞, 0

0 π/2 π/2 20 400 ±3.1491, ±6.2977, others 0, 0, 0

π/2 π/2 π/2 20 400 ±3.1339, ±6.26723, others ∞, ∞, 0

Although these analytical approaches are very useful to validate our numerical

results, they have their limitations. In the case of the calculus of variations method,

we are able to draw conclusions only in the limiting cases where |F| is small or large

compared to the anchoring strength A{0,1}. When using LSA, we are able to linearize

only around known solutions, namely θ(z) = 0, π/2 and for symmetric anchoring

conditions only. We still rely on our numerical investigation to determine the stability

of the nontrivial steady state as well as asymmetric boundary conditions.
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