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ABSTRACT

MODELING CELL PROLIFERATION IN A PERFUSION TISSUE
ENGINEERING BIOREACTOR

by
Jeffrey Vincent Pohlmeyer

In this dissertation we develop a comprehensive model to simulate a tissue engineering

experiment. The experiment takes place in a bioreactor in which a cell seeded porous

scaffold is placed, and the scaffold experiences a perfused flow of a nutrient-rich culture

medium. The goal of the model is to assist experimentalists in evaluation of different

parameter scenarios as the time needed to simulate an experiment is significantly less

than the time needed for the experiment itself. We provide the full two-dimensional

model development, as well as investigation into possible variations of specific model

choices, and we demonstrate the robustness and versatility of the model.

Simulation results are presented with different initial cell seeding scenarios

which increase in complexity with each simulation. We next model the effect of

printing a growth factor onto the scaffold in an attempt to direct cell motility

and enhance proliferation via a process known as haptotaxis. While a quantitative

representation of these phenomena requires more experimental data than are yet

available, qualitative agreement with preliminary experimental studies is obtained,

and appears promising. The ultimate goal of such modeling is to ascertain initial

conditions (growth factor distribution, initial cell seeding, etc.) that will lead to a

final desired outcome.

A simplified 2D mathematical model for tissue growth within a cyclically-loaded

tissue engineering scaffold is then analyzed. Such cyclic loading has the potential to

improve yield and functionality of tissue such as bone and cartilage when grown

on a scaffold within a perfusion bioreactor. The cyclic compression affects the flow

of the perfused nutrient, leading to flow properties that are inherently unsteady,



though periodic, on a timescale short compared with that of tissue proliferation.

A two-timescale analysis based on these two well-separated timescales is exploited

to derive a closed model for the tissue growth on the long timescale. Some sample

numerical results are given for the final model, and the comparison with the unloaded

case is discussed.

Finally, we simulate to hypothetical extensions to the basic model. We first test

the hypothesis of a death rate which varies as a function of the local fluid flow and

compare the results to the original model. The second test is the introduction of a

channel through the center of the porous scaffold thought to aid in nutrient delivery

to the cells in the interior of the scaffold. The last two simulations are presented to

illustrate the ability that the model has to incorporate many different supplemental

experimental situations, whether they have yet been experimentally considered or

not.
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CHAPTER 1

INTRODUCTION

Tissue engineering is a relatively young field, yet one whose importance cannot be

overstated. There is a shortage of available organs for those in need of transplants [13],

and the situation will worsen as the world’s population continues to increase and age.

Many different tissue engineering protocols have been and continue to be researched

to determine if it is possible to grow tissue to implant into a patient. One methodology

that receives significant attention [15–17] involves harvesting an individual’s own cells,

growing the specific type of tissue needed outside the body, and then re-implanting

when the tissue is viable. This method of in vitro tissue engineering using the patient’s

own tissue greatly reduces the risk of tissue rejection. Conducting a large suite of

experiments in which tissue is grown within the laboratory undoubtedly provides

the best indicator of likely success; however, the time taken for tissue to grow, the

“trial and error” nature of optimizing the outcome, and the costly possibility of

human or mechanical error in running the experiments makes this approach inefficient

for testing purposes. Mathematically modeling the growing tissue can be a useful

way to augment such experimental programs as case studies can be simulated in

only a fraction of the time that it takes actual tissue to grow and, once calibrated

against experiments, models can be used to make predictions of optimal conditions

for successful tissue growth.

A commonly-used tissue engineering protocol is to place a porous scaffold that

has been seeded with cells into a bioreactor filled with a nutrient-rich culture medium.

Scaffolds can have widely-varying properties, such as differing pore sizes and pore

architectures, but they all serve the purpose of providing an apparatus on which cells

can attach and proliferate over time. One of the many possible types of architectures

1
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which can be used for the scaffold is seen in Figure 1.1. The scaffold plus cells are

Figure 1.1 An example of a scaffold.

collectively referred to as a tissue engineering construct. Early mathematical models

of tissue engineering saw the nutrient within the culture medium delivered to the

cell-seeded scaffold via diffusion alone. Malda et al. [26] measured (via experiments

and modeling) the development of oxygen gradients in chondrogenesis due to oxygen

consumption by the cells. The goal was to predict oxygen levels within the construct

to obtain an understanding of the relationship between local oxygen concentration

and the oxygen demand by the cells. In an extension of this work, Lewis et al.

[23] analyzed the relationship between nutrient concentration and cell density in one

spatial dimension, while assuming no cellular movement within the scaffold. They

compared their model to experimental results, and showed that with proliferation, a

diffusion dominated model will see growth in the outer region of the scaffold where
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oxygen concentrations are highest, but less proliferation near the scaffold center where

the limitations of diffusive transport means oxygen levels are low.

One way in which nutrient may be better provided to the entire scaffold is via

perfusion; that is, forced flow of nutrient-rich culture medium through the seeded

scaffold. As well as the enhanced nutrient delivery due to advection, the forced flow

generates fluid shear stress within the scaffold, which can stimulate enhanced cell

proliferation. Certain cell types (e.g., osteoblasts) undergo enhanced proliferation

when exposed to shear stress [20, 48](this is an example of mechanotransduction,

in which mechanical stimulus triggers a cellular response). Raimondi et al. [43]

experimentally compared a static culture system, a surface perfused culture system

(where nutrient-rich culture medium is driven only along surfaces of the scaffold), and

a culture system in which nutrient-rich culture medium is forced through the whole

construct. They found that there is a two-fold improvement in cell viability from

forced perfusion when compared to the other methods of nutrient delivery. They were

also able to obtain details of the microarchitecture of the pores within the scaffold via

light microscopy, and developed a computational fluid dynamics model to examine

the modulating effect of fluid shear stress on growth. Porter et al. [41] attempted to

more accurately calculate the fluid stress in three dimensions by constructing pore

microarchitecture using microcomputed tomography and using the Lattice-Boltzmann

method to simulate fluid flow within the structure. They found that shear stress

levels leading to increased cell proliferation were lower than previously determined by

Raimondi et al. [43].

These early studies tended to focus on isolated aspects of the problem. While

these analyses are very useful in improving knowledge about specific aspects of tissue

growth, more recent models have moved closer to the goal of describing a tissue

engineering construct in its entirety. A typical method for modeling full systems

involves examining the different constituent parts as separate domains, or phases. For



4

example, a two-phase model might consider the cell population as one phase and the

nutrient-rich culture medium as another phase, and model the interactions between

the two on a macroscopic level. Furthermore, there are many ways that the phases

can be modeled. A simple example of this is how cell population can be considered via

direct cell density or a change in scaffold permeability. Coletti et al. [10] considered

changes in both scaffold properties (due to cell proliferation) and nutrient transport

(via fluid flow) in a three-dimensional perfusion bioreactor in their multi-phase model.

In this model, the flow external to the scaffold was governed by the Navier-Stokes

equations, coupled with the Brinkman equations within the porous scaffold. Oxygen

uptake was modeled by Michaelis-Menton kinetics, and cell growth as a function of

nutrient concentration by the Contois equation [11]. Shakeel et al. [46] examined

the effects of initial cell seeding density and scaffold pore structure on the resulting

structure of the engineered tissue construct. Chung et al. [8], developed a three-layer

model of cell proliferation, nutrient uptake, and culture medium circulation within a

porous scaffold under perfusion, the scaffold itself being held between two fluid layers.

In subsequent work, Chung et al. [9] modeled only the scaffold layer, neglecting the

two fluid layers, and were able to obtain the same results when compared to their

earlier work.

While the above models all deal with multiple phases, the cell phase was

not explicitly modeled. Instead, cells were considered as nutrient sinks and

proliferation was modeled as a change of scaffold permeability and porosity. In

explicitly considering a cell phase, O’Dea et al. [34] were able to incorporate

mechanotransductive effects, in particular considering the mechanical response of an

imposed flow on the cell phase and predicting the resulting cell distribution. This work

was expanded in [35] to take explicit account of the scaffold and its interactions with

the growing cells. The authors derived a simplified model based on an assumption of
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slender bioreactor geometry (i.e. a long wavelength analysis), while in a related work

Osborne et al. [37] considered a finite element solution of the full system.

A specific mechanotransductive effect that has been investigated is that of a

cartilage or bone bioreactor within which the construct undergoes cyclic compression.

The rationale behind such mechanical loading is that it mimics the experience of

cartilage or bone within a joint in vivo and should thus provide an ideal environment.

As cartilage is a relatively avascular tissue it poses a unique challenge to tissue

engineers because without a defined vasculature delivery of nutrient to the entire

scaffold is much more difficult. To deal with this difficulty, significant experimental

and modeling work has been carried out over the last two decades to attempt to

determine the best way to engineer cartilage. The cyclic loading appears to affect a

very wide range of experimental outcomes, in ways that are not yet fully understood.

For example, Mauck et al. [27] discovered that different types of scaffolds with differing

stiffness and modulus can greatly affect the end result of an experiment. The details

of the “loading protocol” can also demonstrably affect experimental outcomes. For

example, Schätti et al. [44] compared different types of loading and found that

only samples which had both shear and strain stresses applied showed a significant

up-regulation of chondrogenic genetic markers. Buschmann et al. [4] observed that

chondrocytes responded biosynthetically to static and dynamic loading in a manner

similar to that of intact organ culture. They saw a response to compression more

pronounced at later times in the experiments, and concluded that application of a

mechanical load may significantly alter the long-term development of the tissue.

Modeling and simulation of loading on the tissue engineering construct can

provide significant insight into the effects that stress and/or strain plays in chondrocyte

proliferation. For example, Babalola and Bonassar [2] simulated results using a 2D

finite element method to determine which types of scaffolds work best in cartilage

tissue growth; while Moo et al. [30] used a multi-scale model (accounting for
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chondrocytes and cartilage tissue) to examine the effect of impact loading on cell

death in an attempt to determine the cause of higher cell death at higher strain. Other

aspects of chondrocyte growth have been modeled. Catt et al. [7] examined the effects

of extra-cellular matrix (ECM) production on chondrocyte growth and compared their

results to experimental data. They noted that cellular differentiation rates played a

more significant role than did nutrient transport on chondrocyte levels. Lutianov et

al. [24] developed a model which indicated that a combination of chondrocytes and

stem cells (which can differentiate into chondrocytes) produces the best results when

compared to seeding with strictly stem cells or chondrocytes. As there are many

different aspects which can be and have been modeled, Sengers et al. [45] compiled a

review of the multitude of mathematical models used in tissue engineering, and the

reader is directed there for a more comprehensive list.

A challenge still facing tissue engineers is how to initially seed the porous scaffold

with the appropriate distribution of cells to obtain a desired end result. Even if the

appropriate initial seeding distribution is known, it is not always possible to achieve

this in the laboratory. One way around this difficulty is to exploit haptotaxis, in

which cells move up gradients of a chemical that is bound to the scaffold. Significant

research has investigated the effects of scaffold surface modification, particularly as

it relates to cell adhesion. For example, Zelzer et al. [49] examined how adhesion

protein adsorption combined with plasma polymerised surfaces affect cell adhesion

(this paper also contains a useful overview of selected earlier work on scaffold

surface modification). As an alternative to adhesion proteins, great progress is

being made with printing growth factors (or other biochemical signals) onto scaffolds

[6, 12, 21, 28, 29]. Printing growth factors onto biomaterial scaffolds offers significant

advantages over allowing the growth factor to diffuse in the culture medium [5] since

its spatial patterning is highly controllable. Cells seeded on the scaffold respond

haptotactically to gradients of the growth factor, and undergo enhanced proliferation
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where growth factor is present. Campbell et al. [6] and Miller et al. [28] examined

the cellular response to patterned growth factor: both studies saw significantly

higher cell densities in regions on which growth factor was bioprinted but, due

to the growth-factor patterns used (in which concentration gradients were almost

everywhere small), were unable to conclude with certainty whether haptotaxis might

play a significant role (though they suspect it does not). While much work has been

done modeling cell motility and cell proliferation as it relates to tumor growth [47],

morphogenesis [25,38,39], and tumor-related angiogenesis [36], these phenomena have

yet to be fully considered from a tissue engineering perspective.

In this dissertation a very versatile model of a two-dimensional perfusion

bioreactor is derived, with one phase the cells and the other the culture medium,

describing cell proliferation and transport in a porous scaffold perfused with

nutrient-rich culture medium (see the schematic in Figure 2.1). The model domain

consists of the rigid scaffold, with perfusion driven by upstream and downstream

boundary conditions. The fluid flow through the scaffold is governed by Darcy’s law.

Cell density is monitored as proliferation occurs, and the effect of this on the flow is

captured via a change in the scaffold permeability, which also changes the pore volume

fraction. Cells proliferate due to nutrient uptake, and increased cell proliferation at

moderate levels of fluid shear stress is also taken into account while allowing for

the possibility that excessive shear stress can reduce cell proliferation. The model

permits different nutrient basic types to be considered; for example, nutrients that

become toxic in excess, and those that do not. Nutrient is transported by advection

and diffusion (advective transport is shown to dominate in all relevant parameter

regimes). Cell proliferation due to nutrient uptake, and the nutrient uptake itself,

are modeled by the same basic functional form, reflecting the assumption that the

new cell mass created is proportional to the amount of nutrient consumed. The

cells move within the scaffold via cellular diffusion in response to overcrowding and a
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small advective velocity (proportional to the speed of the fluid flow; essentially, a fluid

drag). The model is then extended in three ways: a haptotactic component is added

to the cellular flux to model the effect of a non-diffusible growth factor bound to

the scaffold (growth factor enhanced proliferation [28] is addressed by a supplemental

growth term in the same equation); the effects of (relatively rapid) cyclic compression

of the seeded scaffold are examined by exploiting a two-timescale analysis; and the

natural cellular death rate, assumed constant at first, is modified to be a function of

local fluid flow (the reasons for which are discussed later).

This dissertation is laid out as follows. In Chapter 2 the model is developed in

full, and nondimensionalized. Chapter 3 summarizes the nondimensional model as

well as relevant dimensional and dimensionless parameters used in the simulations.

Simulations are run using the basic model in Chapter 4 with numerous different

initial cell seedings. In this chapter, we also test the effect of varying parameter

values and demonstrate the versatility of the model to large changes in constituent

functional forms as well as the robustness to small differences in these forms. The basic

model is an introductory attempt to simulate a real tissue engineering experiment

within a perfusion bioreactor. Since such experiments are highly complex it is difficult

to properly account for every aspect, hence there are factors (such as specific pore

architecture) that this dissertation does not address. The basic results as presented,

and the extensions which follow are simply intended to provide an introduction to

the breadth and capabilities of the model.

The effect of bioprinting a growth factor onto the scaffold is investigated in

Chapter 5 as we attempt to direct and predict the final cell density based on initial

seedings. Cyclic compression of the scaffold is modeled in Chapter 6 to show that

the model can not only capture effects on the long time scale of cell proliferation

but it can also capture effects on the short timescale of fluid flow. Chapter 7

presents a brief investigation of two further scenarios that could be modeled: a higher
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death rate in stagnant flow zones (modeling the fact that toxins can build up where

flow is insufficient to flush them out); and proliferation on a scaffold of nonuniform

permeability (this is one possible means of controlling the final distribution of tissue).

We conclude with a short discussion of our results, and of possible future directions

in Chapter 8.



CHAPTER 2

MODEL FORMULATION

2.1 Dimensional Formulation

We begin by formulating a fully dimensional model, in which asterisks denote

dimensional quantities. The experimental set-up is sketched in Figure 2.1 where

the scaffold domain is a square two-dimensional Cartesian grid with x∗ = (x∗, y∗) in

which culture medium flows from x∗ = 0 to x∗ = L∗ with fixed impenetrable walls

at y∗ = 0, y∗ = L∗. Time is denoted by t∗. Dependent variables in general depend

Figure 2.1 Experimental set-up.

on both space and time: but except where we wish to emphasize this dependence we

will suppress it, for brevity. The culture medium flows at velocity u∗ and pressure

p∗ according to Darcy’s law, where the scaffold permeability is a function of c∗, the

10
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local cell density. The culture medium contains nutrient at a concentration n∗. The

nutrient concentration is governed by an advection-diffusion-reaction equation with

advective velocity u∗ and an uptake term (sink) due to nutrient consumption by the

cells. We model the cell density c∗ by considering basic mass conservation principles,

incorporating proliferation (source) terms due to the nutrient consumption (with

shear stress dependent growth rate) and local growth factor concentration. We also

account for cell death, which may in practice be due to several factors (natural death,

death due to locally low nutrient concentration, death due to excessively high local

shear, etc). We discuss each of the model components in more detail below.

2.1.1 Fluid Flow

The culture medium forced through the seeded porous scaffold is assumed to be

a Newtonian fluid with (constant) viscosity µ∗. The scaffold permeability, k∗, will

change as cells proliferate and fill the pores, thus we take k∗ to be a function of local

cell density: k∗(c∗). We assume Darcy’s Law

u∗ = −k
∗(c∗)

µ∗ ∇
∗p∗, (2.1)

where u∗ is the flow velocity and p∗ is the pressure. The continuity (incompressibility)

equation is

∇∗ · u∗ = 0, (2.2)

which gives

∇∗ · (k∗(c∗)∇∗p∗) = 0. (2.3)

This equation must be coupled to a model for c∗, and suitable boundary conditions

imposed on the pressure (or the velocity).
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2.1.2 Nutrient Concentration

The culture medium transfers nutrient to the cells within the scaffold; and also (via

the local fluid dynamics) exposes the cells to shear stress, which we assume affects

the local proliferation rate and hence the nutrient uptake rate. The concentration of

nutrient in the culture medium, n∗, satisfies an advection-diffusion-reaction equation,

n∗
t∗ + u∗ · ∇∗n∗ = D∗∇∗2n∗ − θ∗g∗(n∗, c∗, τ ∗s ), (2.4)

where subscripts t∗ denote partial differentiation with respect to t∗. The nutrient

is convected with the local flow velocity; it simultaneously diffuses (with diffusion

coefficient D∗) and is consumed (by the cells) at a rate (θ∗) that is modulated

according to the consumption function g(n∗, c∗, τ ∗s ) by both n∗ and c∗, as well as

by shear stress τ ∗s due to the local fluid dynamics.

2.1.3 Cell Density

The cells satisfy a basic conservation of mass principle in which, within any fixed

control volume V ∗ (bounded by surface S∗, with outward normal n), their rate of

increase is equal to their rate of creation, minus their rate of death. If their local flux

at any point within the domain is J∗
c then the principle of mass conservation gives

d

dt∗

∫
V ∗
c∗ dV ∗ = −

∫
S∗

J∗
c · n dS∗ +

∫
V ∗

(sources) dV ∗ −
∫
V ∗

(sinks) dV ∗

= −
∫
V ∗
∇∗ · Jc

∗ dV ∗ +

∫
V ∗

(sources) dV ∗ −
∫
V ∗

(sinks) dV ∗,(2.5)

using the Divergence theorem.

This principle of mass conservation yields a PDE for the evolution of the cell density

c∗(x∗, t∗), the exact form of which depends on what we assume about the flux J∗
c and

the sources/sinks. The flux may consist of several contributions. The first follows from

Fick’s first law [14], that cells will move down a gradient from a higher concentration to
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a lower concentration to avoid overcrowding and competition for resources. Another

possibility is that the cells will be dragged through the scaffold by the fluid, and we

will assume that this local advective velocity, u∗
c , is proportional to the fluid pore

velocity itself. As we will argue later, u∗
c will generally be considered to be small

relative to the flow velocity, as cell proliferation is highest when cells adhere to the

scaffold. The combination of these two contributions constitutes the standard total

flux term,

J∗
c = u∗

cc−D∗
c∇∗c∗, (2.6)

where u∗
c = δu∗

p is the drag proportional to the fluid drag, assumed proportional

to the fluid pore velocity, u∗p (discussed in §2.3.1 later), with δ � 1; and D∗
c is the

cellular diffusion coefficient. This leads to the advection-diffusion equation for c∗,

∂c∗

∂t∗
+ u∗

c · ∇∗c∗ = D∗
c∇∗2c∗ + sources− sinks. (2.7)

There are many possible functional forms that one could use for the source/sink

terms representing proliferation and cell death, respectively, but a simple and

reasonable possibility is to assume that the source term is proportional to the nutrient

consumption function introduced above, while death is proportional to how many live

cells are present. These assumptions give the advection-diffusion equation

∂c∗

∂t∗
+ u∗

c · ∇∗c∗ = D∗
c∇∗2c∗ + λ∗g∗(n∗, c∗, τ ∗s )− ν∗c∗, (2.8)

where g∗(n∗, c∗, τ ∗s ), represents cell proliferation due to nutrient uptake, with constant

rate λ∗, and ν∗ is the per-capita death rate (at first assumed constant).

2.2 Nondimensionalization

Before we propose specific functional forms for g∗(n∗, c∗, τ ∗s ), k∗(c∗), etc, we

nondimensionalize the system (2.1)-(2.8). This process leads to the identification
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of several dimensionless parameters; in some cases, these parameters will be small,

enabling us to simplify the model by neglecting certain terms. We non-dimensionalize

as follows,

x∗ = L∗x, t∗ = t/λ∗, k∗(c∗) = k∗sk(c), (2.9)

u∗ = u∗0u, p
∗ =

µ∗L∗u∗0
k∗s

p, n∗ = n∗
0n, c

∗ = c∗0c, (2.10)

g∗(n∗, c∗, τ ∗s ) = c∗0g(n, c, τs). (2.11)

Lengths are non-dimensionalized with respect to the length of the scaffold domain,

L∗. We have chosen (1/λ∗), the rate of cell proliferation, as the representative

timescale, appropriate for analyzing the long times over which cells proliferate. The

velocity scale, u∗0, is defined as the pump flow rate, U∗
0 , divided by the length scale

(u∗0 = U∗
0/L

∗), and is discussed further in Chapter 3. The pressure scale comes from

balancing the terms in Darcy’s Law (2.1), where k∗s is the permeability of the unseeded

scaffold (assumed constant). We non-dimensionalize the nutrient concentration with

the nutrient concentration at the inlet, n∗
0 (also assumed constant), and the cell

density with a representative cell density, c∗0. The growth/uptake function g∗ is also

non-dimensionalized via c∗0, and the growth factor concentration by a representative

value, ρ∗0 (determined in practice by an experimentalist). The resulting dimensionless

model is summarized below.

2.2.1 Fluid Flow

Darcy’s law (2.1) and the continuity equation (2.2) are

u = −k(c)∇p and ∇ · u = 0. (2.12)
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2.2.2 Nutrient Concentration

The dimensionless form of equation (2.4) is

εnt + u · ∇n = D∇2n− θg(n, c, τs), (2.13)

where ε = (L∗λ∗)/u∗0, D = D∗/(u∗0L
∗), and θ = (θ∗L∗c∗0)/(u

∗
0n

∗
0). From typical

experimental data, [32], we have significant cell proliferation over the first five to

seven days, and we choose a characteristic fluid velocity of 5 cm/s (see Table 3.3

in Chapter 3) and a characteristic length of 1cm. Working with 1/λ∗ = 5 days =

4.32× 105s, we have

ε =
L∗λ∗

u∗0
=

1cm

5cm/s · 4.32× 105s
=

1

2.16× 106
� 1. (2.14)

We assume that θ is O(1) with respect to ε and neglect the term of O(ε) in equation

(2.13) (this assumption on θ will be relaxed later in Chapter 6 in order to make

analytical progress with the cyclic loading problem). As will later be seen in Table 3.3,

the dimensionless coefficient of nutrient diffusion, D, is comparable to ε, hence we also

neglect nutrient diffusion in the scaffold. The leading-order (quasi-steady) nutrient

concentration equation is then

u · ∇n = −θg(n, c, τs). (2.15)

2.2.3 Cell Density

The dimensionless form of (2.8) is

ct +
δ

ε
up · ∇c = Dc∇2c+ g(n, c, τs)− νc, (2.16)

where Dc = D∗
c/(λ

∗L∗2) and ν = ν∗/λ∗. The parameters δ (introduced just after

equation (2.6)) and ε (defined in equation (2.14) above) are both small, but the size

of the ratio δ/ε depends on how strongly the cells are adhered to the scaffold. We

assume δ/ε ≤ O(1).
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2.3 Specification of Functional Forms

There are two functions whose forms are still unspecified: the cell proliferation/nutrient

uptake function g(n, c, τs) in equations (2.15) and (2.16), and the permeability

function k(c) in equation (2.12). In the following sections, specific functional forms

will be proposed, but these are easily modified within the model framework. The

model is very versatile, and as will be demonstrated in §4.3 the specific functional

forms are relatively unimportant provided the correct qualitative behavior is captured

(e.g., the same limit approaching infinity).

2.3.1 Shear Stress

In addition to the obvious dependence on local nutrient concentration and cell density,

we assume the cell proliferation rate to depend on the local shear stress experienced

by the cells within the scaffold [22]. Since Darcy’s Law does not allow for explicit

computation of shear stresses, we need to find some way to estimate these. If we

suppose, for example, that the scaffold itself is made up of an assemblage of hollow

circular tubes, then this leads to a Poiseuille velocity profile within each tube itself.

If we know the flow within the tube, we can then calculate the shear stress [1]. With

Poiseuille velocity in the empty tube u∗
Pois, the shear stress at the channel wall is

τ ∗s = µ∗∂u
∗
Pois

∂r∗
, (2.17)

where here µ∗ is the fluid viscosity, and r∗ is the radial coordinate measured from the

tube’s center. If we were solving the fully three-dimensional fluid flow problem within

each pore, then we would have a no-slip boundary condition on the pore interior and

we would be able to calculate the shear stress directly via an equation similar to that

above.

In our model, though, we are not calculating the fluid flow within each pore,

but we are instead using Darcy’s Law to calculate the fluid velocity, averaged over
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many pores. Here, Darcy’s Law predicts the local average fluid flow on a lengthscale

that is long compared with an individual pore size, but small compared with the

structure as a whole. This empirical averaging reduces the order of the model, and as

such only allows for a non-penetrative boundary condition at the wall, removing the

no-slip condition. Once we have the local average fluid velocity, we can calculate the

mean pore velocity, u∗
p = |u∗|/φ, where φ is the void fraction of the porous medium

(the portion through which fluid may flow; a dimensionless number between zero and

1). From this we can estimate the size of the shear stress from (2.17) as

τ ∗s ∼ µ∗ |u
∗
p|
d∗

= µ∗ |u∗|
φd∗

, (2.18)

where d∗ is the average pore size.

2.3.2 Permeability and Void Fraction

Over a given control volume, which is large compared with an individual pore yet

small when compared to the whole scaffold, we have the void fraction (also known as

porosity), φ defined (in [42] among other places) as

φ =
total pore volume

control volume
. (2.19)

The permeability k∗(c∗), which appears in Darcy’s Law, depends to some extent on

the shape and connectivity of the pores, but φ and k∗(c∗) are related for a given ‘type’

of porous medium. Permeability is a measure of the ease of flow through a porous

medium, and for a given pore type, k∗(c∗) is a monotone increasing function of φ. A

porous medium with no pores, φ = 0, is impermeable, k∗(c∗) = 0, and one that is

entirely made up of empty pores, φ = 1, is infinitely permeable, k∗ →∞. A function

which immediately satisfies this is of the form

k∗(c∗) = k∗s
Aφσ

1− φσ
, (2.20)
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where A is a dimensionless constant, k∗s is the characteristic permeability scale chosen

as the permeability of the unseeded scaffold, and σ ≥ 1 is an exponent. As the mean

pore velocity takes into account the void fraction itself, it is helpful to rearrange

this equation into one where φ depends on the permeability. Since k∗(c∗) = k∗sk =

k∗sAφ
σ/(1− φσ), we have

φ =

(
k/A

1 + k/A

)1/σ

. (2.21)

We can see in Figure 2.2 that this functional form satisfies the conditions that we

want. Since |u∗
p| = |u∗|/φ (equation (2.18)), and we now have a functional form for

Figure 2.2 Plot of φ =
(

k/A
1+k/A

)1/σ
with A = 1 and σ = 1, 2, 3.

the void fraction, we can insert equation (2.21) into equation (2.18) to get

τ ∗s ∼
µ∗|u∗|
d∗

(
A+ k

k

)1/σ

. (2.22)
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2.3.3 Permeability and Pore Size

We want to incorporate the shear stress (2.22) into the model without having to

explicitly estimate mean pore size. O’Brien et al. [33] derived an equation relating

permeability of a scaffold to mean pore size (and other quantities): for our model this

relation reduces to k∗(c∗) ∝ d∗2 (see also [42]). This is the relation we will use in the

first approximation, which when included in equation (2.22) gives

τ ∗s ∼
µ∗|u∗|(1 + k)1/σ√

k∗sk
( 1
2
+ 1
σ
)

. (2.23)

We see that a choice for the exponent, σ, in (2.21) which simplifies the model is σ = 2,

and (2.23) then becomes

τ ∗s ∼
µ∗|u∗|

√
1 + k(c)√

k∗sk(c)
. (2.24)

If we then recall that this model includes flow which is governed by Darcy’s Law,

u∗ = −(k∗(c∗)/µ∗)∇∗p∗, equation (2.24) then becomes

τ ∗s ∼

∣∣∣∣∣−
√
k∗sp

∗
0k(c)∇p
L∗µ∗

∣∣∣∣∣µ∗
√

1 + k(c)

k(c)
, (2.25)

and if we set the representative shear stress scaling as τ ∗s0 ∼ (|p∗0|
√
k∗s)/L

∗ (with

the representative pressure scale p∗0 implicitly defined in equation (2.10) as p∗0 =

µ∗L∗u∗0/k
∗
s) we obtain

τ ∗s = τ ∗s0τs ∼ |p∗0∇p|
√
k∗s
L∗

√
1 + k(c) = τ ∗s0|∇p|

√
1 + k(c). (2.26)

Thus, our dimensionless shear stress estimate is

τs ∼
√

1 + k(c)|∇p|. (2.27)

2.3.4 Permeability as a Function of Cell Density

The permeability should be a function of the local cell density. We also want the

permeability to satisfy the property that as c∗ → 0, k∗(c∗)→ k∗s (recall that k∗s is the
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permeability of the unseeded scaffold), and as c∗ →∞, k∗(c∗)→ 0. A simple general

form which satisfies these properties is

k∗(c∗) =
k∗sa

∗β

a∗β + c∗β
,

where a∗ has dimensions of concentration and thus we can scale it with c∗0, and β > 1

is dimensionless. Then we have

k∗(c∗) = k∗sk(c) =
k∗sa

β

aβ + cβ
,

and we set a = 1 and choose β = 2 to get

k∗(c∗) = k∗sk(c) = k∗s
1

1 + c2
, (2.28)

as our permeability in terms of the local cell density. We see in Figure 2.3 that

the choice of β = 2 is reasonable as it allows for a relatively gradual decrease in

permeability as opposed to the steeper decreases incurred by the choice of β > 2.
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Figure 2.3 Plot of k(c) = aβ

aβ+cβ
with a = 1 and β = 2, 3, 4.

2.3.5 Nutrient Uptake/Cell Growth Function

We use the same functional form for the nutrient uptake and cell proliferation

rates, reflecting an assumption that cell proliferation is proportional to nutrient

consumed. Since we anticipate that at low cell numbers proliferation will occur

at a rate proportional to the cell density, but at high cell numbers overcrowding

and competition for resources will lead to saturation, we choose a logistic model for

g(n, c, τs),

g(n, c, τs) = G(τs)c

(
1− c

ĉ(n)

)
, (2.29)

where the carrying capacity, ĉ(n), depends on local nutrient availability and G(τs)

will be chosen to incorporate the shear stress dependence. Specific choices of ĉ(n) can

model different scenarios; we choose

ĉ(n) =
ĉ0n

1 + n2
, (2.30)



22

which, since ĉ(n) → 0 as n → ∞, implicitly assumes that excessive nutrient

concentration is toxic (for example, oxygen is known to be toxic to chondrocytes

in excess). However, increasing the exponent of n in the numerator to 2 can easily

incorporate non-toxicity for large nutrient levels as seen in Figure 2.4. The coefficient,

ĉ0 = 10 is chosen to allow significant cell proliferation over experimental timescales;

again this is easily modified if experimental data suggest a different value.

Figure 2.4 Plot of toxic
(
ĉ(n) = ĉ0n

1+n2

)
and non-toxic

(
ĉ(n) = ĉ0n2

1+n2

)
carrying capacity functions (i.e. changing the exponent in the numerator
to 2) with ĉ0 = 10.

2.3.6 Shear Stress Coefficient, G(τs)

We model cells for which moderate shear stress leads to enhanced proliferation (and

thus nutrient uptake), while excessive shear suppresses proliferation (and nutrient

uptake). An acceptable form for the prefactor G(τs) in equation (2.29) is therefore

G(τs) =
τ η1s

1 + τ η2s
, (2.31)
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where 0 < η1 ≤ η2. Following [22] we set η1 = 1/2, and we choose η2 = 1. Hence

G(τs) =
τ
1/2
s

1 + τs
, (2.32)

and its form is seen in Figure 2.5, together with curves for other values of η2.

Figure 2.5 Plot of the shear stress coefficient, G(τs) = τ
1/2
s

1+τ
η2
s

with η2 =

1/2, 1, 3/2, 2.



CHAPTER 3

MODEL SUMMARY AND BOUNDARY CONDITIONS

3.1 Introduction

Now that suitable preliminary forms for all of the constituent equations have been

determined, the variables (independent and dependent), names of functions, and

functional forms are summarized for easy reference. We then introduce appropriate

boundary and initial conditions for the system, which includes a discussion of a

rescaling that may be exploited to solve the fluid flow problem. Further extensions

to the basic model considered so far are presented in later chapters.

3.2 Model Summary

Tables 3.1 and 3.2 summarize the relevant independent and dependent variables and

functional forms.

Table 3.1 Summary of Variables

Independent Variables

Variables Description

(x, y) Spatial coordinates

t Time

Dependent Variables

u = (u, v) Darcy velocity of culture medium

p Pressure of culture medium

c Cell density

n Nutrient concentration in culture medium

24
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Table 3.2 Summary of Functional Forms (Including Equation References)

Functional Forms

k(c) Permeability as a function of cell density, (2.28)

τs Shear stress, (2.24)

g(n, c, τs) Cell proliferation/nutrient uptake function, (2.29)

ĉ(n) Cellular carrying capacity as a function of nutrient, (2.30)

G(τs) Shear stress dependence of cell growth/nutrient uptake, (2.32)

The full dimensionless system is

u = −k(c)∇p, (3.1)

∇ · u = 0, (3.2)

u · ∇n = −θg(n, c, τs), (3.3)

∂c

∂t
+
δ

ε
up · ∇c = Dc∇2c+ g(n, c, τs)− νc, (3.4)

g(n, c, τs) = G(τs)c

(
1− c

ĉ(n)

)
, (3.5)

ĉ(n) =
ĉ0n

1 + n2
, (3.6)

G(τs) =
τ
1/2
s

1 + τs
, (3.7)

τs = |∇p|
√

1 + k(c), (3.8)

k(c) =
1

1 + c2
. (3.9)

3.3 Model Parameters

Representative values of required dimensional parameters are found in Table 3.3, and

the parameters contained in the dimensionless system are in Table 3.4 (all dimensional

values are for chondrocyte growth in response to oxygen).
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Table 3.3 Representative Values

Scaling Name Dimensional Value

n∗
0 Oxygen concentration 0.2 moles/m3 [46]

c∗0 Cell density 4× 1017 cells/m3 [46]

L∗ Scaffold length 0.01 m [46]

U∗
0 Pump flow rate 5× 10−4 m2/s [46]

u∗0 = U∗
0/L

∗ Fluid velocity scale 5× 10−2 m/s [46]

θ∗ Oxygen consumption rate 1.86× 10−18 moles/(cell·s) [32]

D∗
c Cell diffusion coefficient 10−13 m2/s [32]

λ∗ Cell proliferation timescale 2.3× 10−6 s−1 [32]

ν∗ Natural cell death rate 3.3× 10−7 s−1 [19]

D∗ Nutrient diffusion coefficient 1.5× 10−9 m2/s [46]

Table 3.4 Approximate Dimensionless Parameter Values

Parameter Formula Dimensionless Value

θ (θ∗L∗c∗0)/(u
∗
0n

∗
0) 0.744

δ [advective drag coefficient] 4.6× 10−12

Dc D∗
c/(λ

∗L∗2) 4.3× 10−4

ν ν∗/λ∗ 0.1435

ε (L∗λ∗)/u∗0 4.6× 10−7

D D∗/(u∗0L
∗) 3.0× 10−6

Where dimensional parameter values were not available in the literature, we simply

chose values for associated dimensionless parameters as follows. For most of our

simulations the ratio of the fluid velocity to the rate at which cells are advected

(dragged) by the flow is chosen so that δ/ε = 10−5 (cells strongly adhered to the

scaffold). As was discussed in §2.2.2, the dimensionless nutrient diffusion coefficient,
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D, is of comparable order to ε (Table 3.4). Since the temporal derivative was neglected

in arriving at equation (2.15), the choice was made to also neglect the diffusive term

in that equation, consistent with our assertion that the perfusion bioreactor set-up

provides nutrient to the cells primarily via advection as opposed to diffusion.

3.4 Boundary and Initial Conditions

We now introduce the boundary and initial conditions used to solve the system (3.1)-

(3.7).

3.4.1 Pressure and Fluid Velocity

Most experiments are run with a prescribed (usually constant) rate of fluid flow

through the scaffold, therefore the most appropriate boundary condition on the flow

is an imposed flux in the x-direction, with no-flux conditions on the y-boundaries.

However, the problem for the fluid flow is most conveniently stated in terms of the

elliptic PDE for the pressure,

∇ · (k(c)∇p) = 0, (3.10)

(from equation (2.12)). If the pressure conditions at x = 0, 1 are known then this

problem is straightforward to solve, with the additional no-flux conditions ∂p/∂y = 0

on y = 0, 1. However, the pressure drop between entry (x = 0) and exit (x = 1) points

of the domain is unknown a priori and, moreover, changes over time as cells proliferate

in the scaffold (the pressure drop must increase as the permeability decreases to

maintain a constant flow rate). We circumvent this difficulty by exploiting linearity:

we solve (3.10) for the particular solution p̃ satisfying

p̃(0, y, t) = 1, p̃(1, y, t) = 0,
∂p̃

∂y
(x, 0, t) =

∂p̃

∂y
(x, 1, t) = 0, (3.11)
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with corresponding velocity ũ = −k∇p̃, and flux Q̃0, which may be calculated by

Q̃0 =

∫ 1

0

−k(c)
∂p̃

∂x

∣∣∣∣
x=l0

dy, (3.12)

where the integral is taken across any surface x = l0 with 0 ≤ l0 ≤ 1. Without loss

of generality (due to the no flux conditions at y = 0, y = 1 and incompressibility),

we may take l0 = 0. We then obtain the true fluid velocity as

u =
ũ

Q̃0

. (3.13)

A more detailed description of this rescaling is given in Shakeel et al. [46], where the

reader is directed for further reference.

3.4.2 Cell Density

The only equation requiring an initial condition is that for cell density (equation (3.4)):

we prescribe the initial cell density c(x, y, 0) on 0 ≤ (x, y) ≤ 1. Typically,

experimentalists try to achieve a uniform initial cell-seeding density, but this is not

always easy, nor is it clear that this is the optimal strategy. Our model allows us

to investigate how different initial seeding patterns evolve over time, under various

experimental conditions.

We also require suitable boundary conditions for the cell density equation. We

assume that there is no net flux of cells into or out of the scaffold at the upstream

or downstream ends, as well as no net flux through either of the impermeable walls

at y = 0, 1. This may not be entirely correct as the scaffold is suspended in a fluid

domain, which allows for the possibility of a small flux into or out of the scaffold:

nonetheless it is a reasonable assumption. With the total cell flux defined as

J c = (δ/ε)upc−Dc∇c, (3.14)
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the dimensionless boundary conditions on the cell density equation at all spatial

boundaries are

J c · n̂ = 0, (3.15)

where n̂ is the outward unit normal at each boundary.

3.4.3 Culture Medium

Assuming that fresh nutrient is supplied at fixed concentration, our nondimensional-

ization (2.10) gives the appropriate boundary condition at the inlet x = 0 as

n(0, y, t) = 1. (3.16)



CHAPTER 4

BASIC MODEL RESULTS

In this chapter, we first outline the numerical methods used to solve the system (3.1)-

(3.4). We then give some sample numerical results for this basic model, before

examining its robustness to changes in the various functional forms that were proposed

in Chapter 2. The effect of parameter variation is also investigated for this basic

model, before we proceed to new extensions of the model in Chapters 5-7.

4.1 Numerical Method

While several variants of the model (equations (3.1)-(3.4)) will be considered in this

dissertation, the basic numerical scheme, presented here, will not fundamentally

change unless otherwise noted. The first step in solving the system consists of

assigning an initial cell seeding, which (via equation (3.9)) determines an initial

scaffold permeability.

4.1.1 Pressure

Equations (3.1) and (3.2) then combine to form

∇ · (k(c)∇p) = 0, (4.1)

which is solved, subject to the unit pressure drop boundary conditions (3.11), using

a finite volume method. A sample control volume on which the method is performed

is shown in Figure 4.1. The discretization for solving equation (4.1) is

−aSpS − aWpW + aPpP − aEpE − aNpN = b, (4.2)

30
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Figure 4.1 Sample control volume for the finite volume
method used.

where b contains boundary data,

aE =
ke

∆xδxe
, (4.3)

aW =
kw

∆xδxw
, (4.4)

aN =
kn

∆yδyn
, (4.5)

aS =
ks

∆yδys
, (4.6)

aP = aE + aW + aN + aS, (4.7)

and capital letters refer to points while lower case letters refer to the edge of the

control volume. The discretization is set up to find solutions at the centers of boxes

created by the prescribed grid, and because of this it allows for simple inclusion of

the Dirichlet boundary data at x = 0, 1 and Neumann boundary data at y = 0, 1.

The built-in MATLAB GMRES program is used to solve the pressure equation at the

aforementioned centers of the boxes, and a MATLAB command “TriScatteredInterp”
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is used to extrapolate the data back onto the desired grid space. From this pressure

solution we determine the fluid velocity corresponding to a unitary pressure drop

from Darcy’s law, and calculate the total flux, Q̃0, as in equation (3.12). We then

determine the true fluid velocity in the domain via equation (3.13).

4.1.2 Nutrient Concentration

We solve for the “initial” nutrient concentration in the scaffold by solving equation (3.3)

via an upwind finite difference method from x = 0 to x = 1. The method is

ni+1,j − ni,j
∆x

+ a+
ni,j − ni,j−1

∆y
+ a−

ni,j+1 − ni,j
∆y

= −θg(ci,j, ni,j, τsi,j), (4.8)

a+ = max

{
vi,j
ui,j

, 0

}
, a− = min

{
vi,j
ui,j

, 0

}
, (4.9)

where u = (u, v). This method can be used because in all cases we consider, flow is

unidirectional with respect to the x−component of the velocity, thus ui,j is always

positive.

4.1.3 Cell Density

The advective drag experienced by the cells is then determined as a ratio of the

fluid velocity by (δ/ε)u and the cell density is calculated at the subsequent time step

using a semi-implicit ADI-type method (the nonlinear proliferation term is dealt with

explicitly). The ADI-type method is

c
t+1/2
i,j − cti,j

∆t/2
+
δ

ε
ui,jδxc

t+1/2
i,j +

δ

ε
vi,jδyc

t
i,j =

= Dc(δ
2
xc
t+1/2
i,j + δ2yc

t
i,j) + g(cti,j, n

t
i,j, τ

t
si,j

)− νcti,j (4.10)

ct+1
i,j − c

t+1/2
i,j

∆t/2
+
δ

ε
ui,jδxc

t+1/2
i,j +

δ

ε
vi,jδyc

t+1
i,j =

= Dc(δ
2
xc
t+1/2
i,j + δ2yc

t+1
i,j ) + g(c

t+1/2
i,j , nti,j, τ

t
si,j

)− νct+1/2
i,j (4.11)
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This process is then repeated until the user-defined end time is attained. The solution

method described is first order in time and first order in space, as can be seen in

Figures 4.2 and 4.3.

Figure 4.2 Temporal convergence of
the basic mathematical model.

Figure 4.3 Spatial convergence of
the basic mathematical model.

4.2 Results

The results are presented in separate subsections based on the initial cell density

seeding chosen for each simulation. We first consider very simple initial cell density

seedings, and then increase in spatial complexity. The model parameters used for the

first simulations are those presented in Table 3.4, although some later results will be

presented with varying parameters to demonstrate the effect of changing parameters.

The parameters for the numerical simulation (step size, time steps, etc) are presented

in Table 4.1. Finally, the basic model (equations (3.1)-(3.7)) is used to present the

flexibility and robustness of the model as a whole; the last set of results in this

chapter will show the relative lack of difference when using different functions for the

constituent parts of the system equations (3.8)-(3.7).
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Table 4.1 Input Specified for the Numerical Simulation of the Model

NX,NY Steps in x and y direction 32

dx, dy Step size 0.03125

T Time steps 100

t0 Initial time 0 days

tn Final time 5 days

4.2.1 Constant Initial Cell Density

We first consider uniform cell seeding throughout the entire domain. We start with

this choice as it is the simplest to see and analyze and also also it is widely believed

that a uniform initial cell density is most likely to lead to a uniform density at large

times [3]. The results from simulations with initial cell density c(x, y, 0) = 1 are shown

in Figures 4.4-4.7. As can be seen, the cell density remains relatively uniform over

the course of the experiment, while increasing. The figures also indicate a slightly

higher cell density (as indicated by the shades of red) near x = 0, which is a result

of the fresh nutrient being delivered to the scaffold at x = 0. The cells here are thus

exposed to the highest concentration (and therefore consume more nutrient), while

cells downstream see slightly depleted nutrient levels.
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Figure 4.4 Initial constant cell
seeding.

Figure 4.5 Cell density at 240 hours
(10 days).

Figure 4.6 Cell density at 360 hours
(15 days).

Figure 4.7 Cell density at 600 hours
(25 days).

4.2.2 Initial Cell Density Varying Only in x

The results from the constant initial density indicated that any spatial invariance in

the initial seeding tends to persist throughout the course of the simulation. Since the

perfused flow is directed strictly from x = 0 to x = 1, the next choice for an initial

seeding only varies in the direction of the flow, x (this, and the previous example,

also provide a useful check on the numerical code as it is easy to check whether the
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cell-seeding remains independent of y for all time). We choose

c(x, y, 0) = 1− 1

4
(tanh(5(x− 0.15))− tanh(5(x− 0.85))), (4.12)

which models cells seeded seeded preferentially near the nutrient inlet and outlet with

a slight dip in the middle of the scaffold, as can be seen in Figure 4.8. Figures 4.9-4.11

show the simulation results after ten, fifteen, and twenty-five days. The figures

Figure 4.8 Initial cell seeding
varying only in x, equation (4.12).

Figure 4.9 Cell density at 240 hours
(10 days).

Figure 4.10 Cell density at 360
hours (15 days).

Figure 4.11 Cell density at 600
hours (25 days).
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show that the cell density retains the basic shape of the initial seeding for the entire

simulation. By the end of the simulation, the seeding density shows tendency to

“flatten out” near the inlet and outlet, presumably as it approaches the local carrying

capacity; and the density, which initially was lowest near the center seems to be

increasing faster there than near x = 0 and x = 1.

Development of a Steady State The observation of the cell density saturating

near the edges x = 0 and x = 1 leads to the expectation that, after sufficiently long

time, the density might reach some sort of spatial “steady state,” an assumption

which very long time simulations confirm. Figures 4.12 and 4.13 show the scaffold

after thirty-five days (4.12) and fifty days (4.13) and while these are not reasonable

lengths of time for an experiment of this nature, the results are presented simply to

indicate the eventual steady state of the model.

Figure 4.12 Cell density at 840
hours (35 days).

Figure 4.13 Cell density at 1200
hours (50 days).

4.2.3 Initial Cell Density Varying in x and y

Having investigated simple 1D solutions numerically (partly to check our numerical

scheme) we now consider some fully 2D initial seedings. Since a fully 2D seeding
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induces fully 2D permeability and flow, and hence proliferation rates that vary both

in x and y, we anticipate the 2D nature of the cell distribution to persist over time.

The results of a simulation with initial cell density

c(x, y, 0) = x3 + y3, (4.13)

(Figure 4.14) are shown in Figures 4.15-4.17. These figures show that the initial cell

Figure 4.14 Initial cell seeding
varying in x and y, equation (4.13).

Figure 4.15 Cell density at 240
hours (10 days).

Figure 4.16 Cell density at 360
hours (15 days).

Figure 4.17 Cell density at 600
hours (25 days).

density pattern is relatively well preserved over the course of the simulation, but do
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not well reveal the y evolution of the cell density. Figures 4.18-4.21 show contour plots

of the same simulation, and they more clearly show the differences in proliferation in

the different regions of the scaffold. What is important to notice from this simulation,

Figure 4.18 Initial cell seeding
varying in x and y, equation (4.13).

Figure 4.19 Cell density at 240
hours (10 days).

Figure 4.20 Cell density at 360
hours (15 days).

Figure 4.21 Cell density at 600
hours (25 days).

though, is that while the general form of the initial cell density is preserved relatively

well, it takes a very long time for cells to appear in regions in which there were little

or none in the initial density. Because of the very small coefficient of diffusion of

the cells, the density invades new regions very slowly. This is an issue that will be

addressed further in Chapter 5, but for now we simply note that all of the simulation
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results presented thus far do a fairly good job of retaining the key features of the

initial seedings.

Retention of the initial seeding density for the basic model is even evident in

more complex initial cell seedings. Figures 4.23-4.25 show the evolution of the cell

density with with the initial seeding presented in equation (4.14)

c(x, y, 0) = 1 +
1

2
sin 6x+

1

2
cos 6y, (4.14)

seen in Figure 4.22. Here we observe that differently-seeded regions appear to

Figure 4.22 Initial cell seeding
varying in x and y, equation (4.14).

Figure 4.23 Cell density at 240
hours (10 days).

proliferate at different rates. The region region where cell density is initially lowest

grows most slowly, whereas the rest of the scaffold seems to be approaching a spatial

steady state much faster. This suggests that there may be a threshold of cell density

after which the rate of cell proliferation increases.
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Figure 4.24 Cell density at 360
hours (15 days).

Figure 4.25 Cell density at 600
hours (25 days).

4.2.4 Initial Cell Density Concentrated at Center of Scaffold

All three of the previous simulations indicate very well that the results produced

from the model exhibit cell density patterns that are qualitatively similar to the

initial seeding pattern over moderate times, but which eventually approach a steady

state over very long times. The examples presented so far serve mainly to illustrate

how the model behaves as the complexity of the initial seeding increases. The next

two simulations use initial conditions that may be more experimentally-relevant. A

constant initial seeding, as described in §4.2.1, is assumed to be a favorable choice

for uniform final densities, but obtaining a uniform initial density can be difficult.

Figures 4.27-4.29 show the evolution of a scaffold on which cells are initially seeded

as a central mass, shown in Figure 4.26 and described by equation (4.15)

c(x, y, 0) = e
−20

(
(x− 1

2)
2
+(y− 1

2)
2
)
. (4.15)

We notice again that the qualitative shape of the initial seeding density is relatively

well-preserved over the course of the simulation. Over a relatively long time the cell

density is focused around the center of the scaffold, and it is only after twenty-five
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Figure 4.26 Central bump initial
cell seeding, equation (4.15).

Figure 4.27 Cell density at 240
hours (10 days).

Figure 4.28 Cell density at 360
hours (15 days).

Figure 4.29 Cell density at 600
hours (25 days).

days that cells tend to appear near the boundaries of the scaffold. While the goal

of tissue engineering is is often to obtain a relatively uniform final cell density, there

may be situations where a small concentrated mass of cells is desired, and this result

shows promise that an initial localized mass can hold its form while increasing in

overall cell population.
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4.2.5 Initial Cell Density Around Periphery of Scaffold

While our results indicate that a constant initial cell density gives the best opportunity

to have a relatively spatially constant final cell density, this may not be practical as

it may be difficult to achieve a constant initial density. It may be easier to seed cells

round the periphery of the scaffold, and hope that diffusion and flow advection (drag)

can act to bring cells into the unseeded center. Figure 4.30 shows the initial seeding

with cells around the edges of the scaffold, and Figures 4.31-4.33 show the results

from this simulation. These results are the first which indicate some true qualitative

Figure 4.30 Peripheral initial cell
seeding.

Figure 4.31 Cell density at 240
hours (10 days).

spatial deviation of the final cell distribution from the initial seeding. There is a clear

tendency for the cells to proliferate at a higher rate near the inflow x = 0, where the

nutrient is supplied to the scaffold. It is also important to note that the central region,

in which no cells were present initially, is invaded by cells over time and shrinks; but

even after twenty-five days there is still a relatively large central region without any

cells.
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Figure 4.32 Cell density at 360
hours (15 days).

Figure 4.33 Cell density at 600
hours (25 days).

4.2.6 Discussion

In all of the previously presented simulations, we see that when the basic tissue

engineering model is simulated, whatever initial density is prescribed is generally

retained well over the course of the experiment. One of the goals of this model is

to be able to be able to prescribe an initial seeding and then determine what the

resulting density will be. In the sense of the model this seems to be an easy feat, but

it is not necessarily experimentally feasible. Ultimately we would like to be able to

direct cell growth in certain regions to encourage a certain pattern without having to

initially “seed in” that pattern (presumably, the greater the spatial complexity of the

desired end cell density, the greater the experimental difficulty of creating a similar

initial seeding). We investigate one possible method of directing cell proliferation into

specific patterns without needing to increase the complexity of the initial cell density

in Chapter 5, but before that we address the flexibility and robustness of the model

by presenting results while changing the functional forms for equations (3.8)-(3.7).
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4.3 Model Robustness and Versatility

One of the main goals of this project is to develop a model that is relatively robust to

slight qualitative changes in the forms of constituent functions, yet also versatile so

that different modeling scenarios can be easily incorporated. Some of the functional

forms that are used were made by choice to satisfy only a few specific properties. For

example, the relationship between cell density and permeability (k(c), equation (3.9))

primarily needs to satisfy the conditions that k(c)→ 1 as c→ 0 and k(c)→∞ as c→

∞. Two other functional forms play significant roles in the model: the shear stress

coefficient which depends on shear stress (G(τs), equation (3.8)), and the carrying

capacity function which appears in the cell proliferation/nutrient uptake term (ĉ(n),

equation (3.6)). In this section, we exhibit the robustness of the model when making

small changes to the functional forms that respect the same key conditions. In §4.4 we

will also show that the model is easily able to incorporate different modeling scenarios

(e.g. higher advective drag) relatively easily, as well. Chapters 5, 6 and 7 explore

more significant model extensions.

4.3.1 Permeability and Cell Density

The basic requirements for the functional relationship between cell density c and

permeability k(c) were relatively simple: that k(0) = 1, and that k(∞) = 0. We

chose k(c) = 1/(1 + c2); here we test the model with several qualitatively similar

permeability functions, given in equations (4.16)-(4.19)

k1(c) = e0.45c
−2

, (4.16)

k2(c) = 1− tanh
( c

2

)
, (4.17)

k3(c) = e−0.8c, (4.18)

k4(c) = erfc
( c

2

)
, (4.19)

(see Figure 4.34). We ran simulations for each of the five permeability functions,
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Figure 4.34 Possible functional forms for permeability
(equations (4.16)-(4.19)) compared to the original choice.

with other parameters as in the preceding simulations, for the “central bump”

initial cell seeding given by equation (4.15). To determine how the results for the

permeabilities in equations (4.16)-(4.19) differ from those for the original permeability

(equation (3.9)), the maximum of the norm of the difference between each new

simulation and the original (normalized by the norm of the original simulation) was

calculated at each time step,

maxx,y‖c(x, y, t)− ci(x, y, t)‖2
maxx,y‖c(x, y, t)‖2

, (4.20)

where ci(x, y, t), i = 1, 2, 3, 4 are the cell densities for each corresponding permeability

functional form. The results, seen in Figure 4.35, indicate that there is less than a

2.5% difference in the results for all of the previously described permeability and
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cell density relationships, indicating good robustness of the model to changes in this

functional form.

Figure 4.35 Norms of results when considering different functional
forms for permeability, equations (4.16)-(4.19) at each time step, as
calculated in equation (4.20).

4.3.2 Shear Stress Coefficient

The conditions imposed on our original choice of shear stress coefficient, G(τs), were

that it behaves like
√
τs for small values of τs [22] and as τs →∞, G(τs)→ 0. Here we

examine the model’s robustness to moderate changes in G(τs), incorporating different

decay rates as τs → 0 and ∞. The original function choice is G(τs) =
√
τs/(1 + τs)
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(equation (3.7)); here we investigate different functional forms, given by:

G1(τs) =
5

2

(
erf(τs)

1 + 3
√
τs

)
, (4.21)

G2(τs) =
3
√
τs

1 + τs
, (4.22)

G3(τs) =
τs

1 + τ 2s
, (4.23)

and their comparisons to the original functional form are seen Figure 4.36. We again

run simulations for each choice of G with the “central bump” initial cell-seeding of

equation (4.15). We can see that while the general forms of the graphs for G(τs) are

similar, there is a larger disparity between all of the examples than was seen in the

permeability choices tested, Figure 4.34. Because of this we observe in Figure 4.39,

as expected, that the norm of the difference calculated as in equation (4.20) is higher

than it was for the permeability results, Figure 4.35. The functional form that most

closely approximates the original choice, equation (4.21), shows a difference close to

4%, while the other functional forms are closer to 15% difference. These relatively

large differences that are observed with equation (4.22) and (4.23) are likely due to

the fact that, for each of these choices, the stress function G(τs) is smaller than the

control for moderate to large shear stresses, giving suppressed growth as proliferation

occurs (with decreased permeability and thus higher shear stresses).
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Figure 4.36 Possible functional forms for the shear stress
coefficient (equations (4.21)-(4.23)) compared to the original
choice.

Figure 4.37 Norms of results when considering different
functional forms for the shear stress coefficient, equations (4.21)-
(4.23) at each time step, as calculated in equation (4.20).
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4.3.3 Carrying Capacity Function

Finally, the the principal requirements for the cell density carrying capacity function

in terms of local nutrient availability, ĉ(n), are that ĉ(n)→ 0 as n→ 0 and ĉ(n)→ 0

as n → ∞ (nutrient toxic in excess). The original choice of this function is ĉ(n) =

ĉ0n/(1 + n2) and we see in Figure 2.4 that this functional form also has a relatively

slow decay in terms of n. We simulate the model with a further four choices of

carrying capacity function, each of which respect the basic requirements:

ĉ1(n) = ĉ0
arctan(1.5n)

1 + n
, (4.24)

ĉ2(n) = ĉ0
1.2 erf(n)

1 + n
, (4.25)

ĉ3(n) = ĉ0
3
√
n

1 + n
, (4.26)

ĉ4(n) = ĉ0

√
n

1 + n
, (4.27)

and their graphs relative to the original functional form choice are shown in

Figure 4.38. These chosen functional forms, while qualitatively similar, exhibit

increase and decrease rates that differ from the chosen carrying capacity (equation (3.6)).

The results of of the simulations (with the “central bump” initial cell-seeding of

equation (4.15)), as measured by the differences in total cell density calculated

according to equation (4.20) are summarized in Figure 4.39. We observe that the

choice (4.26) provides the largest deviation from the results of the original model;

this is to be expected since Figure 4.39 reveals this function to have the largest net

deviation from the chosen carrying capacity, equation (3.6). Nonetheless, even here

the difference is always less than 1.5%.

Discussion The simulations of §4.3.1, 4.3.2, and 4.3.3 clearly demonstrate the

robustness of the model to qualitative changes in the behavior of the constituent

functions, and also its flexibility in terms of ease of adaptation to different hypotheses.

When a particular functional form is changed by only a small amount, only small
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Figure 4.38 Possible functional forms for the carrying capacity
(equations (4.24)-(4.27)) compared to the original choice.

changes in the results are seen. If future research suggests that alternative functional

relations are more appropriate, then the model is easily changed to incorporate the

new information.



52

Figure 4.39 Norms of results when considering different
functional forms for the carrying capacity function,
equations (4.24)-(4.27) at each time step, as calculated in
equation (4.20).

4.4 Effects of Changing Parameter Values

The final numerical investigation of the basic model is the effect of changing parameter

values such as the death rate, ν, and the nutrient uptake rate, θ. Many of the

parameter values are inherently variable, depending as they do on the type of nutrient,

cell, and scaffold used. In this section, we change the values of parameters to illustrate

how the model outcome (again measured by the total cell yield over time) changes in

response. In particular, we investigate the effect of changing the constant cell death

rate ν, the cellular advective drag coefficient δ/ε, the nutrient uptake rate θ, and

the cellular diffusion coefficient Dc. We will use initial cell seedings from previous

simulations, giving just one example for each effect analyzed. The chosen initial cell

seeding for each example is that which best illustrates the effect of the parameter

change.
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4.4.1 Death Rate

The dimensionless death rate, as first presented in Table 3.4, is ν = 0.1435.

Simulations were run with the initial cell seeding concentrated in the center of the

scaffold as prescribed by equation (4.15), with all other parameters unchanged from

the introductory simulations. Three more simulations were run with the death rate

increasing by a factor of 1.5 to values ν = 0.21525, 0.322875, and 0.4843125. As the

death rate increases a general reduction in cell density is naturally expected. The

results are presented in Figures 4.40-4.43 after ten days and in Figures 4.44-4.47 after

twenty-five days.

Figure 4.40 Cell density at 240
hours (10 days) with ν = 0.1435.

Figure 4.41 Cell density at 240
hours (10 days) with ν = 0.21525.

The results clearly demonstrate that even a relatively small increase in the death

rate greatly affects the cell density in an adverse way. This is even more evident when

looking at the total population in the scaffold over the course of the experiment,

Figure 4.48. This figure confirms what one might suspect from Figures 4.43 and 4.47:

with the largest chosen death rate, ν = 0.484, proliferation is suppressed altogether

and the cell population is slowly moving towards extinction. This indicates the

existence of a threshold value for ν, above which a population is not viable.
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Figure 4.42 Cell density at 240
hours (10 days) with ν = 0.322875.

Figure 4.43 Cell density at 240
hours (10 days) with ν = 0.4843125.

Figure 4.44 Cell density at 600
hours (25 days) with ν = 0.1435.

Figure 4.45 Cell density at 600
hours (25 days) with ν = 0.21525.
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Figure 4.46 Cell density at 600
hours (25 days) with ν = 0.322875.

Figure 4.47 Cell density at 600
hours (25 days) with ν = 0.4843125.

Figure 4.48 Total cell population in the
scaffold for the four different death rates, ν.
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4.4.2 Cell Advective Drag Coefficient

The dimensionless advective drag coefficient is calculated as δ/ε, and using values

from Table 3.4 it is set to be δ/ε = 10−5 in the original simulations. We illustrate the

effect of changing this parameter using the “peripheral” cell seeding, with all other

parameters again unchanged from the introductory simulations. In addition to the

simulation presented earlier in Figures 4.30-4.33, we run three additional simulations

where the coefficient δ/ε increases by an order of magnitude each time to δ/ε =

10−4, 10−3, and 10−2. The results are presented in Figures 4.49-4.52 after ten days

and in Figures 4.53-4.56 after twenty-five days.

As the advective drag coefficient is increased, the cell density is expected to shift

from being relatively even throughout the scaffold for δ/ε = 10−5 to being weighted

toward the outlet at x = 1. Interestingly, the effect of increasing the advective

Figure 4.49 Cell density at 240
hours (10 days) with δ/ε = 10−5.

Figure 4.50 Cell density at 240
hours (10 days) with δ/ε = 10−4.

drag was not as drastic as was originally expected until the drag was increased to

the final value of δ/ε = 10−2. There is a noticeable difference in the cell densities in

Figures 4.53-4.55 in the sense that there is a slightly obvious down tick in density near

the inlet and a slight up tick in density near the outlet. The most significant difference
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Figure 4.51 Cell density at 240
hours (10 days) with δ/ε = 10−3.

Figure 4.52 Cell density at 240
hours (10 days) with δ/ε = 10−2.

occurs at the final value (δ/ε = 10−2), though, where the drop in density near x = 0

and the rise in density near x = 1 is drastic. This result is somewhat misleading,

though, in that the model assumes the boundary x = 1 is permeable to flow but

impermeable to cells; realistically, cells experiencing this high level of drag would

likely be flushed from the scaffold with the flow due to their weak adherence. Another

Figure 4.53 Cell density at 600
hours (25 days) with δ/ε = 10−5.

Figure 4.54 Cell density at 600
hours (25 days) with δ/ε = 10−4.

interesting result is that while the cell density distribution can vary quite significantly,
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Figure 4.55 Cell density at 600
hours (25 days) with δ/ε = 10−3.

Figure 4.56 Cell density at 600
hours (25 days) with δ/ε = 10−2.

the total cell population is almost unaffected by the change in the advective drag

coefficient, as can be seen in Figure 4.57. We might expect that as cellular adhesion

is reduced the proliferation decreases, which is not something that is captured by this

model. These results are not necessarily indicative of a shortcoming of the model,

but rather reflect the fact that 10−2 is an unrealistically large value of the advective

drag coefficient. Nonetheless, the results are instructive and we include them for

completeness.
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Figure 4.57 Total cell population in the
scaffold for the four different advective drag
coefficients, δ/ε.

4.4.3 Cellular Diffusion Coefficient

The dimensionless cellular diffusion coefficient presented in Table 3.4 has a value of

Dc = 4.32×10−4. Results from simulations testing the effect of changing the diffusion

coefficient are most noticeable with the “peripheral” initial cell seeding, again with

all other parameters unchanged from the introductory simulations. The values of the

diffusion coefficient tested are: 10Dc = 4.32×10−3, 25Dc = 1.08×10−2, and 40Dc =

1.728 × 10−2. The results are presented in Figures 4.58-4.61 after ten days and in

Figures 4.62-4.65 after twenty-five days. After only ten days, the cells have invaded

the central region of the scaffold significantly even when the diffusion coefficient is

increased by one order of magnitude. Though it is clear that, with a larger diffusion

coefficient proliferation occurs much faster in the center of the scaffold, it is not

immediately evident whether an increased rate of total proliferation accompanies

this. While the cell density in the central region is higher, the densities near the

periphery of the scaffold have decreased as cells have diffused from these regions.

At the highest level of cellular diffusion the population is even close to a relative
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Figure 4.58 Cell density at 240
hours (10 days) with Dc = 4.32×10−4.

Figure 4.59 Cell density at 240
hours (10 days) with Dc = 4.32×10−3.

Figure 4.60 Cell density at 240
hours (10 days) with Dc = 1.08×10−2.

Figure 4.61 Cell density at 240
hours (10 days) with Dc = 1.728 ×
10−2.

spatial steady state after only ten days. After twenty-five days the effects are even

more apparent. The cell densities resulting from the highest two diffusion coefficients

are very similar, and the density due to increasing the diffusion coefficient by one

order of magnitude differs greatly from that for the original parameter values. Any

spatial variation from the inlet to the outlet due to the fluid flow is nearly lost, as the

dominant effect is now diffusion of cells from areas of high concentration to those with
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Figure 4.62 Cell density at 600
hours (25 days) with Dc = 4.32×10−4.

Figure 4.63 Cell density at 600
hours (25 days) with Dc = 4.32×10−3.

Figure 4.64 Cell density at 600
hours (25 days) with Dc = 1.08×10−2.

Figure 4.65 Cell density at 600
hours (25 days) with Dc = 1.728 ×
10−2.

lower concentrations. Figure 4.66 indicates that increasing the diffusion coefficient, at

least for this initial seeding, slightly increases total proliferation. This is due to cells

invading the empty space faster and being able to proliferate at an earlier time than

in the original simulation. Again, while instructive, these results for larger diffusion

coefficients are not necessarily experimentally-relevant. Experimentalists would likely

choose to work with scaffolds whose pore sizes complemented the sizes of the cells,
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thus reducing the cellular diffusion coefficient to something more in line with our

original chosen value.

Figure 4.66 Total cell population in the
scaffold for the four different cell diffusion coeffi-
cients, Dc.

4.4.4 Nutrient Uptake Rate

The default value of the dimensionless rate of nutrient uptake is θ = 0.744, first

presented in Table 3.4. We carried out simulations at different uptake rates for all

of the previously-mentioned initial cell seedings, but the most interesting were those

with the initial cell density varying in both x and y (presented in equation (4.13)

in §4.2.3), hence we show only these. In each subsequent simulation, the rate of

nutrient uptake was doubled, giving values of θ = 1.488, 2.976, and 5.952 with all

other parameters the same as in the original simulations. We anticipate a general

increase in proliferation as theta increases: since cells consume nutrient faster, they

grow faster. The results are presented in Figures 4.67-4.70 after ten days and in

Figures 4.71-4.74 after twenty-five days. The results after ten days suggest an

interesting effect, that being a tendency to higher proliferation near the inlet of the
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Figure 4.67 Cell density at 240
hours (10 days) with θ = 0.744.

Figure 4.68 Cell density at 240
hours (10 days) with θ = 1.488.

Figure 4.69 Cell density at 240
hours (10 days) with θ = 2.976.

Figure 4.70 Cell density at 240
hours (10 days) with θ = 5.952.

scaffold. The first two simulations (θ = 0.744 and θ = 1.488) show that the form of

the initial seeding is held relatively well, whereas the latter two simulations (θ = 2.976

and θ = 5.952) seem to indicate that the form of the initial cell density is becoming

somewhat lost: the high rate of nutrient uptake means that cells near the inlet that

are exposed to the fresh nutrient take it up quickly, depleting the levels available

for cells downstream towards the outlet. This effect is even more pronounced after
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twenty-five days, even with the rate simply doubled from the original simulation

(Figure 4.72). The initial cell seeding form is still noticeable in this simulation,

but further doubling (Figures 4.71-4.74) indicates a near complete loss of the initial

seeding form. Figure 4.75 compares the total cell populations over time for each

value of the nutrient uptake coefficient. Somewhat counter-intuitively, the total

cell population decreases as the nutrient uptake coefficient increases: the enhanced

proliferation at the inlet leaves the downstream cells so depleted of nutrient that

proliferation is considerably suppressed, to such an extent that the enhanced upstream

proliferation cannot compensate.

Figure 4.71 Cell density at 600
hours (25 days) with θ = 0.744.

Figure 4.72 Cell density at 600
hours (25 days) with θ = 1.488.
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Figure 4.73 Cell density at 600
hours (25 days) with θ = 2.976.

Figure 4.74 Cell density at 600
hours (25 days) with θ = 5.952.

Figure 4.75 Total cell population in the
scaffold for the four different nutrient uptake
rates, θ.



CHAPTER 5

HAPTOTAXIS

5.1 Introduction

Until this point the model considered only how a local cell density increased due to

supply of nutrient via a perfused flow. The results presented in the previous chapter

indicate quite well that with the parameter values presented in Table 3.4 the final

cell density somewhat closely resembles the initial prescribed cell seeding density. As

seeding the scaffold with a set initial density is not a trivial process, an alternative

method to obtain a prescribed final cell density without increasing the complexity of

the initial seeding could be very useful.

The alternative process investigated in this chapter is the concept of bioprinting

a growth factor onto the scaffold, to (i) direct cell motion up gradients in growth factor

via haptotaxis; and (ii) stimulate enhanced proliferation in regions of high growth

factor concentration. Haptotaxis is the directional motility or outgrowth of cells,

usually up a gradient of either adhesion proteins or another chemoattractant (the

growth factor, here). The motivation for this extension to the model is experimental

work by Miller et al. [28, 29], who realized that it is much easier to bioprint growth

factor onto a scaffold in chosen patterns than it is to seed the scaffold with cells in

the desired final pattern.

In this chapter, we will first present the the changes to the model brought

about by introducing this new effect. We then compare results presented by the

model qualitatively to experimental images produced by Miller et al. in [28, 29] to

show that the model seems to capture the main effects of introducing a spatially

fixed growth factor density to the scaffold. We will then present some theoretical

simulations, comparing to a few of the simulations presented in Chapter 4 as well

66
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as some interesting supplementary simulations that illustrate the potential of this

approach.

5.2 Model Development

The inclusion of growth factor is assumed to have no direct effect on either the fluid

flow or the nutrient concentration in the culture medium, hence equations (2.1), (2.2),

and (2.4) (and their dimensionless forms, equations (3.1), (3.2), and (3.3)) are left

unchanged. The first term to be added to the cell density equation (equation (3.4))

describes cellular motility up gradients in growth factor density. To model this change,

an extra term is added to the original total flux term, changing equation (2.6) to

J∗
c = u∗

cc−D∗
c∇∗c∗ + α∗c∗∇∗ρ∗, (5.1)

where α∗ is the haptotactic coefficient, and ρ∗ = ρ∗(x∗, t) is the local growth factor

density. This form of haptotactic flux is well known and can be found, for example,

in [31]. The growth factor is bioprinted onto the scaffold, where it is assumed

to stimulate proliferation. Hence, we add a source term, γ∗f(ρ∗) (where γ∗ is a

dimensional constant and f is an order-one function accounting for the growth-factor

dependence) to the cell density equation. We expect that the rate of supplemental

proliferation will be small when there is only a small amount of growth factor available

and it will saturate at high growth-factor concentrations. We take then

f(ρ∗) =
ρ∗

ζ

ρ∗
ζ

0 + ρ∗ζ
, (5.2)

for a chosen value of ζ. Plots of f(ρ) for different values of ζ are shown in Figure 5.1

where we can see that for ζ ≥ 3 the differences between possible forms seem to

reduce. In the absence of definitive data to suggest otherwise, we choose ζ = 3 for

our simulations.
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Figure 5.1 Graphical representation of
possible functional forms for the supple-
mental growth factor term with ζ =
1, 2, 3, 4, 5 in equation (5.2).

5.2.1 Revised Cell Density Equation

These two new terms can now be introduced to the cell density equation to change

equation (2.8) to

∂c∗

∂t∗
+ u∗

c · ∇∗c∗ = D∗
c∇∗2c∗ − α∗∇∗ · (c∗∇∗ρ∗) + λ∗g∗(n∗, c∗)− ν∗c∗ + γ∗f(ρ∗), (5.3)

where γ∗ is a representative supplemental rate of change of cell density. We

nondimensionalize the growth factor with a characteristic density ρ∗0 so that ρ∗ = ρ∗0ρ,

giving the dimensionless form of equation (5.3) as

∂c

∂t
+
δ

ε
up · ∇c = Dc∇2c− α∇ · (c∇ρ) + g(n, c, τs)− νc+ γcf(ρ), (5.4)

where α = (α∗ρ∗0)/(λ
∗L∗2), γ = γ∗/λ∗ and

f(ρ) =
ρ3

1 + ρ3
. (5.5)
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The numerical method described in §4.1 is unchanged by introducing the new terms,

and the same ADI-type method is used with the two extra terms simply added to the

discretization.

5.2.2 Growth Factor Decay Equation

The introduction of a new dependent variable requires another equation to complete

the system. Since the growth factor will be bioprinted onto the scaffold, it will not

undergo advection or diffusion (hence haptotaxis rather than chemotaxis); it will,

however, decay as it is used up by the cells. We take

∂ρ∗

∂t∗
= −ψ∗c∗ρ∗, (5.6)

where ψ∗ is a constant dimensional parameter capturing the rate at which growth

factor is consumed by the cells. With the previously noted scaling factors, this

equation nondimensionalizes to

∂ρ

∂t
= −ψcρ, (5.7)

with ψ = (ψ∗c∗0)/λ
∗. This supplemental equation requires us to prescribe the initial

growth factor density, ρ(x, y, 0) = ρ0(x, y). The expectation is that the final simulated

cell density will be affected directly by the choice of initial growth factor density, so

the specific form of ρ0(x, y) will be presented for each simulation. The cell density and

growth factor density are both prescribed at the initial time, and the cell density is

first solved at the next time-step using the set growth factor density. The cell density

obtained at this new time-step is used with the cell density from the old time-step to

solve for the growth factor at the new time-step.
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5.2.3 Additional Parameter Values

Finally, we need to determine appropriate values for the new dimensionless parameters,

α, γ, and ψ. Since the concept of bioprinting growth factor to direct motility

and enhance cell proliferation is a relatively novel concept, there is a lack of

empirical data to inform suitable values. The dimensionless haptotactic coefficient,

α, may take a wide range of values depending on the particular substrate and

haptoattractant. Friedman et al. [18] noted values between 0.001 and 1 over many

different systems. Since Miller et al. [28,29] believe haptotactic effects to be negligible

in their experimental system, we choose a small value for the majority of our

simulations, α = 0.001 (finding observable effects nonetheless). The dimensionless

rate of supplemental growth due to growth factor, γ, is chosen so that it is not higher

than regular growth determined by g(n, c, τs), and the degradation rate of growth

factor, ψ, is chosen so that growth factor decays neither too slowly nor quickly in

comparison to regular cell proliferation. All other parameters used are those described

in Table 3.4.

5.3 Simulation Results

The first simulations presented will be qualitative comparisons to experimental results

obtained by Miller et al. in [28,29]. We then present some comparisons to results from

the basic model to observe the specific effect of adding growth factor to the scaffold.

Finally, we present simulations with some more complex initial growth factor seedings

to investigate the feasibility of directing cell densities into desired final forms.

5.3.1 Comparison of the Model to Experimental Results

As noted in the introductory chapter, there has been promising experimental work

in which fibroblast growth factor 2 is bioprinted onto scaffolds to stimulate cell

proliferation [6, 28, 29]. In this section, we use our model to reproduce, qualitatively,
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the key observations of Miller et al. [28], in which osteosarcoma cells are seeded

uniformly onto scaffolds with different concentrations of growth factor printed

uniformly onto a central square region within the scaffold. In the absence of full data

(describing cell features such as death rate, diffusion coefficient, etc.) for osteosarcoma

cells, we use the available data for chondrocyte growth (detailed in Tables 3.3 and

3.4) and compare the experimental images with theoretically-obtained contour plots

of local cell density after approximately 61 hours (figure 5.2 and 5.3) and 176 hours

(figure 5.4 and 5.5). The experimental images, reproduced in Figures 5.2 and 5.4

clearly demonstrate enhanced cell proliferation in the central square region containing

growth factor, an effect that persists over time (cells also proliferate in the region free

from growth factor, but at a lower rate).

Figure 5.2 Experimental image
from [28] at 61 hours with model
parameters from Table 3.4, and ρ̂0 =
0.32.

Figure 5.3 Simulation image at 61.6
hours with model parameters from
Table 3.4, and ρ̂0 = 0.32.

The experimental images in Figures 5.2 and 5.4 contain the phrase “32

overprints”: higher growth factor densities were obtained by printing the same area

of the scaffold multiple times. In principle, the initial growth factor density should be

proportional to the number of overprints. We simulate these experimental conditions
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Figure 5.4 Experimental image
from [28] at 176 hours with model
parameters from Table 3.4, and ρ̂0 =
0.32.

Figure 5.5 Simulation image at 176
hours with model parameters from
Table 3.4, and ρ̂0 = 0.32.

by using an initial growth factor density

ρ(x, y, 0) = ρ̂0(tanh(50(x− 0.25))− tanh(50(x− 0.75)))×

× (tanh(50(y − 0.25))− tanh(50(y − 0.75))), (5.8)

where we chose ρ̂0 = 0.32 (so that in principle, a value of ρ̂0 = 1 corresponds to 100

overprints).

Figures 5.7-5.11 and 5.12-5.16 show the comparison between experiment and

theory as the initial growth factor density is varied. The experimental results shown

are for 2, 12, 22 and 32 overprints of growth factor respectively: to mimic this in our

model, we used ρ̂0 = 0.02, 0.12, 0.22 and 0.32. Results are compared after 61 hours

(Figures 5.7-5.11) and 176 hours (Figures 5.12-5.16). As the initial growth factor

density increases (more overprints), the experiments showed higher cell numbers in

the printed region, a feature that the model reproduces. We emphasize that the

comparison is not intended to be quantitative, not least because the full dataset

needed to simulate correctly the experimental setup is not available. Note also that

the experimental printed region is very small, making a continuum approximation for
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the cell density here questionable. In particular, the gradients of cell density that

emerge in the simulations would not be evident in an experiment carried out on this

scale. Nonetheless, the qualitative agreement for the similar systems is encouraging.

A study of simulated total (normalized) cell population over time (Figure 5.6)

reveals that with higher initial growth factor densities, cells proliferated to higher

final populations, as would be expected. Note that the final growth-rate appears to

be linear in time.

Figure 5.6 Simulations of total normalized cell
population for differing growth factor overprints as seen
in Figures 5.8-5.16 with parameters from Table 3.4.
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Figure 5.7 Experimental results with differing overprint
values at 61 hours.

Figure 5.8 Experimental
simulation results with ρ̂0 = 0.02
at 61.6 hours.

Figure 5.9 Experimental
simulation results with ρ̂0 = 0.12
at 61.6 hours.

Figure 5.10 Experimental
simulation results with ρ̂0 = 0.22
at 61.6 hours.

Figure 5.11 Experimental
simulation results with ρ̂0 = 0.32
at 61.6 hours.
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Figure 5.12 Experimental results with differing overprint
values at 176 hours.

Figure 5.13 Experimental
simulation results with ρ̂0 = 0.02
at 176 hours.

Figure 5.14 Experimental
simulation results with ρ̂0 = 0.12
at 176 hours.

Figure 5.15 Experimental
simulation results with ρ̂0 = 0.22
at 176 hours.

Figure 5.16 Experimental
simulation results with ρ̂0 = 0.32
at 176 hours.
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5.3.2 The Role of Haptotaxis

Despite the impossibility of making quantitative comparison, the results of the

previous subsection suggest significant correlation between the experiments and our

simulations. In [28], Miller et al. state that the primary organizational response to

the growth factor by the cells is simple proliferation and not haptotactic migration.

However, in these experiments, the gradients in the initial growth factor distributions

are almost everywhere very small, and we therefore might not anticipate significant

haptotactic movement of cells. To investigate the role of haptotaxis in our model,

even with the small value of the haptotactic coefficient α used (α = 0.001), we can run

simulations in which the coefficient of the supplemental growth term in equation (3.4),

γ, is set to zero, while haptotaxis is either “on” (α > 0) or “off” (α = 0). We use the

same square growth factor distribution as previously (equation (5.8)), with ρ̂0 = 0.32.

Figures 5.17 and 5.19 in which haptotaxis is “on” both indicate distinct cell

motility towards the center of the domain, where growth factor is present, whereas

Figures 5.18 and 5.20, in which the growth factor is passive, show a relatively uniform

cell density across the domain.

Figure 5.17 Effects of haptotaxis
included with supplemental growth
removed (γ = 0) at 61.6 hours.

Figure 5.18 Effects of both
haptotaxis and supplemental growth
removed (α = 0, γ = 0) at 61.6 hours.
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Figure 5.19 Effects of haptotaxis
included with supplemental growth
removed (γ = 0) at 176 hours.

Figure 5.20 Effects of both
haptotaxis and supplemental growth
removed (α = 0, γ = 0) at 176 hours.

Figure 5.21 shows the total (normalized) cell population in the entire domain

versus time for the cases of haptotaxis and no haptotaxis (with no supplemental

growth-factor-induced proliferation), indicating that the total cell population is

almost unchanged by haptotaxis alone. Figures 5.17-5.21 together demonstrate that,

Figure 5.21 Total cell population with and
without haptotaxis (no supplemental growth in
both cases), with parameters from Table 3.4.
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while haptotaxis does not affect the total cell population, cell migration does in fact

play a role in the cell density spatial evolution in our model.

5.4 Beyond the Experiments: Further Theoretical Simulations

As observed, though haptotaxis may be playing a role in the experiments of [28],

its effect is hard to detect, since gradients of growth factor are small over most of

the domain, and any cell migration due to the growth factor is swamped by the

enhanced proliferation it stimulates. To examine more thoroughly possible effects

of haptotaxis, we also simulate selected scenarios where the initial cell seeding is

spatially non-uniform, and where more exotic growth factor distributions are used.

First, we assume that it is experimentally easier to seed cells on the perimeter of

the scaffold than uniformly throughout. Then, growth factor printed on the scaffold

interior could (in principle) be used to attract cells from the periphery to the interior,

giving a final cell density that is more or less uniform. Thus we simulate this scenario,

and compare to the case where no growth factor is present. We also simulate a scenario

where the initial cell density is constant, but the growth factor concentration increases

linearly throughout the domain (a uniform initial growth factor gradient). We then

simulate the effects of a banded initial growth factor distribution, with various initial

cell densities.

Finally, we carry out sample simulations to investigate the effects of (i) changing

the haptotactic coefficient, α; and (ii) changing the cellular advective drag coefficient,

δ (see equation (5.4)).

5.4.1 Peripheral Cell Seedings

Here we model a scenario where cells are seeded only on the perimeter of the domain

(Figures 5.22) and migrate inwards, under advection, haptotaxis (with initial growth-

factor distribution as in Figure 5.23), and diffusion.
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Figure 5.22 Initial cell seeding
around periphery of scaffold.

Figure 5.23 Initial growth factor
seeding in central region of scaffold.

In Figures 5.24-5.27, we compare model results without and with growth factor,

for the initial conditions of Figures 5.22 and 5.23. Figures 5.24 and 5.25 show results

after five days and Figures 5.26 and 5.27 show results after twenty-five days. The

cell migration towards the (initially empty) center of the domain is relatively slow,

due to the small values assigned to cellular advective velocity, cellular diffusive flux

and haptotaxis in our model; increasing the associated parameters would give more

dramatic results far sooner.

Figure 5.28 shows the total normalized cell populations over time for these

simulations, and also the cell density at the center of the scaffold. It is clearly seen

that the total cell population grows faster when growth factor is introduced, an effect

that increases over time. This effect is even more pronounced in the center of the

scaffold, as seen in Figure 5.29.

Comparison of Figures 5.24 and 5.26 to Figures 5.25 and 5.27 shows that

inclusion of growth factor with attendant haptotaxis and enhanced proliferation

significantly affects the final outcome. In particular, the cells migrate much further

into the interior within the same time period when the growth factor is present, due to
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Figure 5.24 Cell density after
120 hours with initial peripheral cell
seeding and no growth factor.

Figure 5.25 Cell density after
120 hours with initial peripheral cell
seeding and central growth factor
seeding.

Figure 5.26 Cell density after
600 hours with initial peripheral cell
seeding and no growth factor.

Figure 5.27 Cell density after
600 hours with initial peripheral cell
seeding and central growth factor
seeding.

the haptotaxis, an effect that was not largely evident in the experimental simulations

(with the same parameters, but different initial conditions).
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Figure 5.28 Total cell density
comparison (with and without growth
factor) of peripheral cell seeding
central with growth factor seeding.

Figure 5.29 Center cell density
comparison (with and without growth
factor) of peripheral cell seeding
central with growth factor seeding.

5.4.2 Higher Growth Factor Levels

The previous simulation leads us to examine the possibility of increasing the levels of

growth factor throughout the scaffold to see under what conditions the cell density

attains a relative uniformity by the end of the simulation. To achieve this, we can

make two simple change to equation (5.9): increasing the value of ρ̂0 and seeding the

entire region with growth factor instead of just the center. We consider the growth

factor seeding

ρ(x, y, 0) = 0.75(tanh(50(x− 0.25))− tanh(50(x− 0.75)))×

× (tanh(50(y − 0.25))− tanh(50(y − 0.75))) + 1, (5.9)

which provides growth factor to the entire scaffold, with a much more concentrated

amount around the center. The new initial growth factor density is presented in

Figure 5.30 and the results of this simulation are seen in Figures 5.31-5.33.

We clearly see aggressive cell migration and much higher proliferation after

fifteen days (Figure 5.32) and after the full simulation of twenty-five days (Figure 5.33)

the cell density throughout the entire scaffold seems to have reached a relatively
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Figure 5.30 Increased growth factor
seeding as described in equation (5.9).

Figure 5.31 Cell density after 120
hours with initial peripheral seeding
and higher central growth factor
seeding as described in equation (5.9).

Figure 5.32 Cell density after 360
hours with initial peripheral seeding
and higher central growth factor
seeding as described in equation (5.9).

Figure 5.33 Cell density after 600
hours with initial peripheral seeding
and higher central growth factor
seeding as described in equation (5.9).

uniform distribution. It is unknown if such a high growth factor density is possible

but these simulations provide promising indications that it may be possible to achieve

a fully-populated scaffold from only a peripheral initial cell seeding.
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5.4.3 Linear Growth Factor Distribution

To illustrate further the haptotaxis, we simulate a scenario in which a uniform (but

skewed with respect to the flow direction) initial growth factor gradient exists, with

initially-uniform cell seeding,

ρ(x, y, 0) = 3x+ 3y + 1, c(x, y, 0) = 1. (5.10)

Results corresponding to this initial growth factor distribution are shown in Figures 5.34-

5.37.

Figure 5.34 Linear growth
factor initial seeding as described
in equation (5.10).

Figure 5.35 Cell density after
90 hours from constant initial cell
seeding with linear initial growth
factor seeding as described in
equation (5.10).

After 90 hours (Figure 5.35) cell density has increased everywhere in the domain,

with slightly lower density near (x, y) = (0, 0), which had the lowest initial growth

factor density. After 180 hours the cell density across the domain closely mirrors

the original growth factor density; but the end of the simulation (600 hrs) indicates

a tendency towards an eventual uniform cell density, due to the combined effects of

cellular diffusion, and the higher nutrient concentration near the inlet x = 0. The

density near (x, y) = (1, 1) has decreased from 180 hours to 600 hours, most likely
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Figure 5.36 Cell density after
180 hours from constant initial cell
seeding with linear initial growth
factor seeding as described in
equation (5.10).

Figure 5.37 Cell density after
600 hours from constant initial cell
seeding with linear initial growth
factor seeding as described in
equation (5.10).

due to cellular diffusion to areas of lower density. It is also possible that the transient

growth-factor induced proliferation took the cell population in that region above the

carrying capacity ĉ(n), so that the proliferation is suppressed at later times once the

growth factor has been used up.

5.4.4 Banded Growth Factor Printing

Our final scenario illustrates the effect of a more exotic initial growth factor

distribution. We consider a banded initial growth factor density,

ρ(x, y, 0) = sin(6πx) + 1, (5.11)

as seen in Figure 5.38, with three different initial cell seedings. Such bioprinting

of banded growth factor (or other cellular cue) may be experimentally useful when

engineering tissues which contain many different cell types, e.g., liver.

We first consider a uniform initial cell seeding, simulated in Figures 5.38-5.41.

We can clearly see in Figure 5.39 that after five days (120 hours) the pattern of the
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cell density in the experiment nearly mirrors the initial growth factor density, showing

significant banding. As time progresses, the banding becomes less pronounced

(Figures 5.40 and 5.41): due to the cellular diffusion and advection of nutrient

throughout the cell density rises in all areas of the scaffold (though the imprint of the

initial banding is still evident).

Figure 5.38 Sinusoidal initial
growth factor seeding (as described
in equation (5.11)) used in simulation
with constant initial cell seeding.

Figure 5.39 Cell density after
120 hours from simulation with
constant initial cell density and
sinusoidal initial growth factor density
as described in equation (5.11).

Figures 5.42-5.45 and 5.46-5.49 show results for the same banded initial growth

factor distribution (5.11), but with different initial cell seedings. Figures 5.42-5.45

show results for peripheral initial cell seeding at all four walls of the scaffold (shown

in Figure 5.22), while Figures 5.46-5.49 show results for peripheral seeding at walls

x = 0 and x = 1 only. The results for peripheral seeding at all four walls show

an exotic pattern of cell density developing, due to the interplay between the initial

growth factor pattern, the initial cell seeding, the nutrient flow, and the associated

haptotactic, diffusive and advective effects. In particular, the fully 2D nature of the

initial cell-seeding here gives rise to a fully 2D final pattern. The results with initial

seeding only on two walls, on the other hand, has an initial cell seeding that is nearly
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Figure 5.40 Cell density after
360 hours from simulation with
constant initial cell density and
sinusoidal initial growth factor density
as described in equation (5.11).

Figure 5.41 Cell density after
600 hours from simulation with
constant initial cell density and
sinusoidal initial growth factor density
as described in equation (5.11).

Figure 5.42 Sinusoidal initial
growth factor seeding (as described
in equation (5.11)) used in simulation
with peripheral initial cell seeding.

Figure 5.43 Cell density after
120 hours from simulation with
peripheral initial cell density and
sinusoidal initial growth factor density
as described in equation (5.11).

one-dimensional (in line with the growth factor distribution), and the final pattern

that develops is correspondingly nearly 1D, and less intricate than the previous case.

This limited set of examples shows that with a controllable way of printing growth
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Figure 5.44 Cell density after
360 hours from simulation with
peripheral initial cell density and
sinusoidal initial growth factor density
as described in equation (5.11).

Figure 5.45 Cell density after
600 hours from simulation with
peripheral initial cell density and
sinusoidal initial growth factor density
as described in equation (5.11).

Figure 5.46 Sinusoidal initial
growth factor seeding (as described
in equation (5.11)) used in simulation
with two-walled (x = 0, 1) initial cell
seeding.

Figure 5.47 Cell density after 120
hours from simulation with two-walled
(x = 0, 1) initial cell density and
sinusoidal initial growth factor density
as described in equation (5.11).

factor onto scaffolds, there is great potential for creating cellular structures with

detailed spatial structure.
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Figure 5.48 Cell density after 360
hours from simulation with two-walled
(x = 0, 1) initial cell density and
sinusoidal initial growth factor density
as described in equation (5.11).

Figure 5.49 Cell density after 600
hours from simulation with two-walled
(x = 0, 1) initial cell density and
sinusoidal initial growth factor density
as described in equation (5.11).

5.4.5 Varying Haptotactic and Cellular Advective Drag Coefficients α, δ

Different types of scaffold (e.g. different biomaterials, different pore structure, etc.)

exhibit different cellular adhesion properties, with implications for the cell motility

due to haptotaxis and fluid drag. The haptotactic cell motility would also change if a

different haptoattractant was used on the scaffold. In all our simulations thus far in

this chapter, we have used the same values for the haptotactic coefficient, α, and the

cell advective velocity factor δ. Since these parameters were chosen in the absence of

solid empirical evidence, we consider the effect of changing them to simulate different

rates of cell motility and adhesion.
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Figure 5.50 Cell density after 120
hours using original α = 0.001 and
δ/ε = 10−5 parameter values.

Figure 5.51 Cell density after 240
hours using original α = 0.001 and
δ/ε = 10−5 parameter values.

Figure 5.52 Cell density after 480
hours using original α = 0.001 and
δ/ε = 10−5 parameter values.

Figure 5.53 Cell density after 600
hours using original α = 0.001 and
δ/ε = 10−5 parameter values.

In Figures 5.50-5.53 we show results of simulations with uniform initial cell

seeding and initial growth factor distributed as in equation (5.8), run for a period

of twenty-five days. The original parameters, presented in Table 3.4 are used;

specifically, α = 0.001 and δ/ε = 10−5. In Figures 5.54-5.57 and 5.58-5.61 we

show the analogous results with α = 0.005 and α = 0.01, respectively; and
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in Figures 5.62-5.65 and 5.66-5.69 we show results for increased cell drag ratios,

δ/ε = 10−3 and δ/ε = 3× 10−2, respectively.

Figure 5.54 Cell density after 120
hours using α = 0.005 and original
δ/ε = 10−5 parameter values.

Figure 5.55 Cell density after 240
hours using α = 0.005 and original
δ/ε = 10−5 parameter values.

Figure 5.56 Cell density after 480
hours using α = 0.005 and original
δ/ε = 10−5 parameter values.

Figure 5.57 Cell density after 600
hours using α = 0.005 and original
δ/ε = 10−5 parameter values.
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Figure 5.58 Cell density after 120
hours using α = 0.01 and original
δ/ε = 10−5 parameter values.

Figure 5.59 Cell density after 240
hours using α = 0.01 and original
δ/ε = 10−5 parameter values.

Figure 5.60 Cell density after 480
hours using α = 0.01 and original
δ/ε = 10−5 parameter values.

Figure 5.61 Cell density after 600
hours using α = 0.01 and original
δ/ε = 10−5 parameter values.

Figures 5.54-5.57 and 5.58-5.61 show that the increased cell motility resulting

from the larger values of α is quite visible at earlier times (5.54,5.55,5.58,5.59), as the

regions in the corners of the square in which growth factor was initially printed have

higher cell concentrations. The evolution at later times in all simulations follows the

early-time results as expected. At later times in all three simulations proliferation

has occurred throughout the entire domain (Figures 5.52, 5.53, Figures 5.56, 5.57,
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and Figures 5.60, 5.61), but in the region printed with growth factor cell densities are

higher as the haptotactic coefficient increases, due to the cells migrating toward the

center region faster in the early stages of the simulation.

Figure 5.62 Cell density after 120
hours using δ/ε = 10−3 and original
α = 0.001 parameter values.

Figure 5.63 Cell density after 240
hours using δ/ε = 10−3 and original
α = 0.001 parameter values.

Figure 5.64 Cell density after 480
hours using δ/ε = 10−3 and original
α = 0.001 parameter values.

Figure 5.65 Cell density after 600
hours using δ/ε = 10−3 and original
α = 0.001 parameter values.

Figures 5.62-5.65 and 5.66-5.69 show analogous results as the value of the cell

drag coefficient is increased. Figures 5.62-5.65, with δ increased by two orders of
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Figure 5.66 Cell density after 120
hours using δ/ε = 3×10−2 and original
α = 0.001 parameter values.

Figure 5.67 Cell density after 240
hours using δ/ε = 3×10−2 and original
α = 0.001 parameter values.

Figure 5.68 Cell density after 480
hours using δ/ε = 3×10−2 and original
α = 0.001 parameter values.

Figure 5.69 Cell density after 600
hours using δ/ε = 3×10−2 and original
α = 0.001 parameter values.

magnitude, shows little change relative to the results with the original parameter

values; but Figures 5.66-5.69, where δ is increased slightly more than one more order

of magnitude, shows significant damage to the cell population. With δ/ε = 0.03 the

cell drag velocity is less than two orders of magnitude smaller than the fluid velocity

itself, and cellular adhesion becomes very difficult. The cells are not only pulled to the

downstream end of the domain, but as Figure 5.71 reveals, there is also a decrease in
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the total cell population. This is likely due to a combination of reasons: once dragged

along with the flow the cell population is confined to a small area, where there is more

competition for the available nutrient. Moreover, the relatively high cell density in

that small area indicates a low permeability, with consequent high shear stresses,

possibly high enough to be in the damaging regime and slowing growth.

Figures 5.70 and 5.71 show the total cell population over time as the values of α

and δ/ε (respectively) are changed. We see in Figure 5.70 that early in the simulation

there is a slight up-tick in the cell population due to cells moving faster toward the

region of growth factor for higher values of α, but by the end of the simulation the

populations are all fairly equal. Our simulations at different α values lend credence

to the concept of printing growth factor to control the final cell distribution, as

Figures 5.54-5.57 and 5.58-5.61 indicate that there is a difference in the cell density

distributions obtained depending on the strength of the haptotactic effect, even if

the total population is unaffected (figure 5.70). Figure 5.71 confirms the assessment

made after examining Figures 5.62-5.65 and 5.66-5.69, indicating that the highest

drag velocity leads to a significant decrease in total cell density.

Figure 5.70 Total cell
population over time for differing
α values with δ/ε = 10−5

unchanged.

Figure 5.71 Total cell
population over time for differing
δ/ε values with α = 0.001
unchanged.
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5.5 Discussion

The experimental results of Miller et al. [28, 29], and our model results presented

here, demonstrate that modifying scaffold properties locally, for example by inclusion

of a growth factor that binds to the scaffold, can have a profound effect on the

proliferation and final distribution of cells across the scaffold. Our model suggests that

treating scaffolds with growth factor can increase the overall cell density distribution

in regions of higher growth factor concentration, and can stimulate cell migration

up growth factor gradients (haptotaxis). This effect can lead to results that differ

significantly from the case where cells migrate under cellular diffusion and advection

alone (see Figures 5.24-5.27 and 5.28-5.29). We have also demonstrated the clear

potential for using different patterns of initial growth factor to create specific final

distributions of cells within a scaffold: this is backed up by firm experimental evidence,

e.g., [28, 29]. While only a few representative simulations are given in this chapter,

for the purpose of illustration, when properly calibrated our model could in principle

be used to predict the outcomes of many different experimental scenarios of initial

cell seedings and growth factor distributions (within the limitations of our Darcy flow

model and continuum approximation for the cell density). We believe that the results

presented here are promising, and suggest that further experimental investigation of

the haptotactic effects of growth factor in tissue engineering scaffolds is worthwhile.

Work presented in this chapter is to be published in a forthcoming paper [40].



CHAPTER 6

CYCLIC SCAFFOLD COMPRESSION

6.1 Introduction

Modeling and simulation of loading on the tissue engineering construct can poten-

tially provide significant insight into the effects that stress and/or strain plays in

chondrocyte proliferation. Some progress has been made in this direction (for

example, the finite-element studies of Babalola and Bonassar [2] and Moo et al.

[30]); but a unified macroscopic model that treats the entire construct under forced

perfusion and cyclic loading is lacking. In this chapter, we take a step towards this

goal by modifying the original model to account also for cyclic loading of the scaffold.

The first modification is to the fluid flow, where we now allow for the possibility of

pulsatile pressure boundary conditions. Furthermore, to mimic the cyclic compression

the permeability is assumed to vary periodically in time. As noted above, the cyclic

loading is known to influence many experimental variables: we focus here on its

effect within the constraints of the simple model outlined in this paragraph – that

is, its effect via shear fluid stress modification – comparing with the unloaded case.

When compared against experimental outcomes, this can provide some indication of

the importance of factors omitted from our model, such as up-regulation of genetic

markers under cyclic loading [44].

We analyze the model on two different timescales. The cyclic loading and the

fluid pressure vary on a short timescale, driving the flow, while cell proliferation

occurs on a much longer timescale. While nutrient is transported by advection and

diffusion within the fluid, with advection dominating, we will consider the case in

which a constant external fresh supply keeps the construct well-nourished. This

approximation, justified in more detail in §6.3, enables us to average over an arbitrary

96
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loading cycle to obtain the long-time evolution of the cells in terms of cycle-averaged

flow quantities. Thus, we will be able to use a short timescale average of the fluid flow,

which removes all short timescale dependence, and see its effects on cell proliferation

on the longer timescale.

In this chapter, we present an alternate nondimensionalization of the model,

and an asymptotic analysis that reveals the separation of physical effects into the two

distinct timescales. This analysis is followed by the short timescale period averaging,

to derive a model valid on the long timescale of cell proliferation. We then present

some sample numerical results to demonstrate the time-averaged model, and compare

it with the original model of Chapter 3.

6.2 Nondimensionalization

We wish to model the effects of a periodic compressive force on the scaffold, which,

since it drives flow, necessarily occurs on the same timescale as the fluid velocity. To

achieve this, the time, pressure (and by extension the fluid velocity), and permeability

nondimensionalizations are slightly changed. Their new nondimensionalizations are

as follows:

t∗ =
t̃

ω∗ =
T

λ∗
(6.1)

u∗ = u∗0u = L∗ω∗u, p∗ =
µ∗L∗u∗0
k∗s

p =
µ∗L∗2ω∗

k∗s
p (6.2)

k∗(c∗, t∗) = k∗sk(c; t̃, T ) (6.3)

where 2π/ω∗ is the period of cyclic loading, t̃ is the short timescale (on the order of

fluid flow), and T is the long timescale (on the order of cell proliferation). We assume

(see Table 3.4) that ε = λ∗/ω∗ ≡ L∗λ∗/u∗0 � 1.



98

6.2.1 Nutrient Concentration

Dividing equation (2.4) through by ω∗n∗
0 yields the dimensionless form of the nutrient

equation

∂n

∂t̃
+ u · ∇n = D∇2n− θg(n, c, τs), (6.4)

where D = D∗/(ω∗L∗2), and θ = (θ∗c∗0)/(ω
∗n∗

0) with approximate dimensional

parameter values defined in Table 3.3.

6.2.2 Cell Density

Similarly to the nutrient equation, we divide the cell density equation (2.7) through

by ω∗c∗0 to obtain the dimensionless form of the cell density equation

∂c

∂t̃
+ εdup · ∇c = εDc∇2c+ εg(c, n, τs)− ενc, (6.5)

where ε = λ∗/ω∗ � 1, d = δ/ε, Dc = D∗
c/(λ

∗L∗2), ν = ν∗/λ∗, and d,Dc, ν, g(c, n, τs) ≤

O(1) with respect to ε (see Table 3.3). The dimensionless pore velocity is related to

the Darcy velocity by up = u/φ, where φ is the scaffold porosity.

6.2.3 Parameters

All of the dimensional parameters from the basic model are used in the cyclic

compression model with the exception of n∗
0, where as will be presented shortly, a

well nourished domain over the entire scaffold is assumed. We set ω∗ = 1s−1, and

so that the results are comparable to the results from the basic model we reduce

the pump flow velocity presented in Table 3.3 by a factor of five. As a result of the

alternative scalings, the dimensionless parameters are slightly different, and they are

presented in Table 6.1. The cell drag velocity coefficient, d = δ/ε, is set equal to 10−3

for the cyclic compression simulations to accentuate the effect of loading.
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Table 6.1 Dimensionless Parameter Values for the Cyclic Loading Model

Parameter Formula Value

D D∗/(ω∗L∗2) 2.6× 10−6

θ (θ∗c∗0)/(ω
∗n∗

0) Assumed O(ε)

Dc D∗
c/(λ

∗L∗2) 4.32× 10−4

ν ν∗/λ∗ 0.1425

ε λ∗/ω∗ 4.63× 10−7

6.3 Asymptotic Analysis

We seek solutions to equations (3.1), (3.2), and (6.4)-(6.5) as asymptotic expansions

in terms of the small parameter ε. This is done to exploit the two well-separated

timescales to be investigated: the short timescale t = t̃, based on the loading period,

and the long timescale T = εt̃, on which cell proliferation occurs. We assume

asymptotic expansions in the form of

c(x; t, T ) = c0(x; t, T ) + εc1(x; t, T ) + · · · , (6.6)

(and similarly for other dependent variables) where all ci are functions of space and

both time variables. Note that, since t = t̃ = T/ε, we have

∂

∂t̃
c(x; t, T ) =

∂c

∂t
+ ε

∂c

∂T
. (6.7)

6.3.1 Leading Order Nutrient Concentration: Well-Nourished Limit

The values estimated in Table 6.1 suggest that D = O(ε) and we assume additionally

that nutrient concentration in the culture medium is sufficiently high that θ = O(ε).

In this case the leading order nutrient concentration equation is just

∂n0

∂t
+ u0 · ∇n0 = 0. (6.8)
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If we assume further that the external nutrient supply is held constant, even over the

long timescale, then the solution to this equation is just n0 = constant = 1, with our

assumed scaling.

6.3.2 Leading Order Cell Density

Inserting the asymptotic expansion for the cell density, equation (6.6), into the leading

order cell density equation, (6.5), and using our two-timescale assumption, we obtain

at leading order

∂c0
∂t

= 0. (6.9)

Thus we see that the leading order cell density is unchanged on the short timescale,

but may vary on the long timescale. At O(ε) we obtain

∂c1
∂t

+
∂c0
∂T

+ dup0 · ∇c0 = Dc∇2c0 + g(n0 = 1, c0, τs)− νc0 (6.10)

where the leading order pore velocity up0 = u0/φ, with φ the scaffold porosity. We

now have one equation with two dependent variables, c0 and c1. In §6.3.4 we will

eliminate c1 from the equation giving us one equation with one dependent variable.

6.3.3 Leading Order Fluid Flow

The fluid flow (Darcy) velocity is obtained by solving an elliptic PDE for the pressure

p, which depends on the scaffold permeability

∇ · (k(c, t)∇p) = 0, k(c, t) = (1 + ∆ cos t)k̃(c), (6.11)

which we solve subject to no-flux conditions at boundaries y = 0, 1 and specified

flow conditions at x = 0, 1. The form of the permeability used in equation (6.11)

contains both spatial and (periodic) temporal dependence; the latter models the

effects of the cyclic compression. We have seen that cell proliferation occurs only over
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the long timescale, so the cell density dependent permeability k̃(c) is automatically

constant over the short time. To simulate the cyclic compression of the scaffold we

have included a 2π-periodic variation on the short timescale t = t̃. Here, ∆ < 1

is a coefficient measuring the degree of compression of the scaffold; for most of our

simulations we take ∆ = 0.2. With the appropriate asymptotic expansions for cell

density and pressure, the leading order Darcy’s Law and incompressibility equations

are

u0 = −(1 + ∆ cos t)k̃(c0)∇p0 (6.12)

∇ · u0 = 0 ⇒ ∇ · (k̃(c0)∇p0) = 0. (6.13)

Since the permeability is 2π-periodic in t, we may assume the leading order velocity

u0 and pressure p0 are also. We consider unidirectional flow driven by a prescribed

(dimensionless) flux Q0. This corresponds to some (unknown) pressure drop Π0

between x = 0 and x = 1 across the scaffold. We solve (6.12) and (6.13) by exploiting

the linearity: Let p̃ be the specific solution of the elliptic PDE (6.13) satisfying no-flux

conditions at y = 0, 1 and with a unit pressure drop in x:

p̃(0, y, t) = 1, p̃(1, y, t) = 0. (6.14)

Clearly, p0 and p̃ are related by p0 = Π0p̃. The prescribed flux Q0 satisfies

Q0 = −
∫ 1

0

(1 + ∆ cos t)k̃(c0)
∂p0
∂x

∣∣∣∣
x=0

dy = Π0Q̃0(1 + ∆ cos t), (6.15)

where Q̃0 = −
∫ 1

0
k̃(c0)

∂p̃
∂x

∣∣
x=0

dy can be evaluated from the solution p̃. Hence, Π0 =

Q0/(Q̃0(1 + ∆ cos t)) from which we recover

p0 =
Q0p̃

Q̃0(1 + ∆ cos t)
, (6.16)
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and thus

u0 = −Q0

Q̃0

k̃(c0)∇p̃. (6.17)

If the imposed dimensionless flux Q0 is constant we may set it to 1. Alternatively, we

may consider an imposed flux Q0 that is also 2π-periodic,

Q0 = 1 + A cos t, (6.18)

for some prescribed amplitude A.

6.3.4 Period Averaging

We observe that on the short (t) timescale the leading order cell density c0 is

independent of t, as is the nutrient concentration n0, while the permeability k, porosity

φ, fluid velocities u0, up0 and pressure p0 are 2π-periodic. It follows that the shear

stress τs within the scaffold is also 2π-periodic. Hence, in equation (6.10), the O(ε)

cell density c1 must also be 2π-periodic. We may therefore average this equation over

an arbitrary loading period,

1

2π

∫ t0+2π

t0

(
∂c1
∂t

+
∂c0
∂T

+ dup0 · ∇c0
)
dt =

=
1

2π

∫ t0+2π

t0

(
Dc∇2c0 + g(n0 = 1, c0, τs)− νc0

)
dt, (6.19)

yielding (using the above observations)

∂c0
∂T

+ dup0 · ∇c0 = Dc∇2c0 + g(n0 = 1, c0, τs)− νc0, (6.20)

where the overbars denote the 2π average of the quantity, so

up0 =
1

2π

∫ 2π

0

up0(x, t)dt, g(n0, c0, τs) =
1

2π

∫ 2π

0

g(n0 = 1, c0, τs)dt, (6.21)

where up0 = u0/φ is calculated using (6.17) with (6.11) and (2.21); and the pressure

p calculated using (6.16). We solve this model again subject to a specified initial
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seeding density, and no-flux conditions at the four scaffold boundaries. With total

dimensionless cell flux defined as

J c = dup0c0 −Dc∇c0 (6.22)

we therefore impose J c · n̂ = 0 at x = 0, 1, y = 0, 1, where n̂ denotes the outward

normal to the scaffold boundary.

6.4 Results

We present sample numerical results from our model for a selection of different initial

cell-seedings. For all initial seedings considered, the surface plots of results are

qualitatively similar for all loading scenarios, therefore we only show the cell density

evolution for a chosen loading scenario, followed by plots comparing total final cell

yield for all loading protocols.

6.4.1 Uniformly-Seeded Scaffold

We first consider the case most commonly aspired to in experiments: a uniform initial

cell seeding. Figures 6.1 and 6.2 show selected results from a simulation where a

uniformly-seeded scaffold is subjected to cyclic loading that induces a time variation

in the permeability given by (6.11), with ∆ = 0.2, and to an imposed flux with

time-dependent oscillatory component given by (6.18), with A = 0.5 (we may think

of ∆ as some measure of scaffold compression). In those figures we see snapshots of

the cell density after 240 and 600 hours of perfusion plus loading, respectively; while

Figure 6.3 shows the total cell population as a function of time for several different

loading scenarios, characterized by changing parameters ∆ and A. The case with

no cyclic loading, where no cycle-averaging process is required, is simply the original

model presented and is referred to as “Regular Darcy Model” in this and subsequent

figures.
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Figure 6.1 Cyclic compression from
a uniform initial seeding model with
parameter values ∆ = 0.2, A = 0.5
after 240 hours.

Figure 6.2 Cyclic compression from
a uniform initial seeding model with
parameter values ∆ = 0.2, A = 0.5
after 600 hours.

Figure 6.3 Cyclic compression from a uniform initial
seeding total cell populations for basic model and
varying ∆ and A values.

Unsurprisingly, the evolution of the cell density profile in this case is not

dramatic. The cell density evolves in a fairly uniform manner, but with lower densities

towards the flow inlet (x = 0) and higher densities towards the outlet (x = 1). These
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features are most easily seen in the surface plots shown in Figures 6.4-6.7, where the

cell densities at the final time are compared for all loading protocols. These gradients

near the inlet and outlet are present in all simulations, including those for the case

without cyclic loading; but broadly speaking, the higher the degree of cyclic loading,

the more pronounced they are (they are much less pronounced in the unloaded case).

They are probably largely attributable to the cellular advective drag, combined with

our no flux condition on cells at the edges of the domain. Given the net flow direction

this would certainly cause some pile-up of cells at the outlet, and a dwindling of cell

numbers near the inlet.

Figure 6.3 shows that the total cell population over all loading scenarios tested

is in fact greatest for the unloaded (regular Darcy model) case under the given flow

conditions, although the differences are not great. This could be due to a combination

of factors: though shear stresses are higher under the compressive part of the cycle

(leading if sustained, unless excessively high, to enhanced proliferation rates), they

are lower under the “expansion” phase of the cycle, so the net effect may nearly

cancel.
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Figure 6.4 Surface plot at t = 600
hours for a uniform cell seeding with
no load.

Figure 6.5 Surface plots at t = 600
hours for a uniform cell seeding with
∆ = 0.2, A = 0.

Figure 6.6 Surface plots at t = 600
hours for a uniform cell seeding with
∆ = 0.5, A = 0.5.

Figure 6.7 Surface plots at t = 600
hours for a uniform cell seeding with
∆ = 0.5, A = 0.

6.4.2 Peripherally-Seeded Scaffold

As previously noted, achieving a uniform seeding right through to the center of the

scaffold may be experimentally challenging and it may be easier to seed the scaffold

from its periphery, and rely on the migration of cells into the interior to obtain the

end result. Figures 6.8-6.9 show a simulation where a linear gradient of cell density

(in the direction normal to the wall) is imposed at each of the four scaffold walls
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first presented in Figure 4.30 in Chapter 4. The seeded scaffold is subjected to cyclic

loading that induces a time-dependent permeability given by (6.11), with ∆ = 0.2,

and to an imposed flux with time-dependent oscillatory component given by (6.18),

with A = 0.5.

Figure 6.8 Cyclic compression from
a peripheral initial seeding model with
parameter values ∆ = 0.2, A = 0.5
after 240 hours.

Figure 6.9 Cyclic compression from
a peripheral initial seeding model with
parameter values ∆ = 0.2, A = 0.5
after 600 hours.

Figure 6.10 shows a comparison of the results as the model loading parameters

∆ and A are varied. The total cell yield as a function of time is plotted for different

combinations of ∆ and A, including for the unloaded case (Regular Darcy Model).

Only fairly modest differences are seen; for this particular seeding scenario the regular

Darcy model again gives the best total cell yield.

Figures 6.11-6.14 show the final-time (t = 600 hours) cell density profiles for

different loading scenarios. The surface plots reveal that the final cell distributions for

all loaded cases are very similar; but the unloaded case shows qualitative differences,

particularly near the flow outlet.

The following two seeding distributions are less realistic, but serve to give some

indication of how changing the initial cell seeding affects the final outcome.
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Figure 6.10 Cyclic compression from a peripheral
initial seeding total cell populations for basic model and
varying ∆ and A values.
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Figure 6.11 Surface plot at t = 600
hours for a peripheral cell seeding with
no load.

Figure 6.12 Surface plots at t = 600
hours for a peripheral cell seeding with
∆ = 0.2, A = 0.

Figure 6.13 Surface plots at t = 600
hours for a peripheral cell seeding with
∆ = 0.5, A = 0.5.

Figure 6.14 Surface plots at t = 600
hours for a peripheral cell seeding with
∆ = 0.5, A = 0.
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6.4.3 Centrally-Seeded Scaffold

As a comparison, we next consider a scaffold that is seeded only at its center.

Figures 6.15-6.16 show snapshots of the cell density evolution over time for the same

parameters as considered previously, together with the comparison plot showing the

total cell yield over time (Figure 6.17) for the different loading scenarios. Once more

the unloaded model wins out in terms of the final cell yield, all other loading scenarios

giving very similar, slightly lower, yields.

Figure 6.15 Cyclic compression
from a central initial seeding model
with parameter values ∆ = 0.2, A =
0.5 after 240 hours.

Figure 6.16 Cyclic compression
from a central initial seeding model
with parameter values ∆ = 0.2, A =
0.5 after 600 hours.

For this case the final cell density surface plots are all qualitatively very similar:

as we saw in the previous examples, the main differences in cell density appear at the

edges of the scaffold, and here all cell densities remain relatively low at the edges,

even after 600 hours. Hence, we do not show the final surface plots for this initial

seeding scenario.
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Figure 6.17 Cyclic compression from a central initial
seeding total cell populations for basic model and
varying ∆ and A values.

6.4.4 Sinusoidal Initial Seeding

We next consider a scaffold that is seeded nonuniformly according to

c0(x, y, 0) = 1 +
1

2
sin 6x+

1

2
cos 6y (6.23)

Here the initial nonuniformities in the cell density smooth out gradually in time

(though not entirely). Figures 6.18-6.19 show the usual snapshots from the evolution

of a case with loading and pulsatile flow, with Figure 6.20 showing the comparison of

total cell yield over time for both loaded and unloaded cases. This is the first example

in which loading gives rise to a higher total yield (the case illustrated in figures 6.18

and 6.19 actually gives the highest total yield).

Figures 6.21-6.24 show the surface plots of cell density for the final time t = 600

hours for the different loading scenarios. Again, the principal difference appears

between the unloaded case and the others (all loading scenarios are qualitatively

rather similar).
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Figure 6.18 Cyclic compression
from a sinusoidal initial seeding model
with parameter values ∆ = 0.2, A =
0.5 after 240 hours.

Figure 6.19 Cyclic compression
from a sinusoidal initial seeding model
with parameter values ∆ = 0.2, A =
0.5 after 600 hours.

Figure 6.20 Cyclic compression from a sinusoidal
initial seeding total cell populations for basic model and
varying ∆ and A values.
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Figure 6.21 Surface plot at t = 600
hours for a sinusoidal cell seeding with
no load.

Figure 6.22 Surface plots at t = 600
hours for a sinusoidal cell seeding with
∆ = 0.2, A = 0.

Figure 6.23 Surface plots at t = 600
hours for a sinusoidal cell seeding with
∆ = 0.5, A = 0.5.

Figure 6.24 Surface plots at t = 600
hours for a sinusoidal cell seeding with
∆ = 0.5, A = 0.
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6.5 Discussion

We have presented a minimal model for the proliferation of cells (e.g., chondrocytes)

under cyclic loading and periodic pulsatile flow. Since the loading occurs on a

timescale very much shorter than that of cellular proliferation, a two-timescale

analysis together with period-averaging is exploited to derive a closed-form model

for the evolution of cell density over the long timescale of proliferation. The model

is very simple in that the effect of the loading is captured only by its effect on the

fluid dynamics and the shear stress, which affects the local proliferation rate. No

attempt is made to model other mechanotransductive effects due to the loading,

such as upregulation of cellular genetic markers, which may impact the long-term

proliferation and functionality of the tissue. Our model therefore investigates the

hypothesis that differences in final outcomes under loading are due only to the altered

fluid dynamics and shear stresses, assuming that these impact proliferation in the

same way as in an “unloaded” model.

The model was simulated for several different loading scenarios, and compared

to results with no loading, for a selection of different initial cell seedings. Though the

final pattern of cells within the scaffold shows qualitative differences in the loaded

versus unloaded cases, the final cell yields show only modest differences (our model

can say nothing about functionality of the final tissue in different cases). This finding,

when considered alongside experimental evidence demonstrating that loading can lead

to profound differences in the final outcomes (e.g., Buschmann et al. [4]), suggests

that in fact the key effects of loading are deeper than this model can capture, and

that specific account must be taken of additional cell biology.

That said, there are clear differences between loaded and unloaded cases, which

may be seen in Figures 6.4-6.7, 6.11-6.14, and 6.21-6.24. While all loading scenarios

lead to very similar final outcomes, the cell distribution in the unloaded case differs

noticeably at the flow outlet, x = 1, the cell density being consistently lower than
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in any comparable loaded case. We attribute this feature primarily to the effects of

cellular advection near the boundaries.



CHAPTER 7

OTHER EXTENSIONS TO THE MODEL

7.1 Introduction

We have shown that the model is able to simulate several different modeling scenarios,

as presented in Chapters 4 through 6. There is clearly considerable scope for further

extending the model in a number of directions to make it more realistic. In this

chapter, we briefly outline two possible extensions on which we have carried out

preliminary studies: (i) non-constant cellular death rate, reflecting the fact that the

cells’ local environment can affect this; and (ii) variable-permeability scaffolds, which

can serve as another means of controlling the final outcome of an experiment. (In this

direction the work of Shakeel et al. [46], which considers the effect of permeability

“channels” through the scaffold to enhance nutrient delivery to the center, is relevant.)

7.2 Variable Death Rate

Typically experimentalists and modelers both treat cell death as a constant because

determining an appropriate rate on the cellular level can be difficult. It is easier to

determine the cell population at two points in time and calculate an average death

rate over the course of an experiment or simulation. There are many ways that we

can modify the death rate to reflect the local environment; e.g., as a function of the

local cell density, a function of time, or a function of the local fluid velocity. In this

section, we consider just one of these options: we make the death rate a function of

the local fluid velocity, primarily to reflect the fact that cells release toxic by-products,

which would normally be flushed away quickly by the fluid flow. In stagnant zones,

however, toxins may build up, and lead to a higher death-rate. We, therefore, choose

116
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to model the variable death rate as

υ(u) = ν

(
ν0

ν1 + ν2|u|2
+ 1

)
, (7.1)

where ν0, ν1, and ν2 are constants. This functional form is chosen so that as the fluid

flow approaches 0 the death rate is a constant multiple of the prescribed death rate,

ν(ν0/ν1 + 1), and as u→∞ the death rate approaches the prescribed death rate, ν.

Figure 7.1 shows this relationship with three choices for the constants.

Figure 7.1 Differences in the variable death rate for choices of
constants {ν0 = 1, ν1 = 1, ν2 = 0.5}, {ν0 = 1, ν1 = 1, ν2 = 1},
and {ν0 = 2, ν1 = 2, ν2 = 0.5}.

All three possible sets of parameters proposed have the effect of doubling

the prescribed death rate when the fluid flow is small, an effect which will play a

significant role in the results. We see that choice of constants does not greatly affect

the relationship between u and υ(u) so we choose ν0 = 1, ν1 = 1, ν2 = 0.5 in

equation (7.1). We now present sample results comparing the original Darcy model
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with the new variable death rate model for three different initial cell seeding densities.

All model parameters used are as in Table 3.4.

7.2.1 Initial Cell Density Varying in x and y

We first present results with initial density varying in x and y, recalling equation (4.14)

c(x, y, 0) = 1 +
1

2
sin 6x+

1

2
cos 6y. (7.2)

Figures 7.2 and 7.3 show the resulting cell densities after 240 hours, and Figures 7.4

and 7.5 show the densities after 600 hours. The results show that the initial seeding

Figure 7.2 Cell density after 240
hours from a sinusoidal initial seeding
from equation (4.14) with a constant
death rate.

Figure 7.3 Cell density after 240
hours from a sinusoidal initial seeding
from equation (4.14) with a variable
death rate.

density stays close to the original model although the density everywhere for the

variable death rate seems to be lower than in the original model. This result is

further seen when examining the total cell population for both simulations, seen in

Figure 7.6. This is unsurprising, since the variable death rate as chosen for these

preliminary simulations is always greater than or equal to the constant death rate in

the comparison simulation.
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Figure 7.4 Cell density after 600
hours from a sinusoidal initial seeding
from equation (4.14) with a constant
death rate.

Figure 7.5 Cell density after 600
hours from a sinusoidal initial seeding
from equation (4.14) with a variable
death rate.

Figure 7.6 Total cell population comparing variable to
constant death rates with sinusoidal initial seeding from
equation (4.14).
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7.2.2 Initial Cell Density Concentrated at Center of Scaffold

In this simulation, we compare the original model to one with a variable death rate

when the initial cell seeding is concentrated in the center of the scaffold, originally

presented in equation (4.15),

c(x, y, 0) = e
−20

(
(x− 1

2)
2
+(y− 1

2)
2
)
.

Figures 7.7 and 7.8 show cell densities after 240 hours and Figures 7.9 and 7.10

show densities after 600 hours. The results similarly indicate little difference in

Figure 7.7 Cell density after 240
hours from a central initial seeding
from equation (4.15) with a constant
death rate.

Figure 7.8 Cell density after 240
hours from a central initial seeding
from equation (4.15) with a variable
death rate.

the spatial form of the two models, but we can clearly see a reduction in the cell

densities in the model with variable death when compared to the model with constant

death. The area of the central cell density seems to be similar in both models and

Figures 7.9 and 7.10 suggest that when variable death is included it decreases the rate

of proliferation proliferation, particularly in those areas with the highest cell density.

This is in line with our expectations: in these areas of high cell density, permeability

is low and flow is slowed, so that the death rate is higher in the modified model.
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Figure 7.9 Cell density after 600
hours from a central initial seeding
from equation (4.15) with a constant
death rate.

Figure 7.10 Cell density after 600
hours from a central initial seeding
from equation (4.15) with a variable
death rate.

Figure 7.11 shows the total cell population for this simulation, and it confirms the

overall slowing of cell proliferation over time.

Figure 7.11 Total cell population comparing variable
to constant death rates with central initial seeding from
equation (4.15).
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7.2.3 Initial Cell Density Around Periphery of Scaffold

The final set of simulated results are those where initially cells are seeded around the

periphery of the scaffold. Figures 7.12 and 7.13 show cell densities after 240 hours

and Figures 7.14 and 7.15 after the full simulation of 600 hours. We see again

Figure 7.12 Cell density after 240
hours from a peripheral initial seeding
with a constant death rate.

Figure 7.13 Cell density after 240
hours from a peripheral initial seeding
with a variable death rate.

Figure 7.14 Cell density after 600
hours from a peripheral initial seeding
with a constant death rate.

Figure 7.15 Cell density after 600
hours from a peripheral initial seeding
with a variable death rate.

that the cell density, as expected, is lower in the variable death model than it is in
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the constant death model. We also see, though, that the cell density in the variable

death model is more uniform from x = 0 to x = 1 after 600 hours than it is in the

constant death model. With a constant death rate, the cells proliferate faster in the

region close to where nutrient is provided to the scaffold (x = 0) than further away

from the inlet. The effect of damping the proliferation slightly in the variable death

model has also brought about an effect of modulating the extreme values seen in the

original model. Figure 7.16 shows the total cell population comparing the variable

Figure 7.16 Total cell population comparing variable to
constant death rates with peripheral initial seeding.

death model to the original model with constant death rate, confirming once more

that the total population is always lower with variable death rate. We again see that

as the simulation goes on, the total population with when varying the death rate is

increasingly lower than when the death rate is held constant.
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7.2.4 Discussion

In all three simulations, we saw that while the spatial forms of the results showed good

agreement for both models, the total cell population was always significantly lower

when variable death was considered. This effect was even stronger in the case of the

central and peripheral seedings: in Figures 7.11 and 7.16 we saw that the difference in

the rate at which both populations proliferated increased as time went on. The first

simulation (Figure 7.6) in contrast saw the gap between the two populations growing

at a relatively constant rate.

The reason for the difference in total population is due to the choice for the

functional form of the variable death rate. It was chosen so that when the fluid flow

was low the effective death rate was actually twice the prescribed death rate, while

at high flow rates the “standard” death rate was attained. We showed in §4.4.1 that

even increasing the death rate by a factor of 1.5 can have noticeably reductive effects

on the cell density distribution. The model presented here should be regarded as a

very preliminary investigation of one possible factor that may affect the death rate

in a perfusion bioreactor; and the comparisons presented between the models should

be taken only as a guide to illustrate the general effect of the model modification

in different cases. It is of course possible that our choice of doubling the death rate

at low flow rates is too drastic, or that the general functional dependence of death

rate on flow speed is not appropriate. In Figure 7.1 we see that the decrease from

an effective doubled death rate to the prescribed one is relatively slow. A possible

future direction is to examine different functional dependence of the death rate on

flow speed (not to mention, of course, examining the many other experimental factors

that may lead to a non-constant death rate).
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7.3 Variable Scaffold Permeability

Bioprinting growth factor onto the scaffold to direct and enhance cell proliferation, as

considered in Chapter 5, is one means by which tissue engineers might better control

experimental outcomes. If it is possible to initially seed the scaffold with minimal

effort and still obtain a specific desired result, this would represent considerable

progress for tissue engineering. Another direction we are exploring is motivated

partially by results found by Raimondi et al. [43]. In that paper, the authors noted

that a perfused flow produced significant increases in cell population when compared

to a static culture system. That work, along with one of the model modifications

proposed by Shakeel et al. [46] directed us to examine the effect of modeling a channel

of higher permeability through the middle of the scaffold by which nutrient can be

more efficiently delivered to cells on the interior. Tissue engineers use many different

types of scaffolds, with different porosities and permeabilities in the unseeded states.

If the permeability is too low, it may be difficult to provide nutrients to the interior

cells, even under perfusion. We model a central high-permeability channel through

our scaffold by modifying our original permeability function (equation (3.9)) to make

it spatially nonuniform (with Gaussian profile) in the unseeded state:

k(c, x, y) =

(
1 + 15e

−(y−0.5)2

0.052

)(
1

1 + c2

)
, (7.3)

and the behavior of the Gaussian component, k(x, y), is shown in Figure 7.17. The

numerical values of 15 and 0.05 in equation (7.3) are chosen to accentuate the effect

of a narrow, highly-permeable channel for the purposes of modeling, but can easily be

changed to better fit with possible experimental values. Using this new permeability

we present sample results with a constant initial cell density to illustrate the effect

of the central channel. This permeability is then used in simulations with the initial

cell density varying in x and y (equation (7.2)) as well as the peripheral initial cell
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Figure 7.17 Graphical form of the Gaussian component of the
variable permeability modification.

seeding. All other parameters and functional forms (including the original constant

death rate) are as they were presented for the basic model in Chapter 4.



127

7.3.1 Constant Initial Cell Density

The assumed effect of creating a channel in the center of the scaffold is better nutrient

delivery to the middle of the scaffold, which we expect to be accompanied by increased

proliferation near the channel. The most effective way to see specifically what effect a

central channel has on the evolution of the cell density is to examine the effects on a

constant initial cell density. Figures 7.18 and 7.19 show the results of the simulation

after 240 hours, and Figures 7.20 and 7.21 are after 600 hours. We can see that, as

Figure 7.18 Cell density after 240
hours from a uniform initial seeding
with the original permeability.

Figure 7.19 Cell density after 240
hours from a uniform initial seeding
with a permeability channel.

expected, there is a slight up-tick in cell density density around the central channel,

even as early as ten days. Another effect is that, while the cell density near the outlet

(x = 1) shows a significant uptick at the channel location, this is at the expense of

lower cell density elsewhere in this region. This may be explained by the fact that

the nutrient uptake rate is fixed, while the flow in the highly permeable channel is

much faster than in the rest of the scaffold. Therefore, at the fixed uptake rate,

cells near the inlet do not have time to take up much nutrient before it has been

carried downstream. Figure 7.22 shows the total cell population over the course

of the simulation. The results which qualitatively were evident in the first figures
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Figure 7.20 Cell density after 600
hours from a uniform initial seeding
with the original permeability.

Figure 7.21 Cell density after 600
hours from a uniform initial seeding
with a permeability channel.

are quantitatively confirmed as we see that with the central channel the total cell

population is higher than when the permeability is left in its original form.

Figure 7.22 Total cell population comparing the original
permeability to permeability with a central channel with a
uniform initial cell seeding.
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7.3.2 Initial Cell Density Varying in x and y

Now that we have seen the effect that a central permeability channel can have on

cell density we introduce some more exotic initial cell seedings. The first one that

we examine is the initial seeding varying in x and y which was used in the variable

death model, among other simulations, and was first presented in equation (4.14).

Based on the results of §7.3.1 we expect to see another up-tick in the cell density

near the location of the central channel. Figures 7.23 and 7.24 show the results of

the simulation after 240 hours, and Figures 7.25 and 7.26 are after 600 hours using

the sinusoidal initial cell density. The figures show somewhat unexpected results.

Figure 7.23 Cell density after 240
hours from a sinusoidal initial seeding
from equation (4.14) with the original
permeability.

Figure 7.24 Cell density after 240
hours from a sinusoidal initial seeding
from equation (4.14) with a perme-
ability channel.

There is not a specific central channel-based up-tick in cell density, but instead we

see an increase in the cell density near the inlet in general when compared with the

regular permeability function. Not only is there an up-tick in the cell density near

the inlet but this up-tick has come at the detriment of the cells near the outlet as

the density there is lower than with the spatially-uniform scaffold. This result can be

attributed to the initial seeding distribution, with its high density near the inlet at
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Figure 7.25 Cell density after 600
hours from a sinusoidal initial seeding
from equation (4.14) with the original
permeability.

Figure 7.26 Cell density after 600
hours from a sinusoidal initial seeding
from equation (4.14) with a perme-
ability channel.

the beginning of the simulation. This offsets (to some extent) the high permeability

of the unseeded scaffold, slowing the nutrient flow sufficiently to allow the cells to

take up the nutrient and proliferate there. The fact that this effect appears to be

more pronounced with the permeability channel suggests that, in the simulation with

no channel, permeability is so low near the inlet that shear stresses are unfavorably

high, suppressing this proliferation to some extent. Figure 7.27 shows that while there

are large differences in the densities in specific regions of the scaffold, the total cell

population does not vary as much as it did when considering a uniform initial cell

density.
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Figure 7.27 Total cell population comparing the original
permeability to permeability with a central channel with a
sinusoidal initial cell seeding from equation (4.14).

7.3.3 Initial Cell Density Around Periphery of Scaffold

The final set of sample results are those where the cells are initially seeded around

the periphery of the scaffold, which we anticipate should be relatively easy to set up

experimentally. Results for this simulation are difficult to anticipate because, unlike

our earlier simulations, the majority of the region where the permeability channel

exists has no cells initially in the vicinity. Figures 7.28 and 7.29 show the results of

the simulation after 240 hours, and Figures 7.30 and 7.31 are after 600 hours with cells

initially seeded on the periphery of the scaffold. The results from the figures, while

not predicted, are easily explained. While the permeability around the channel and

near the center of the scaffold is as high as is possible, the effect is difficult to detect,

as there are no cells there to consume the extra nutrient available there. The cells

which are near the channel, close to x = 0 and x = 1 are able to take advantage of
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Figure 7.28 Cell density after 240
hours from a peripheral initial seeding
with the original permeability.

Figure 7.29 Cell density after 240
hours from a peripheral initial seeding
with a permeability channel.

Figure 7.30 Cell density after 600
hours from a peripheral initial seeding
with the original permeability.

Figure 7.31 Cell density after 600
hours from a peripheral initial seeding
with a permeability channel.

the extra nutrient and experienced higher proliferation, as is evident when comparing

Figures 7.30 and 7.31. In these figures, the up-ticks noticed in the basic model near

the inlet and outlet are accentuated in the channel permeability model as an increased

nutrient concentration there means that less nutrient is available for cells near y =

0 and y = 1. Figure 7.32 shows that this final simulation provided the smallest
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Figure 7.32 Total cell population comparing the original
permeability to permeability with a central channel with a
peripheral initial cell seeding.

change when comparing the total cell population between the two models. With

the peripheral initial seeding the effect of a central permeability channel essentially

functions as a means to obtain a different distribution of the cells towards the inlet

and outlet.

7.3.4 Discussion

All three simulations presented with a central permeability channel provided very

interesting results. We first were able to see that modeling a channel in the running

near the center of the scaffold from inlet to outlet provided expected, predictable

results when seeding with a uniform cell density. With this constant density we

expected the cells to proliferate faster when more nutrient is available. Even this

simple simulation, however, revealed two competing effects: on the one hand the

nutrient flows preferentially down the high-permeability channel, leading generally
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to increased proliferation here. But on the other hand, the high flow rates that are

possible in the channel can also lead to nutrient being advected too rapidly for cells

to take up, leading to the depressed cell density levels (compared with the standard

model) observed near the inlet in Figures 7.19 and 7.21.

When seeding with the sinusoidal cell density in the second simulation, though,

we saw that the local cell density plays a significant role. When there are already

a relatively large number of cells near the inlet and the nutrient concentration

here is somehow increased, a significant increase in proliferation is seen. It was

very interesting to see that the inclusion of a central permeability channel has a

similar effect to increasing the rate, θ, at which cells consume nutrient (see §4.4.4,

Figures 4.67-4.74).

Finally, the results for the peripheral cell seeding, while perhaps not anticipated,

are very reasonable with hindsight. The central channel only makes a significant

difference in those regions where a cell population is present to consume the excess

nutrient.

We note that the simple permeability form proposed in equation (7.3) is

easily generalized to model any chosen variable permeability of the underlying

scaffold. Therefore, an obvious direction in which to generalize this work is to

examine how scaffolds with prescribed permeabilities might be used to influence the

final experimental outcome (perhaps even in conjunction with printed growth-factor

patterns). Focusing on relatively controllable aspects such as scaffold porosity and

permeability, and scaffold surface modifications, appear to offer the best hope for

control of experimental outcomes.



CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this dissertation we have developed a comprehensive and very versatile model to

describe a tissue engineering experiment in a perfusion based bioreactor. We used

experimental data to simulate growth of chondrocytes when fed by oxygen, which

becomes toxic in large amounts.

In Chapter 4 we simulated the experiment starting with a uniform cell seeding,

since this is the end result experimentalists wish to attain in many circumstances. We

next considered spatially inhomogeneous initial cell seedings, to investigate the effect

on the end result. We found that in the basic model the resulting cell density tended

to keep the form with which it was seeded initially. The robustness of the basic

model was thoroughly demonstrated (via small changes in the form of constituent

functions) in §4.3 as was its versatility (the ease with which we were able to model

different scenarios) in §4.4.

In Chapter 5 we showed how a small adjustment to the cell density equation

(equation (3.4)) in the form of two extra terms (a haptotactic cell flux, and an

additional proliferation source term), and the inclusion of one extra governing

equation (for growth factor) were able to model the concept of bioprinting growth

factor onto the scaffold to direct cell motility. We compared simulated results

with experiments run by Miller et al. [28] and were able to obtain good qualitative

agreement indicating the model was able to capture the effect of growth factor bound

to the scaffold. We were also able to reconcile our model, in which haptotaxis plays a

role, with the assertion of Miller et al. [28] that haptotaxis is negligible (small growth

factor gradients almost everywhere in the experimental scenario make the haptotaxis

hard to detect; but it can be significant under different experimental conditions).

135
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Multiple growth factor bioprinting patterns were then simulated with varying initial

cell density seedings to investigate the hypothesis of directing cell motility and

proliferation to obtain a given final cell density. One goal of such investigations

is to explore ways to obtain a uniform final cell density from an initial peripheral cell

density, as seeding around the periphery is presumably easier experimentally than a

uniform seeding.

In Chapter 6 we were able to use the same basic model to analyze the effect

of cyclically compressing the scaffold via a multiple scale analysis. We simulated the

effect of compression on the time scale of fluid flow, and then averaged the model

over an arbitrary loading cycle to derive a model valid over the timescale of cell

proliferation. The model considered here does not take account of any additional

biology or physiology that the loading may stimulate. Since cyclic loading is known

to stimulate several additional biological cellular responses [4,44], one function of our

model is to investigate how important such neglected effects might be. Since our

results indicate only modest differences between loaded and unloaded cases (while

some experimental data point to significant differences), we conclude that extra

biology should be included in a more realistic model of such loading.

Finally, Chapter 7 includes results from two hypothetical situations that have

yet to receive much consideration in models or experiments. The cell death rate is

typically considered to be a constant value because it is difficult to determine death

rates at the cellular level. We were able to successfully implement the effect of a cell

death rate which depends on the local fluid flow rate which is a decreasing function

of fluid velocity and while the included simulations incorporated an effective death

rate which was likely too high at low flow speed, the model sufficiently captured

the effects so that with data-driven adjustments in future, the concept of a variable

death rate can be further studied. We next considered a modification intended to

deliver nutrient more effectively to the center of the scaffold: a high-permeability
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channel through the middle of the scaffold. This was modeled as a prescribed spatial

variation in the unseeded scaffold permeability. This approach is similar in spirit

to the bioprinting of growth factor: both techniques aim to modify the underlying

scaffold in order to achieve a desired experimental outcome.

Possible future directions for the model are abundant. The ease with which

we were able to include the effect of haptotaxis, a variable death rate, and a central

channel lead us to believe that the model can be adapted to many other possible

experimental protocols that have not yet been considered. Further simulation can

be done to determine a more effective averaged variable death rate, simulation of

more than one central channel or more complicated scaffold permeabilities, different

initial cell seeding densities, and many other aspects. The cyclic compression model

of Chapter 6 did not take into account any cell level biology, such as up-regulation

of chondrogenic genetic markers, hence there is much more work to be done here

also. As tissue engineering continues to develop, it is our hope that this model is a

stepping stone to a more complete description of a full experiment, and that it (or

future, improved, iterations of the model) can help quickly determine optimal and

detrimental parameter values and experimental protocols to aid in better production

of viable replacement tissue.
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